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ABSTRACT

Semi-Supervised Learning (SSL) reduces annotation cost by
exploiting large amounts of unlabeled data. A popular idea
in SSL image classification is Pseudo-Labeling (PL), where
the predictions of a network are used in order to assign a la-
bel to an unlabeled image. However, this practice exposes
learning to confirmation bias. In this paper we propose Gen-
eralized Pseudo-Labeling (GPL), a simple and generic way to
exploit negative pseudo-labels in consistency regularization,
entailing minimal additional computational overhead and hy-
perpameter fine-tuning. GPL makes learning more robust by
using the information that an image does not belong to a cer-
tain class, which is more abundant and reliable. We showcase
GPL in the context of FixMatch. In the benchmark using only
40 labels of the CIFAR-10 dataset, adding GPL on top of Fix-
Match improves the error rate from 7.93% to 6.58%, and on
CIFAR-100 with 2500 labels, from 28.02% to 26.85%.

Index Terms— Semi-Supervised Learning, Pseudo-
Labeling, Consistency Regularization

1. INTRODUCTION

Since Machine Learning algorithms have achieved high per-
formances in benchmark image classification tasks with abun-
dant labeled data [1, 2, 3, 4], focus has started to shift toward
the more difficult case of scarce labeled data [5, 6, 7, 8, 9, 10,

]. Commonly related to annotation cost, scarcity of labeled
data is often paired up with a large amount of unlabeled data
being available readily or at a low cost. This shift in focus led
to the rise of the domain known as Semi-Supervised Learn-
ing (SSL) where the applied techniques combine Supervised
Learning techniques using the labeled data, along with Unsu-
pervised Learning ones, using the unlabeled data.

An important difficulty lies in efficiently exploiting the
unlabeled data, while avoiding enforcing confirmation bias
(CB) [12]. CB appears when an image is attributed to a cer-
tain class at a certain point of training, and the minimization
of the loss function used in training enforces this belief of the
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network. In case of initial misclassification, confirmation bias
is obviously detrimental to performance.

Pseudo-Labeling (PL), introduced in [7], consists in us-
ing the prediction of a neural network in order to assign a
class to an unlabeled image, provided that the class score is
above a certain threshold, fixed as a hyperparameter. This
class, called the pseudo-label (pl) of the image, is then used
in a supervised training strategy. Adopting a low threshold for
attributing a pl leads to an increased degree of exploitation of
unlabeled data, but introduces the risk of overexposing train-
ing to mislabeling, especially in the early stages of training
when the predictions of the network tend to be less reliable.
The trade-off between guarding against CB and increasing the
degree of data exploitation is one of the main difficulties in
this technique. PL improves on the supervised baseline using
only labeled data, but needs a regularization loss function in
order to do so, and, predictably, suffers from CB.

The Consistency Regularization (CR) exploits random
augmentations, based on the intuition that while different
(reasonable) augmentations of the same image belong to the
same class, they do not necessarily belong to the same sta-
tistical distribution. This approach is used in [9, 10, 11],
achieving a significantly better balance between data ex-
ploitation and CB. Combining it with PL further resulted in a
large variety of new performing approaches [&, 10, 13].

In academic datasets and existing SSL benchmarks,
classes are equally represented. However, in real-life ap-
plications this is in general not the case. Such unbalancing
enforce CB against classifying images in the less represented
classes. Therefore, assumptions on the distribution of class
labels, as in [ 14] should be introduced with extreme prudence
as they can significantly hinder generalizability. Our work
improves any SSL approach that uses PL, without assump-
tions on class distribution, allowing a better adaptation to
real-life settings.

We propose the Generalized Pseudo-Labeling (GPL) that
uses both positive and negative pseudo labels (pls). We
present a more general Teacher-Student (T-S) framework,
where the Teacher provides the pls and the Student learns
them. Negative pls consist in the information that a certain
image does not belong to a certain class, materialized by low
class-score predictions by the Teacher. The student in GPL
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can thus learn that an image does not belong to a class, before
knowing to which class it actually belongs. The challenges
in applying GPL are two-fold: GPL introduces new hyperpa-
rameters (threshold for accepting negative pls and the weight
of the corresponding loss); moreover, the loss function had to
be carefully chosen (regression instead of negative log-loss)
in order to avoid instabilities. The weight of the loss on neg-
ative pls is gauged on the loss on positive ones, resulting in
minimal fine-tuning of the additional hyperparameter.

In order to investigate the sensitivity of performance with
respect to class imbalance, we introduce a new benchmark
on CIFAR-10 with 40 labels, where the unlabeled set corre-
sponding to one class is reduced to 60% and show that our
method is more robust with respect to class distribution.

A simple heuristic shows that using positive as well as
negative pls feeds the network with more abundant and more
reliable information, earlier in training. Our experiments con-
firm that the network is fed with a greater amount of infor-
mation, which is also of better quality. As a consequence,
learning converges faster and to a better score, and the learn-
ing curve is smoother. Our heuristics are confirmed since the
purity of negative pls reaches high levels quite fast, and data
coverage is significantly higher throughout training.

2. RELATED WORK

For a more complete presentation of the state of the art in the
field of Semi-Supervised Learning, we refer the reader to [5].
FixMatch, introduced in [&], applied PL in CR, and has drawn
a lot of attention in recent literature. The authors applied a
variant of self-supervised techniques already present in the
literature [9, 6, 11, 7] using the predictions on a weakly aug-
mented version of the image as pls, in order to learn the class
of the strong augmentation. FlexMatch [14], improved on
FixMatch in the scarce label regime using an adaptive thresh-
old, taking into account the number of positive pls attributed
to each class and the maximal score for each class. However,
this improvement depends crucially on the uniformity of the
class distribution of the benchmark datasets (or at the very
least on a good estimation thereof). Knowledge of the class
distribution is unrealistic in a real-world SSL scenario with
few labeled examples, and extrapolation from only a few la-
bels would require an adaptation of the predicted class dis-
tribution during training which is not included in FlexMatch
as it is. Our approach is agnostic of the class distribution,
which makes it applicable to real-world SSL scenarios. Other
recent improvements include Meta-Pseudo Labels [10], Self-
match [15], Comatch [16], DASH [13], some of which ac-
tually contain a version of FixMatch as a submodule. Im-
plementing GPL on top of these techniques is possible. As
our method has the same level of generality as the original
Pseudo-Labeling method of [7], in order to showcase it we
need to choose a specific context for our experiments, which
for this article is FixMatch [8], the standard baseline used by
all successive improvements since its appearance.

Negative pseudo labels were used by [17] to learn with
noisy label. The UPS method of [18] uses the setup of [7]
with negative learning as in [17], but their application entails
additional hyperparameters and was not applied on CR, re-
sulting in low performance in the scarce label regime.

3. GENERALIZED PSEUDO-LABELING

The main observation behind negative pls is that, especially
early in training, the prediction of a model that a given image
does not belong to a class is bound to be more trustworthy
than the prediction that the image does belong to a class. Ex-
periments confirm this observation, as negative pl purity is
high throughout training, and, moreover, all points have at
least one negative pl practically at the beginning of training.
For a classification problem with n classes, n — 1 negative pls
are equivalent to a positive one, since each image belongs to
exactly one class.

By pure chance, a positive pl is accurate with probabil-
ity only % Attributing k negative pls, 1 < k < n, is ac-
curate with probability ”T’k, by pure chance. Reasonable
thresholding can assure that £ will not be comparable to n
before the predictions of the model become accurate enough,
assuring a better purity of negative pls and improved data ex-
ploitation. Providing the network with labeled examples and
using consistency regularization naturally improves the accu-
racy of both positive and negative pls. However, negative pls
are bound to be more abundant and more accurate to begin
with, and this should not be expected to change in the pres-
ence of labeled examples. This heuristic assumes uniform
class distribution, but this assumption can be lifted.

GPL thus consists in using the negative predictions of the
Teacher, as well as the positive ones. A negative prediction
is materialized by a low score prediction for the correspond-
ing class. GPL is applied via the introduction of a new loss
function allowing for negative pls to be exploited, leading to
a better exploitation of images, without exposing the model
to increased confirmation bias. As a result, convergence is
faster, since more and better quality information is provided
to the network earlier in training. GPL has the same scope as
PL, that is it be applicable in every context where PL has been
or can be applied.

We consider an SSL classification problem with n > 3
classes. The total train dataset X’ is splitinto {l;} = L, the set
of labeled images, and {u;} = U, the set of unlabeled ones.
All n classes are presentiny = {y;} € Y = [0,n — 1]#~,
the labels of images in L.

Pseudo-Labeling uses a confidence threshold 7 € (0.5, 1]
to truncate scores and obtain the pseudo-labels in {0, 1} via
the function PL(s;7) = PL(s) = 1(s > 7).

3.1. Generalized Pseudo-Labeling

GPL attributes positive as well as negative pls thus obtain-
ing the generalized pl of an unlabeled image. We introduce



the threshold 7 € [0, 1) for accepting a negative pl. GPL is
formalized by replacing the pseudo-labeling function GPL
taking values in {—1,0,1}" given by

GPL(s;7,7) =GPL(s) =1(s >7)—1(s<71). (1)

where 1 stands for a positive PL, —1 for a negative one, and
0 for absence of pl. For a given score vector s, the vector
GPL(s) can contain 0 or 1 positive pls, plus a certain number
of negative ones, between 1 and n— 1. This enables the model
to learn earlier, even in the absence of a positive pl.

Since 7 < %, thus no more than n — 1 negative pls are
attributed. If an image is attributed n — 1 negative pls with
scores close to 7, the score of the dominant class is close to
1 — (n — 1)7. Equating that to 7 leads to 7 = 1=, which
determines 7 as a function of T and n, and thus remove one
hyperparameter to determine.

3.2. Teacher-Student setup

In its full generality the Teacher-Student setup uses a pseudo-
labeling strategy P and two networks with softmax output:
the Teacher g = gp, feeding its scores to the pseudo-labeling
strategy, and the Student f = f,, that learns the pls. Ignoring
batching, the resulting Teacher-Student loss function is then:

Lr.s =B [CE(G(), y)] + By [(f(), 9()], ()

where y are the ground truth labels, ® is an adapted super-
vised loss function, g = P o g, and A, is a weight. [7, 8, 14]
are special cases of this setup where the Teacher and the Stu-
dent are trained at the same time.

3.3. GPL loss function

In the general case of GPL, we implement the T-S setup of
Eq. (2) with P = GPL and the corresponding unsupervised
loss function ® = Lgpy(-) defined by

Lopr(z) =AY lsi)+A > Lsi). 3

;=1 Ji=—

Here, § = GPL(gy, (x)) are the Generalized Pseudo-Labels
and s = fy,(x) is the output of the student for x € U. We
introduce two functions [0, 1] — R, the strictly decreasing l,
and the strictly increasing £. The factors ) and ) balance the
loss of positive and negative pls. The function Lgp, reduces
to CE when ¢ = —log and \ = 0. Hence the loss is

Lopr =B [CE(G(), y)] + Eu [Lapc(f(),9())], &)

where the factor \,, of Eq. (2) is absorbed by A and ).
Linearization of Lgpy, in the neighborhood of a fully

pseudo-labelized image gives, with s, the score of the posi-

tive class and o the vector of the scores of negative classes,

I ¥ U(sp) d
dLgpr = )\5_1(0) dsp, + Adaé(o)do. 5

CIFAR-10-40 CIFAR100-2500

Fully Sup.* 4.62 +0.05 19.30 +0.09
ReMixMatch 19.10 +9.64 27.43 +0.31
DASH (RA) 13.22 £ 3.75 27.18 +£0.21
DASH (CTA) 9.16 £4.31 27.85+0.19
SelfMatch 6.81 +1.08 -
CoMatch 6.91 +1.39 -
FixMatch (RA) 13.81 £ 3.37 28.29 +0.11
FixMatch (CTA) 11.39 +3.35 28.64 +0.24
FixMatch (RA)** 793 +1.17 28.02 +0.13
GPL-FixMatch**

(RA), ours 6.58 +0.74 26.85 +0.48

Table 1. Error rate of different methods [11, 13, 15, 16, 8]

with no assumptions on class distribution on CIFAR-10 with
40 labels and CIFAR-100 with 2500. Values for FixMatch
and ReMixMatch taken from [8]. Fully supervised baseline
from [ 1]. *Performance as reported in [14]. **Our runs on 3
folds. CTA stands for the augmentation strategy of [1 1], and
RA for the one of [19].

Imposing that the equilibrium value of Lgpr, keeps the same
magnitude as if A = 0 and that the two factors of Eq. (5) have
the same equilibrium value allows to solve for X and )\, so
additional hyperparameter fine-tuning is minimal.

There exist portions of the space of images where the
derivative of Lgpr(-; A = 0) vanishes, but where the deriva-
tive of Lopr(+;A) with A > 0 does not. This fact, along
with the heuristic supporting better purity for negative than
for positive pls completes the intuition behind the better per-
formance of G PL when it replaces PL in any T-S setup, such
as PL or FixMatch.

4. EXPERIMENTS: GPL APPLIED ON FIXMATCH

FixMatch is a particular case of our T-S formulation of
Eq. (2). Considering a random weak augmentation W
and a random strong one S, and calling fy = By o S and
go = By o W where the architecture of the backbone By is
fixed, and CE as the loss function, with PL(-) as pseudo-
labeling strategy yields the loss function of FixMatch.

GPL-FixMatch is obtained by keeping the same T-S con-
figuration as in FixMatch, replacing PL by GPL. The loss
{(s) on positive pls is —log s as in FixMatch. The loss on
negative pls is £(s) = s, i.e. we use regression on scores for
negative pls, as £(s) = —log(1 — s) led to instabilities.

For all hyperparameters shared with FixMatch, we use the
optimal values as obtained in [8], and apply only RA augmen-
tation as in [14]. The values for A = 0.5 and A = 3.0 are ob-
tained experimentally from Eq. (5), by doubling the weight ),
based on the intuition that negative pls are more reliable than
positive ones. The lower threshold 7 is given by the formula
of Sec. 3.1. We report the error rate of the last checkpoint of



every experiment on 3 folds using the codebase of [14].

Our experiments on CIFAR-10 and 100 in the regime
of scarce labels, 40 and 2500, respectively, showed that
GPL-FixMatch improves on FixMatch, with marginal com-
putational overhead and minimal hyperparameter fine-tuning.
Since on Imagenet with 100K labeled images FixMatch
struggles to learn the labeled images throughout training,
presenting an accuracy on the labeled dataset of the order
of 70%, GPL-FixMatch kept the same (low) level of perfor-
mance due to insufficient interpolation, which renders the
quality of extrapolation irrelevant.

We present the results showing the gains of integrating
negative pls in the learning process in Tab. 1. Under the same
conditions the improvement of GPL-FixMatch over FixMatch
is clear. Introducing a slight class imbalance by dropping
40% of images in a randomly chosen class shows that Fix-
Match and GPL-FixMatch are more robust than FlexMatch,
which heavily capitalizes on the assumption of uniform class
distribution, cf. Tab. 2. We also vary the weights in the neigh-

GPL-FixMatch
6.56 + 0.93

FixMatch FlexMatch
7.69+1.92 7.88+0.29

Table 2. Error rate of FixMatch, FlexMatch and GPL-
FixMatch on 3 folds of CIFAR-10-40 with class imbalance.

borhood of those obtained experimentally using eq (5), and
see that doubling ) gives better results, see Tab. 3.

GPL-FixMatch is also more robust when the hyperparam-
eters of CIFAR-10 are transferred to CIFAR-100 (Tab. 4). In
[8] the weight decay was changed from 0.0005 for CIFAR-
10 to 0.0001 in an adhoc manner for CIFAR-100. GPL-
FixMatch is less affected by the adaptation than FlexMatch.
Finally, when we vary the upper threshold (Fig. 2), the accu-
racy of GPL-FixMatch drops less violently when the upper
threshold approaches 1, since it still learns from negative
information.

Figure 1 features a comparison between GPL-FixMatch
and FixMatch in terms of the accuracy on the test set dur-
ing training and the proportion of unlabeled images that have
been attributed a positive pl. Introduction of GPL clearly re-
sults in a better exploitation of unlabeled data. This results
in more efficient training, as more information is given to the
network, earlier in training, and the learning curve establishes
the better quality of this information.

(A, A)

error rate ‘

| (0.5,3.0) | (1.0,3.0) | (1.0,6.0)
660 | 728 | 850

Table 3. Error rate of GPL-FixMatch on the first fold of
CIFAR-10-40 when the loss weights vary.

hyperparameter . GPL
adaptation FixMatch | FlexMatch FixMatch

No 28.05 27.56 27.16

+0.32 +0.43 +0.44

Y 28.02 26.58 26.85

s +0.13 +0.33 +0.48

Table 4. Error rate on 3 folds of CIFAR-100-2500 with
weight decay rate transferred from CIFAR-10 to CIFAR-100
(no adaptation) or fine-tuned for CIFAR-100.
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Fig. 1. Learning curves for one fold on CIFAR-10 and
CIFAR-100. The model learns better and earlier. The posi-
tive PL mask is the proportion of images with a positive pl.
Use of negative pls leads to a better data exploitation, both
quantitatively (greater number of pls attributed) and qualita-
tively (accuracy increases).

5. CONCLUSION

We have presented GPL, a simple, efficient and cost-less way
to exploit negative information in image classification prob-
lems in SSL. We have showcased its efficiency by improving
on the baseline of FixMatch with minimal computational
overhead and hyperparameter fine-tuning in the regime of
scarce labels. Application on semantic segmentation prob-
lems (pixel-wise single-class classification) as well as classi-
fication problems in NLP could also help improve methods
based on PL.

oo -——__—_ﬁ:~
50,92
g —8— FixMatch
3 09
] —— GPL-FixMatch
0,88
0.9 0,925 0,975 1

uppermrrjé%.ﬁold

Fig. 2. Accuracy on the first fold of CIFAR-10-40 when the
upper threshold varies. GPL makes the performance more
robust with respect to the upper threshold.
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