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ABSTRACT

Modern deconvolution algorithms are often specified as min-

imization problems involving a non-quadratic regularization

functional. When the latter is a wavelet-domain �1-norm that

favors sparse solutions, the problem can be solved by a simple

iterative shrinkage/thresholding algorithm (ISTA). This ap-

proach provides state-of-the-art results in 2-D, but is harder

to deploy in 3-D because of its slow convergence.

In this paper, we propose an acceleration scheme that

turns wavelet-regularized deconvolution into a competitive

solution for 3-D fluorescence microscopy. A significant

speed-up is achieved though a synergistic combination of

subband-adapted thresholds and sequential TwIST updates.

We provide a theoretical justification of the procedure to-

gether with an experimental evaluation, including the appli-

cation to real 3-D fluorescence data.

Index Terms— fluorescent microscopy, deconvolution,

wavelet regularization, accelerated shrinkage/thresholding.

1. INTRODUCTION
Modern biology makes extensive use of fluorescent markers

which can be visualized in 3-D using optical microscopy. The

optical sectioning, which is the key to accessing the third

physical dimension (depth), is either achieved physically us-

ing a confocal microscope (which is a high-end imaging de-

vice), or numerically by applying deconvolution techniques

on focal series of images (z-stacks) acquired on a conven-

tional widefield fluorescence microscope [11]. The main dif-

ficulty with “deconvolution microscopy” lies in the size of

the data sets that need to be acquired for reconstructing 3-D

images. This puts a strong limitation on the computational

complexity of potential deconvolution procedures, and also

explains why the algorithms used in current commercial sys-

tems are still rudimentary in comparison to the current state

of research on inverse problems.

There is recent evidence that imposing sparsity constraints

on the wavelet decomposition of the reconstructed image can

improve the results of deconvolution, at least in 2-D [8, 6].

To specify the reconstruction problem, we consider the image
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formation model expressed in matrix/vector notation

y = Hx + n, (1)

where x represents the 3D specimen we are trying to re-

cover; H, the 3D linear space-invariant imaging operator

(diffraction-limited point spread function of the microscope);

n, the measurement noise; and y, the data acquired by the

microscope. The ill-conditioning of H and the presence of

noise hinders the estimation of x from the observations y and

requires the incorporation of additional information about x.

To that end, we utilize the property that natural images tend

to have sparse wavelet representations. Specifically, given a

wavelet frame W—which consists of a (possibly overcom-

plete) collection of wavelet vectors—we assume that one can

approximate x well using a linear combination of just a few

vectors of W; i.e., x ≈ Wc with ‖c‖0 small. Based on

the property that the �1-norm ‖c‖1 is a good proxy for ‖c‖0
(the number of non-zero wavelet coefficients), we specify the

solution of our deconvolution problem as x∗ = Wc∗ where

c∗ is the minimizer of the convex functional

J(c) = ‖y −HWc‖22 + λ‖c‖1. (2)

The regularization parameter λ ≥ 0 controls the strength of

the sparsity requirement (for λ = 0, we revert to the classical

unconstrained least squares formulation). Several algorithms

have been proposed to minimize generic functionals of the

form (2) where H is not assumed to have any particular struc-

ture. The best known is the “iterative shrinkage/thresholding

algorithm” (ISTA), derived by several authors using different

point of views (see for example [7, 8, 6]). The slow con-

vergence of ISTA has also led to attempts to accelerate it by

employing multi-step variations known as TwIST [4], FISTA

[3] and continuation schemes that vary λ with iterations [10].

In this paper, we propose a novel variation of ISTA that

builds upon these previous works while taking advantage of

the special convolutional structure of H. It is sufficiently fast

to handle the large data sets produced by 3-D fluorescent mi-

croscopes. The primary contributions are:

• The proposal of a fast-converging version of ISTA

that combines two acceleration strategies: subband-

adaptive update steps/thresholds and sequential TwIST
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updates. This subband-adaptive version of TwIST

(dubbed STwIST) preserves the form of ISTA and is

almost as simple to implement. The adaptation of the

thresholds makes the algorithm progress faster and

more evenly in each wavelet subband.

• A theoretical analysis that explains the synergistic ef-

fect of the two acceleration strategies.

• An experimental evaluation and validation of the algo-

rithm. We also present deconvolution results with real

3D fluorescence microscopy data.

2. ALGORITHM DESCRIPTION
Before describing our approach, we briefly review ISTA[8,

7]. ISTA minimizes the functional J(·) in (2) by performing

a Landweber step, followed by soft thresholding, which is

defined for a given vector z, and threshold t by

soft(z, t) = sgn(z) max{|z| − t, 0}. (3)

Algorithm 1 (ISTA). Initialize c0. Repeat until some conver-
gence criterion is met,

(I) Set ck+ 1
2 := ck + 1

α (HW)∗
(
y −HWck

)
.

(II) Set ck+1
i := soft(ck+ 1

2
i , λ/(2α)).

Intuitively, we can regard the two steps as attempts to min-

imize the two terms in J(·) in sucession (see for example the

forward-backward derivation of ISTA [6]). The critical pa-

rameter that makes ISTA work and conditions its converge

speed is the step size τ = 1/α in (I) which should be cho-

sen as large as possible. The condition for convergence is that

2αI ≥ (HW)∗HW which imposes an upper bound on τ
(resp., lower bound on α) and therefore on the overall speed

of convergence ISTA.

We now propose a combination of two strategies to ac-

celerate ISTA. Our first ingredient is threshold adaption. It is

motivated by the observation that our minimization problem

is approximately decoupled across wavelet subbands since the

wavelets in the synthesis matrix W essentially act as band-

pass filters. Now, if the effect of H is substantially differ-

ent for different subbands, we expect that treating the sub-

bands differently might lead to an acceleration. To make

this precise, we partition W and c into s subbands; i.e.,

W = [W1 W2 . . . Ws] and c = (c1, c2, . . . , cs). We also

define the vector α = (α1, α2, . . . , αs) and the matrix Λα

(acting on c) which multiplies the jth subband by αj , i.e.

(Λαc)j = αj cj . With this, the subband adaptive iterative

shrinkage/thresholding algorithm (SISTA) is stated as,

Algorithm 2 (SISTA). Initialize c0. Repeat until some con-
vergence criterion is met,

(I) Set ck+ 1
2 := ck + Λ−1

α

[
(HW)∗(y −HWck)

]
.

(II) Set, for all subbands j = 1, 2, . . . , s,

ck+1
j := soft(ck+ 1

2
j , λ/(2αj)). (4)

Similar to ISTA, the convergence rate of SISTA is depen-

dent upon αi. To that end, we choose the “smallest” possible

values such that the condition for convergence is met: 2Λα ≥
(HW)∗ HW (see [2] for a more precise description). We re-

mark that the form of the algorithm is essentially the same as

ISTA, and that the idea of a subband adaption of the thresh-

olds was first proposed by Vonesch and Unser [12], albeit

in the more restrictive context of Shannon wavelets. In the

sequel, we will use the notation ck+1 = SISTA(ck) (resp.,

ISTA(ck)) to represent one iteration of the corresponding al-

gorithm.

The second ingredient is the sequential TwIST update rule

which, when used on its own, already provides an effective

acceleration of ISTA [4]. The idea in TwIST is to combine

the previous estimates to obtain a better update, similar to

two step methods used to accelerate the solution of linear sys-

tem of equations (see Section 5.2 in [1]). At the kth iteration,

TwIST updates ck as,

ck+1 := (1− γ) ck−1 + (γ − β) ck + β ISTA(ck), (5)

where γ and β are suitable constants. Since SISTA has ba-

sically the same form as ISTA, we propose to use the same

recipe to devise an accelerated version of Algorithm 2. In the

following section we provide a new theoretical justification of

this proposal as well.

Algorithm 3 (SISTA+TwIST=STwIST). Initialize c0. Set
c1 = SISTA(c0). Repeat until some convergence criterion
is met,

ck+1 := (1− γ) ck−1 + (γ − β) ck + β SISTA(ck). (6)

In the sequel, we will demonstrate that the payoff for com-

bining the two acceleration schemes is quite substantial and

sufficient to meet our goal: making sparsity promoting meth-

ods as fast as the basic deconvolution algorithms currently

used in microscopy (e.g. Richardson-Lucy).

3. COMPLEMENTARY ACCELERATION
PROPERTIES OF SISTA AND TWIST

We now provide an analysis on the combination of SISTA and

TwIST. This analysis (which was not provided in [2]) justifies

the proposed STwIST algorithm by showing that the combi-

nation of ISTA and TwIST is especially favorable. We start

with a brief description of a standard two-step scheme for lin-

ear problems (see [1] for more details).

Consider a linear system of equations, Ax=b. We are

given A, b and asked to recover x. Consider now a splitting

of A as A= C - R and devise an iterative method as

xk+1 = C−1 Rxk + C−1b (7)

= xk + C−1(b−Axk). (8)
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Defining the error vector at iteration k by ek = xk − x, it

can be shown that ek+1 = C−1Rek. Therefore, the linear

convergence factor1 of this method depends on the spectral

radius of C−1R. To accelerate the convergence, a two-step

scheme can be employed, which is defined by

xk+1 = γ xk + (1− γ)xk−1 + β (C−1(b−Axk)). (9)

The error term ek is now given by,

ek+1 = (γ I + β C−1R)ek + (1− γ)ek−1. (10)

Here, the convergence factor depends on the eigenvalues of

C−1R as well as γ and β. In particular, for the optimal choice

of γ, β, the convergence factor is given by (1−√κ)/(1+
√

κ)
where κ is the ratio of the smallest and largest eigenvalues of

C−1R [1]. The important point for us is that, as κ gets closer

to unity, the error decays faster.

Let us now consider ISTA/SISTA and focus on a special

case where the matrix HW is invertible. In this setting, the

first term of J(·) is strictly convex, and therefore the mini-

mizer of J(·), which we denote by ĉ, is unique. An iteration

of ISTA is then,

ck+1 = soft
(
ck +

1
α

(HW)∗
(
y −HWck

))
. (11)

We also have that ĉ is a fixed point of the mapping on the right

hand side of (11). Following the idea in the appendix of [4],

we define ek = ck − ĉ and apply the generalized mean value

theorem for nonsmooth mappings [5] to write

ek+1 = Dk

(
I− 1

α
(HW)∗(HW)

)
ek, (12)

where Dk is a matrix that depends on ck, whose spectral ra-

dius is less than or equal to one. By the same argument, we

obtain that, for SISTA, ek satisfies,

ek+1 = D̃k

(
I−Λ−1

α (HW)∗(HW)
)
ek, (13)

again with an iteration-dependent D̃k, whose spectral radius

is less than unity. Neglecting the effect of Dk and D̃k, we

argue that the spectrum of I − Λ−1
α (HW)∗(HW) is more

concentrated than that of I − 1
α (HW)∗(HW) for a proper

choice of Λα. In other words, for SISTA, the ratio of the

smallest and largest eigenvalues is expected to be closer to

unity compared to that of ISTA, at each iteration. Therefore,

recalling that the improvement of the two-step method de-

scribed above is a function of the mentioned ratio κ, we argue

that SISTA conditions the iterations of ISTA, making it more

suitable for a two step scheme like TwIST.

1The error decays as a power of the convergence factor, so the smaller this

number, faster the convergence.

(a) (b) (c)

Fig. 1. 2-D deconvolution of defocused widefield microscopy

image (Experiment 1). (a) Original image with the PSF on

the top-right corner, (b) simulated widefield image (left half),

(c) deconvolution result after 30 iterations of STwIST (right

half).

4. EXPERIMENTS
In this section, we evaluate the proposed deconvolution algo-

rithm experimentally. In order to demonstrate the accelera-

tion in convergence rate, we work with simulated 2D data in

Experiment 1. Following this, in Experiment 2, we present

some deconvolution results with a fixed time budget on real

3D fluorescence micrographs to compare the proposed algo-

rithm with a state-of-the-art algorithm.

Experiment 1. In this experiment, we simulate the widefield

imaging of a flat fluorescent sample slightly out of focus. The

reference image2 is shown in Fig. 1. Two channels were ac-

quired, corresponding to the fluorescent markers GFP (green:

488 nm) and Alexa568 (red: 568 nm). We blurred the chan-

nels with normalized PSFs (shown in Fig.1a, top right) and

added noise, to obtain the ‘observation’ shown in Fig.1b. For

the reconstruction, we used separable 9/7 wavelets with 4 lev-

els of decomposition. For SISTA, combined with the PSF of

the two channels, the bounds are tabulated in Table 1. A close

estimate of the minimizer of the functional J(·) for a λ value

of 8 obtained by running ISTA with 10000 iterations is shown

in the rightmost panel of Fig. 1. The distance between the

current estimate and the minimizer vs. the number of itera-

tions is plotted in Fig. 3 for three different algorithms. Here,

SISTA combined with TwIST is clearly faster than the other

algorithms. We remark that TwIST is currently one of the

fastest algorithms, and therefore provides a fair comparison

with the state-of-the-art.

Experiment 2. Our second experiment involves a dataset

composed of three stacks of images of a C. Elegeans embryo.

Images are acquired at EPFL using a 100X/1.4 oil-immersion

objective and a z-step of 200 nm (111 slices). Three chan-

nels were acquired, corresponding to the fluorescent markers

2The images were acquired at the Department of Biology in Chinese Uni-

versity of Hong Kong. We are especially grateful to Prof. Liwen Jiang and

Dr. Yansong Miao for the preparation of the biological sample and their help

on acquiring the images.
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Fig. 2. A cross section along y = 0 of the theoretically es-

timated PSF (histogram equalized to improve visualization).

The 3D PSF is symmetric wrt to the z axis and is determined

by this 2D function.

Level 1 2 3

Sub LH/HL HH LH/HL HH LH/HL HH L

Red 2.4e-2 3.8e-3 1.9e-2 3.6e-3 8.3e-1 6.1e-1 1.41

Green 1.6e-2 5.0e-3 1.9e-2 2.2e-2 8.6e-1 6.4e-1 1.46

Table 1. Bounds obtained for Experiment 1 (9/7 wavelets).

DAPI (blue : 377 nm), FITC (green : 485 nm) and CY3 (red

: 560 nm). The PSF was computed theoretically using the

three-dimensional coherent image formation model [9]. Fig.

2 shows a cross-section of the PSF. More information about

the data including the 3-D PSF (as well as the parameters

used to compute it) can be found on the web link

http://bigwww.epfl.ch/deconvolution/.

Figure 4 shows the original data using maximum inten-

sity projection in each channel and the deconvolution result

obtained by TwIST and STwIST after 30 iterations. We re-

mark that the output of STwIST is sharper than that of TwIST

alone, in line with our claim that subband adaptation leads to

significant acceleration.

5. CONCLUSION
The practical challenge of 3-D fluorescent microscopy decon-

volution is the necessity of handling huge data sets. Until
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Fig. 3. 2-D deconvolution of the green channel : Convergence

rates of ISTA, TwIST and STwIST=TwIST+SISTA.

(a) (b) (c)

Fig. 4. 3D Fluorescent Deconvolution Results for real data

(Experiment 2). (a) Original acquired image, (b) output of

TwIST after 30 iterations (left half), (c) output of STwIST

after 30 iterations (right half).

very recently, this has precluded the use of algorithms that

optimize non-quadratic criteria because they require many it-

erations to converge. The present work shows that it is possi-

ble to design wavelet-regularized schemes that are sufficiently

fast to be applicable to real 3-D data.
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