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Abstract—Despite being one of the most reliable approaches
for ensuring system correctness, model checking requires auxil-
iary tools to fully avail. In this work, we tackle the issue of its
results being hard to interpret and present OERITTE, a tool for
automatic visual counterexample explanation for function block
diagrams. To learn what went wrong, the user can inspect a
parse tree of the violated LTL formula and a table view of
a counterexample, where important variables are highlighted.
Then, on the function block diagram of the system under verifi-
cation, they can receive a visualization of causality relationships
between the calculated values of interest and intermediate results
or inputs of the function block diagram. Thus, OERITTE serves
to decrease formal model and specification debugging efforts
along with making model checking more utilizable for complex
industrial systems.

Index Terms—user-friendly model checking, counterexample
explanation, counterexample visualization

I. INTRODUCTION

One of the biggest advantages of model checking [1] is a
possibility to ensure that the specification is satisfied in every
state of the given formal model. This fact is especially useful
when it comes to verification of systems on chips [2], the
Internet of things installations [3] and other safety-critical
systems. Specifically, in this work, we will emphasize its
application for industrial size instrumentation and control
(I&C) systems. Model checking has been successfully used
for verifying nuclear power plant (NPP) I&C system design
in Finland [4], Korea [5], Hungary [6], and at the European
Organization for Nuclear Research (CERN) [7]. It was also
used to check safety of aircraft flight control [8] systems.
The distinctive features of I&C systems with regard to model
checking are their complexity, modularity and the need to
comply with safety requirements, which means that every
failure result should be thoroughly analyzed and fixed.

However, in its initial version, model checking is not user-
oriented and its application requires additional knowledge
about a system as a whole, as well as time and efforts aimed
to localize an error in the model of the system. The tool
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OERITTE, presented in this paper, does one step closer to the
user-friendly model checking and focuses on explanation of
negative verification results.

In this work, we consider I&C modular models specified as
function block diagrams (FBD).1 An FBD is an arrangement
of interconnected entities called function blocks. Each function
block can be assumed to be a deterministic Mealy finite-
state machine [10]. We use the synchronous FBD execution
semantics: on each discrete step, each block executes once,
connections link the outputs of blocks to inputs of other
function blocks already on the current time step, and feedback
loops are manually broken with delay function blocks to
prevent the infinitely fast flow of information. Practically, the
FBDs we work with can be constructed with graphical tools
such as MODCHK [11] or Simulink Design Verifier [12], but
they can also be specified in the languages of model checkers,
such as NuSMV [13].

The set of properties to be checked for the system, or its
specification, is assumed to be formulated in linear temporal
logic (LTL) [1]. This logic is a generalization of the proposi-
tional Boolean logic over state sequences, where a state is an
assignment of values to the variables of the checked formal
model. In LTL, the following temporal operators are used
(below, ϕ1 and ϕ2 are LTL formulas):

• Gϕ1 (“globally”): ϕ1 must be true on the entire trace of
the model;

• Fϕ1 (“finally”): ϕ1 must hold eventually;
• ϕ1 Uϕ2 (“until”): ϕ1 must be true until ϕ2 is true, and

the latter is required to eventually happen;
• Xϕ1 (“next”): ϕ1 must be true for the next state.

A finite or infinite state sequence is valid if it starts in one
of the model’s initial states and every pair of adjacent states
belongs to the model’s transition relation. An LTL formula
(also called an LTL property) is assumed to be satisfied for
the model when it is satisfied for all its valid state sequences.
Model checking of an LTL formula constitutes finding whether
the formula is satisfied for the model and, if it is not, finding
a counterexample that demonstrates its violation.

1The presented contributions are not limited to FBDs as specified in the
IEC 61131-3 standard [9]. Instead, we use this term in a more general sense
as described in this paragraph and later.
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Now, a counterexample (or a failure trace) for a property
ϕ in a given formal model is a valid state sequence where ϕ
is not satisfied. In model checking, it is sufficient to consider
finite counterexamples and the ones that can be represented
as a prefix combined with a loop (so-called lasso-shaped
counterexamples).

Counterexamples are usually represented by a table of val-
ues and for industrial systems are often incomprehensible [14]
without auxiliary tools. Therefore, we outline three challenges
that analysts usually face when trying to utilize a failure trace
in the verification process:

1) For industrial I&C system models, counterexample
traces could be quite long (tens of steps) [15] due to the
delay elements in the logics, necessary for implementing
complex control sequences. In the meantime, each of
steps may include dozens of variables where inputs and
outputs are usually mixed. Hence, without having a
counterexample visualized, it can be difficult to pinpoint
on which time step the property fails.

2) Specification failures are neither obvious to localize, i.e.,
a property can be of high complexity, requiring pen and
paper to evaluate it and identify the branch that has
caused the problem.

3) When it comes to faults of the system itself, the analyst
has to account for every module to figure out the source
of the problem, which requires the analyst to have strong
expertise in the formal language used for the system’s
implementation.

OERITTE assists the analyst in three ways. First, it visualizes
FBD data flow throughout the counterexample. Second, it
uses the algorithm from [15] to explain a violated LTL
property. Third, it implements a novel algorithm that explains
individual assignments in terms of highlighted assignments
and connections between them in a given FBD.

The rest of the paper is structured as follows. Section II
describes the internal representation of an FBD in OERITTE.
The problem of counterexample explanation and algorithm
that solves it are given in Sections III and IV. Section V
overviews the tool that implements the proposed approach,
and Section VI evaluates the approach experimentally. Related
research is reviewed and compared with the proposed approach
in Section VII. Section VIII concludes the paper.

II. SYSTEM REPRESENTATION AS FBD
In this work, function blocks of an FBD that represents a

system under verification can be of two types: basic and com-
plex. A basic block is a block corresponding to some atomic
operator or a simple function listed in Table I. Complex blocks
operate with Booleans and integers and can be decomposed
into combinations of interconnected function blocks. An FBD,
which is a system under verification, is a complex block of
the highest hierarchy level, i.e., it is not a part of any other
complex block. When we say blocks, we consider both types
of blocks – basic and complex.

Blocks have input and output interfaces that are comprised
of named gates. A gate that belongs to the interface of a com-

plex block can have single incoming and multiple outgoing
connections. On the other hand, for basic blocks, input gates
cannot have outgoing connections, and output gates cannot
have incoming ones. We say that blocks A and B are connected
if there is a gate in A that has an outgoing connection c and
there is a gate in B that has connection c as an incoming
one (or vice versa).

Now let us consider the types of basic blocks listed in
Table I. The meaning of the blocks in the first three groups
is quite straightforward and their interfaces are comprised of
two input gates and one output gate. Blocks from the group
“Other” require some elaboration:
• With the DELAY basic block, one can construct modules

with memory, i.e., if calculations at the next time step
require the value that was inferred at one of the previous
ones, it is possible to delay it by one cycle and have it
as an input in the same complex block in the future. This
block has two inputs – one for the variable that should
be delayed and one for its default value at the first step.
Delay by N > 1 cycles can be implemented as a chain
of N DELAY blocks.

• The CHOICE basic block imitates a chain of condi-
tional assignments, following the semantics of the case
NuSMV operator. It ends with the “else” branch defining
the value in case none of the conditions are satisfied. The
inputs of this block are conditions and the outputs that
correspond to them. The output of CHOICE is the value
of the output for the first satisfied condition.

• The output of the COUNT block is the number of input
signals that are TRUE at the current step. This block
requires that its inputs are Boolean.

• The ASSIGN block implements the identity function: the
output is the same as the input.

Connections between basic blocks can be usual and inverted,
i.e., the accepting block receives the inverted signal from
the output of the producing block. Hence, due to having ∧,
∨ blocks and inversion, the chosen set of basic blocks is
sufficient to express any Boolean function. An example of a
complex block with its internal structure is provided in Fig. 1.

III. COUNTEREXAMPLE EXPLANATION PROBLEM

Informally, we aim to explain the false outcome of an LTL
formula ϕ on counterexample X of length l to a given FBD
D with its set of variables U = {u1, ..., un} using both the
values of state variables of the counterexample and the blocks
in D. Formally:

Definition III.1 (Assignment). An assignment a is a tuple
(u, vu,j , j), where vu,j is the value of variable u at discrete

TABLE I
BASIC BLOCKS USED FOR THE MODULE REPRESENTATION.

Logical ∧, ∨, ⇔
Arithmetical −, +, ×, ÷
Relation >, <, ≤, ≥, =
Other DELAY, CHOICE, COUNT, ASSIGN
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Fig. 1. A complex block that encodes function u5 = (u1∨u2)∧ (u3∨u4).

time step j. By v(a) we denote the value of this assignment
and by s(a) its step. If u ∈ U is a variable of D then
there exists index i ∈ [1, n] for u, and, to simplify the text,
assignments for u instead of aui,j are denoted as ai,j .

Definition III.2 (Counterexample). A counterexample X of
length l is a set of assignments of the variables from U for
each time step: X = {(ui, vi,j , j) | i ∈ [1, n], j ∈ [1, l]}.

FBD D consists of complex blocks which, in the end, are
decomposed into nets of basic blocks. We view basic blocks as
sets of symbolic constraints on their input and output variables.
These constraints are specified for each instance of each basic
block.

Definition III.3 (Basic block constraints). Every basic block
B with k input variables and one output variable from Table I
except for DELAY is uniquely defined by its set of constraints
CB = {v1,s = fB(v2,s, ..., vk,s) | s ∈ [1, l]}, where s is
a step of X , fB is determined by the type of each basic
block, and u2, ..., uk and u1 are k − 1 input and one output
variables of a particular instance of B. DELAY corresponds to
the following set of constraints: CB = {v1,1 = v2,1}∪{v1,s =
v3,s−1 | s ∈ [2, l]}, where v2,1 is a default value for the first
counterexample step, and u1, .., u3 are variables of a particular
instance of DELAY.

For example, the set of constraints for the AND block is
C∧ = {v1,s = v2,s ∧ v3,s | s ∈ [1, l]}. Each constraint in such
a set encodes a rule of how the block functions at a particular
counterexample step and, therefore, the number of elements
in the set equals to the length of a counterexample. Connec-
tions also correspond to similar constraints, thus making the
constraints of all blocks linked to each other:

Definition III.4 (Connection constraints). Assume that output
variable of some block u1 is connected to input variable u2 of
another block. Then a set of constraints for such connection c
is Cc = {v1,s = v2,s | s ∈ [1, l]}.

Definition III.5 (Complex block constraints). Let B be a
complex block with its set of internal blocks M and set of
internal connections Σ. Then, a set of constraints for B is

CB = {Cm |m ∈M} ∪ {Cσ | σ ∈ Σ}.

As an FBD is a complex block, the set of constraints CD
is defined for D as well. Definitions III.3, III.4 and III.5 are
illustrated in Fig. 2 for a counterexample of length 1. Fig. 2
shows how the set of constraints for the complex block from
Fig. 1 can be defined.

Due to the possibility of explaining the outcome of ϕ
through assignments of variables that is present in it [16], [15],
we can decompose the process of explaining the outcome of
ϕ to the one of explaining a number of individual assignments
in the counterexample. Below, we focus on explaining a single
assignment, called an explanation target. The explanation
target can be represented by an input or output assignment
of any block structure: an FBD, a complex block, or a basic
block. Initially, explanation targets come from applying the
approach [15], but we also allow the situation where the user
selects a custom explanation target to focus on a particular
part of D, thus allowing more flexibility in explanation.

Definition III.6 (Cause). A set of assignments C ⊆ X is
a cause of a target t if there exists such sequence of sets
of assignments from X , Y0, ..., Ym : C = Y0, t ∈ Ym, where
each Yk+1, k ∈ [0,m−1] extends Yk with a single assignment
a′i,j ∈ X , there exists constraint c∗ ∈ CD such that the formula

c∗ ∧

 ∧
ai,j∈Yk

(vi,j = v(ai,j))

→ (
va′i,j = v(a′i,j)

)
(1)

is valid, and a′i,j refers to the output variable of the basic block
or connection to which c∗ corresponds.

Intuitively, in every set Yk from the definition above there
exists a cause of the new assignment that is added to Yk to
obtain Yk+1 and at some extension step q < m, t should be
added to get Yq+1.

This definition can also be explained in terms of logical
inference. Suppose that each statement is an assignment. Then
the definition says that it is possible to infer t given a set
of statements C if the allowed rules are limited to using
input-output dependencies of each individual basic block or
connection in the direction of the information flow.

Definition III.7 (Inclusion-minimal cause). C ⊆ X is an
inclusion-minimal cause of t if C is a cause of t and there is
no C ′ ⊂ C that is a cause of t.

Having these definitions, we say that to explain the tar-
get (or to find a cause of the target) means to find the union
of its inclusion-minimal causes.

Here, it is worth mentioning the commonly accepted notion
of causality from [17]. This work defines actual but-for causes
of ϕ under some contingency in the model represented by
structural equations. Meanwhile, our causes are not necessarily
counterfactual. In other words, we deal with general causation,
considering a set of assignments as a cause of t if it is sufficient
to infer t in the given FBD.



As an example, consider the basic block AND from Fig. 2
and a counterexample of length 1. Assume that the explanation
target is t = (u14, 0, 1), and v12,1 = 1, v13,1 = 0 (we denote
logical values TRUE and FALSE as 1 and 0 respectively). To
find out if any of input variables U = {u12, u13} of AND are
included in a cause of t, we, first, substitute c∗ in (1) with
v14,1 = v12,1 ∧ v13,1. Then, as soon as U and t belong to
the same basic block without delay, the only one constraint is
required to infer the cause, hence, the length of the sequence
of sets from Definition III.6 is two, where the first one is a
cause. Now, we rewrite (1) as

(v14,1 = v12,1 ∧ v13,1) ∧

 ∧
ai,1∈C

(vi,1 = v(ai,1))


→ (v14,1 = 0),

(2)

where i in the middle part is an index of the variable from U .
Having (2), the next step is to pick such assignments for C

so that the relation (2) is valid and C is inclusion-minimal. In
this example, there exists one such set of assignments C =
{(u13, 0, 1)}.

With the set of assignments U that can be potentially but
not necessary added to Y0 from Definition III.6 in (1), it is
possible to set an explanation scope. In the previous example,
the scope was defined by the input assignments of AND at
step 1. Alternatively, if we explain t using input assignments
of both OR blocks at the same step, constraints for all basic
blocks shown in Fig. 2 and two constraints for the connections
{v10,1 = v12,1, v11,1 = v13,1} will be used in the extension
procedure. Assume v8,1 = 0 and v9,1 = 0. Then the chosen
scope produces the following inclusion-minimal cause: C =
{(u8, 0, 1), (u9, 0, 1)}.

IV. ASSIGNMENT EXPLANATION ALGORITHM

The problem stated in Section III assumes that among all
system assignments an inclusion-minimal cause of an explana-
tion target should be found. To do this, first, we define a global
explanation scope as the union of all input assignments of the
FBD that the explanation target belongs to and assignments
inside the FBD that have names of the gates which do not
have incoming connections. Next, for any complex block it is
a dubious help to see how, e.g., its output depends on its inputs,

u1
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u4

u5

u1 0

u1 1

u1 4

u6

u7

u9

u8

u1 3

u1 2

14,1 12,1 13,1v v v 
AND

10,1 6,1 7,1v v v 
OR

11,1 8,1 9,1v v v 
OR

Fig. 2. Complex block B from Fig. 1 with constrains of its internal
blocks for the first counterexample step defined. The full set of constraints
for B for the first counterexample step is represented by the union of
constraints for the depicted basic blocks and the set of connection constraints
Cc = {v6,1 = v1,1, v7,1 = v2,1, v8,1 = v3,1, v9,1 = v4,1, v12,1 =
v10,1, v13,1 = v11,1, v5,1 = v14,1}, where vi,j is a value of variable ui at
counterexample step j, i ∈ [1, |U |], j ∈ [1, l].

Algorithm 1: Assignment explanation algorithm
explain.
Data: FBD D, counterexample X , explanation target

t ∈ X
Result: set C – the union of all inclusion-minimal

causes of t in D
1 if t corresponds to an input variable of D or a constant

block input then
2 return {t} // this is a terminating cause

3 else if t is an input variable of a basic block in D then
/* follow the connection and add it to the tree */

4 t′ ← the assignment of the output variable at the
opposite end of the connection where t is located

5 C0 ← explain(D,X, t′)
6 return C0 ∪ {t}
7 else // t is an output variable of some basic block
8 t1, ..., tm ← causes found for the current basic

block type according to Table II
9 C ← {t}

/* recursively explain the assignments of the local
cause */

10 for i = 1 to m do
11 C0 ← explain(D,X, ti)
12 C ← C ∪ C0

13 return C

the analyst usually wants to know why such dependency
takes place. Hence, in the explanation result we also include
inclusion-minimal causes for every nested explanation scope
if they exist for such scope. Thirdly, sometimes (for complex
blocks) there can be more than one inclusion-minimal cause
and it is the user who chooses the one of their interest, thus,
we need to discover the union of all such causes.

A. FBD preprocessing

While complex blocks of the lowest hierarchy level in the
FBD can be decomposed into basic blocks, this is not done in
the original FBD. Thus, the values of the internal variables
of such complex blocks are missing in a counterexample,
although they are required for the explanation procedure.
To obtain an extended counterexample, before running the
algorithm for target t on FBD D, decomposition is performed
automatically, and the full set of constraints for each of
mentioned complex blocks is added to the full constraint set of
the diagram CD and the values of new variables are calculated
for each counterexample step s ∈ [1, s(t)].

This stage also provides a way to ensure that the complex
block is parsed correctly, as otherwise, after execution, its
output variable values could differ from the ones stated in
the counterexample.

B. Recursive explanation

The algorithm is provided in Alg. 1 and is illustrated in
Fig. 3, where the problem is to explain why output variable



u5 of the complex block is FALSE at counterexample step s.
Recalling that an FBD itself is a complex block of complex

blocks, to explain its output assignment, we need to find the
output gate connected to the gate of the output of interest
in the nested complex or basic block (Fig. 3, iteration 1).
Then, if the found gate belongs to a complex block, the
output assignment of such a block is explained through the
underlying net of blocks, whereas to explain an output of a
basic block, rules from Table II are utilized. As a result, we
have a set of input assignments that are sufficient to make
explained basic block output have its particular assignment –
an inclusion-minimal cause (Fig. 3, iteration 2). If the obtained
inputs have incoming connections, we continue the explanation
procedure recursively in the same way; intermediate results
from each step are added to the overall result set. After the
algorithm terminates, the result composed of all inclusion-
minimal causes in global and all the nested explanation scopes
is obtained (Fig. 3, iteration N ) and its graphical visualization
described in Section V-E.

The time and memory complexity of the algorithm is
O(n · s(t)), where n is the number of variables in the
FBD (including ones that belong to internal basic blocks).
These estimates can be achieved if the result of each call of
explain is memorized and not recomputed.

Statement IV.1. Alg. 1 finds the union of all inclusion-
minimal causes of t.

For brevity, we leave this statement without a formal proof
and only give an intuitive explanation why it is satisfied. The
algorithm performs a backward (in terms of the information
flow in the FBD) cone-of-influence analysis, seeking for all
assignments that could possibly be the cause of t according
to Definition III.6. Note that this definition requires that any
cause must be sufficient to reach the target by inferring new
assignments only in the direction of the information flow,
which means that a search against this flow could reach all
these causes. Moreover, the rules in Table II were specifically
chosen to return the union of inclusion-minimal causes for an
output of an FBD composed of an isolated basic block. For
arbitrary FBD, Statement IV.1 could be proven by induction.

C. Discussion

The algorithm finds the union of all inclusion-minimal
causes for the target within the global and all the nested
explanation scopes. Whereas our definition does not consider
the system as a whole at every extension step, there may
exist such combinations of constraints that generally restrict
combinations of values of input assignments of basic blocks.
For instance, consider Fig. 4, where signals merge in a
common ancestor if traversing backwards from a2,s.

Another case is an explanation result of basic block COUNT
that includes all the input assignments and is inclusion-
minimal. It follows that further explanation results will include
causes for all of the input assignments of COUNT which may
be irrelevant with regard to the system structure. Assume
that the output of this block equals 4 and is connected to

an input of “≤” block, where it is compared to 6. Having
this context in mind, we know that inputs of our interest
are FALSE because two more TRUE signals are required to
change the “≤” output. This example shows that without the
knowledge of how the result of this block is used further,
it is hard to say should we consider its TRUE or FALSE
signals in the explanation. Nevertheless, assignments that are
not included into the result of the algorithm are insufficient in
the target explanation, therefore, the user still gets information
that significantly reduces an FBD area being analyzed.

V. IMPLEMENTATION

The implementation of the algorithm described in Sec-
tion IV was incorporated into the tool OERITTE with the user
interface developed to aid the analyst in the debugging process.

A. Input data

The tool accepts a NuSMV model, an LTL formula and
a counterexample for the provided formula on the provided
model as input. A restricted, but, nonetheless, already usable
according to our practical experience, subset of NuSMV and
LTL is supported. Below are the main limitations:

• The main module of the NuSMV model is restricted to
declarations of input variables and nested modules.

• In other modules, each internal variable must be declared
with init and next operators. These assignments
must be deterministic (set notation {...} is disallowed).
INIT and TRANS declarations are not allowed.

• DEFINE declarations are not allowed to use the next
operator.

• Only Boolean and integer scalar types are supported.
• Inputs of the NuSMV modules should be annotated with

their types in form “varName : type”, where type is
boolean for Boolean and any integer interval in form
start..end for integer, e.g., 0..100.

• In LTL formulas, bounded operators (e.g., G[0, 3]) and
past time operators (e.g., H) are not supported.

TABLE II
BASIC BLOCK EXPLANATION RULES OF FINDING LOCAL

INCLUSION-MINIMAL CAUSES. ASSUME THAT THE REQUEST IS THE
EXPLANATION TARGET REPRESENTED BY THE TUPLE (u, v, s), WHERE v

IS THE VALUE OF u AT STEP s, AND A SET OF ASSIGNMENTS
REPRESENTING A CAUSE IS RETURNED.

Block Rule
Logical AND If v is TRUE, then return all the block input assign-

ments for step s, else return only input assignments
that are FALSE at s.

Logical OR If v is FALSE, then return all the block input
assignments for s, else return only inputs that are
TRUE at s.

CHOICE Return all the condition assignments prior to and
including the one that is satisfied at s and its output
assignment.

DELAY Return input assignment from step s− 1.
Others Return all the input assignments for step s.
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Fig. 3. Illustration of the assignment explanation process. Digits above the connections show values of the transmitted signals.

B. Encoding NuSMV modules as complex blocks

The aforementioned determinism assumption is required to
represent NuSMV modules as complex blocks since our basic
blocks are purely deterministic. The input variables of the
complex block correspond to input variables of the module,
and the output variables correspond to its internal variables
and DEFINE declarations (the absence of next operators
inside them allows treating these declarations as if they were
internal variables). Logical and arithmetic NuSMV operations
are directly transformed to basic blocks listed in Table I.
To handle delays introduced with the next operator, we
create a delayed version of each input variable by passing
it through a DELAY block. Each output variable is then wired
to a CHOICE, which, depending on whether this is the first
cycle, outputs the init or the next expression for this
variable: init expressions always use undelayed variables,
while next expressions may use both undelayed and delayed
ones.

C. Main window overview

The main view of OERITTE2 is presented in Fig. 5. Here
two areas are used to depict an LTL formula tree (Fig. 5a) and
the visualized version of an FBD (Fig. 5b) (hereinafter, the
diagram). The table below them (Fig. 5c) shows the values of
all the system variables for every counterexample step, and the
discovered failure causes for the diagram and the LTL formula
can be found in lists (Fig. 5d) and (Fig. 5e) correspondingly.
Panel (Fig. 5f), containing the trace steps sequence, is clickable
and utilized for navigation: once an element is activated, both
the diagram and the formula tree are evaluated according to the
chosen step, so that all variables in both diagrams are assigned
with values defined by the counterexample step, hence, all the

2https://github.com/ShakeAnApple/cxbacktracker/

NOT
AND

0

1
1,( ) 1sv a  2,( ) 0sv a 

u3

u4

Fig. 4. Illustration of a non-intuitive algorithm result at step s due to gates u3

and u4 having a common ancestor u1. The path of an explanation process for
a2,s is highlighted with bold blue. Here block NOT inverts the signal from gate
u1, thus, block AND computes the expression v(a2,s) = v(a1,s)∧¬v(a1,s),
which is always false. The algorithm will result in the path in bold blue and
{(u1, 1, s)} will be the inclusion-minimal cause of u2.

nodes in the LTL formula tree are calculated and all the system
modules are executed.

OERITTE has two groups of features: LTL formula explana-
tion and diagram interpretation. For the first, we implemented
the cause identification algorithm from [15]. The LTL formula
parse tree (see Fig. 5a) is located on the leftmost panel of
the main view. Depending on the calculation result of the
branch, the nodes of the tree are colored in red, green and
grey for FALSE, TRUE and an arithmetic result respectively.
The “explain formula” button forces the causes of the formula
value at the current step to appear in the list on the right
and be colored in the value table. By default, the formula is
explained for the first step (step 0 in the tool) with the first
diagram evaluation.

D. Complex block

In Fig. 6, an example of such visual representation of a
NuSMV module is given. This block is a part of a diagram
in the explanation mode. Each block has a name and a
type (Fig. 6a). Two sets of pins on the left (Fig. 6b) and
right (Fig. 6c) sides are the block’s inputs and outputs that
together form its interface. If the diagram is not in the
explanation mode, hovering the pin will trigger a tooltip with
the variable name appearing. Blocks with the single input
or output pin on the left and right sides of the diagram
represent a system interface – input and output variables of
the whole system. Lines connecting module inputs and outputs
correspond to connections between the blocks. Output variable
values are shown near the output connecting points of these
lines, whereas input variable values of the blocks are placed
near the input connecting points. Input negation is represented
as a circle instead of a square (Fig. 6d).

E. Explanation mode

Visualization of the assignment explanation algorithm result
is shown in Fig. 5 and is done as follows. To switch to the
explanation mode, one needs to click the desired pin at the
desired step or explanation target on the diagram view, which
triggers the aforementioned backward explanation process that
results in a set of assignments belonging to a calculated cause.
To display such a set on the diagram view, we hide the time
dimension and highlight edges that connect output and input
pins from the common set of causes with blue. At the same
time, if some variable is a cause at several time steps, the
pin representing this variable is provided with a tooltip where

https://github.com/ShakeAnApple/cxbacktracker/
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Fig. 5. Main view of the tool in the explanation mode.
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Fig. 6. Visual representation of a complex block in the explanation mode.

all its values included in the cause are displayed in form
“stepNumber:value” (Fig. 6e). Together with graphical
visualization, list (Fig. 5c) shows terminating assignments, i.e.,
assignments, whose gates do not have incoming connections
and belong to the input interface of the system. They are
displayed in form “stepNumber varName blockName
value”. This is the output of our interest, which includes
evaluation paths in the system that influenced the chosen
assignment to have its value. We argue that showing such paths
and not only the assignments of an inclusion-minimal cause
provides useful visual information to the analyst.

VI. CASE STUDY

The main feature of OERITTE is a diagram view where
it is possible to visually navigate through the causes of the
assignment of interest to find out the roots of the system
malfunction. That is why the tool should be evaluated by
the analyst interacting with it to discover a problem in the
real system. As the latter, we use the mode selection logic

introduced in [4]. It contains an actual design issue, revealed
by using model checking in a practical nuclear industry
project.

The logic is schematically represented in Fig. 7 and is used
to select one of two operational modes, mode_a or mode_b.
The operator can select the mode using the set_a or set_b
command. In addition, if mode_a is active, and the signal
c then changes to true, the mode is automatically switched
to mode_b. The processing order for the feedback loop is
specified using a cycle delay block.

One functional requirement for the logic is that the two
modes shall not both be active at the same time. To ac-
commodate for the cycle delay, the analyst specifies the LTL
property G¬((mode a∧mode b)∧X(mode a∧mode b)), i.e.,
mode_a and mode_b shall not both be on for two consecutive
cycles. This specification is violated and NuSMV generates
a counterexample. The result of the explanation of the LTL
formula is that both mode_a and mode_b are TRUE at the
steps 2 and 3.

As this explanation does not contain information about
the reasons for such system behavior, the analyst considers
the diagram. Having both modes active on the time steps 2
and 3, the analyst clicks on the mode_b output at the time
step 3, and the explanation for that value is shown. Almost
all diagram connections are highlighted, but, by hovering the
mouse pointer over the pins, the analyst notices that the second
flip-flop was set once at step 1 and never reset (Fig. 8a). The
analyst then notices in the “diagram explanation result” panel
that the set_a command on time step 2 does not have an
effect, when, in fact, it should reset the mode_b flip-flop a
cycle later. Then, the question is why the second flip-flop did
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Fig. 7. Case study: mode selection logic [4]. Flip-flop blocks produce TRUE if S ∧ ¬R and FALSE otherwise. If both S and R are FALSE then the value
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not reset its output signal at the steps 2 and 3. Clicks on its
reset input at steps 2 and 3 outlines the path to c (Fig. 8b) and
to set_a (Fig. 8c) correspondingly, therefore, the analyst is
shown that signal c is the cause at time step 2, and inactive
set_a command is the cause at step 3.

Combined, these results help the analyst realize that the
issue is about an extremely short set_a signal pulse arriving
at a very specific time – one cycle before the signal c resets.
(As explained in [4], the issue may also be counter-intuitive
to the designer because invoking set_a at a time when c is
active is not necessarily feasible.)

VII. RELATED RESEARCH

There exist several approaches to counterexample explana-
tion. Some works [18], [16], [15] focus on the failed property
itself and, among mentioned, [15] is the most advanced one,
which was directly implemented in our work in the LTL
formula explanation part. It generalizes an algorithm from [16]
that explains a false outcome of LTL formula f on a given
counterexample. This is done by recursively finding assign-
ments that are sufficient to cause the value of a subformula of
f on a given counterexample step, starting from the entire f
on the first step.

However, the problem of the research direction of these
approaches is that it is only possible to get an explanation with
the variables that are actually included in the LTL formula.
Unfortunately, these values may be influenced by others and
the real cause of the violation of f may be still hidden (as it
was shown in Section VI), requiring the analyst to manually
examine the formal model.

Direct analysis of a system under verification is considered
in [19], [20], [21], [22]. These approaches require more
than one system trace and, therefore, additional executions of
supporting programs to acquire necessary counterexamples or
traces that correspond to successful model runs. By contrast,
in [23] a single failure trace is enough to reason about
the causes of the error, although here a counterexample is
represented by a sequence of executions of program statements
and such sequence is unknown in our scenario. Compared to
the works above, our approach needs only one counterexample

from a model checker to explain the failure. Despite being
often developed in form of modular diagrams, I&C systems
require a more sophisticated visual approach for localizing
failures which is provided by OERITTE.

Works [5], [24], [25] are related to counterexample visu-
alization. In [5] counterexamples are visualized using tim-
ing diagrams, however, “model view” is arguably [24] the
most usable representation. MODCHK [11] is a graphical
front-end for NuSMV that visualizes the counterexamples by
animating the function block diagram. For use in nuclear
applications, MODCHK also supports vendor-specific, non-
standard function block types. Similarly to MODCHK, in [25],
counterexamples for IEC 61499 block diagrams are shown
using a simulation model of the controlled process. Another
graphical tool is the Simulink Design Verifier [12], which
generates a simulation test case from the counterexample.
Being able to visualize, the aforementioned tools do not
support explanation of specifications failures.

A viewpoint that considers a structural approach to coun-
terexample explanation and that is the closest to ours is taken
in [26], where the considered problem is to explain an output
of an observer (synchronous program connected to the system
under verification), which is a single value. However, here
only a limited set of basic blocks is supported, the approach
is applied only to STANCE models and lacks flexibility in
explanation scope determination. Another difference is that
definitions in [26] are formulated over the paths in the system,
where all those starting in system inputs require to obtain an
activation condition formulae before the explanation starts. As
a result, sets of paths representing a cause of the observer
output is calculated.

In our work, we synthesize the ideas of the works [16], [15],
[26] in the following form: we borrow the idea of explaining
an LTL formula with particular values of variables in it, but
also let the user get explanations for each such particular
values. We solve the comprehensibility problem by presenting
only one set of paths and letting the user visually navigate
through the FBD and the counterexample to get more focused
explanations. Therefore, despite steps towards more user-



(a) Explanation for the mode_b output for the third step. To save space, in this figure we combined two screenshots with different tooltips being shown.

(b) Explanation for the reset input of the second flip-flop block for the second step. c is shown to be the cause of this signal not activated.

(c) Explanation for the reset input of the second flip-flop block for the third step. set_a is shown to be the cause of this signal not activated.

Fig. 8. Counterexample explanation for the case study logic. The points of the analyst’s attention are highlighted with red dashed rectangles and are not
displayed by the tool.



friendly counterexample visualization and explanation have
already been made, OERITTE is the only tool that combines
explanation techniques into a consistent infrastructure.

VIII. CONCLUSION

In this paper, we have presented a novel counterexample
explanation algorithm and an open-source tool, OERITTE,
which implements it together with a known LTL formula
explanation algorithm [15] and offers graphical backward
counterexample analysis. Inspired by works [16], [26], the tool
provides methods and visual elements supporting explanations
in terms of both the LTL formula and the model (FBD) in
a form of paths from causes to the target values that they
explain. It is worth mentioning that our approach can be used
to explain the results of finite computations even when they
are produced by models which are not FBDs. The elements of
the user interface of OERITTE and their functionality address
the challenges mentioned in the introduction. The variables
of the diagram (Fig. 6b, Fig. 6c) and the LTL formula tree
(Fig. 5a) are evaluated according to a chosen counterexample
step, which addresses the first challenge. The second challenge
is covered by the possibility to retrieve causes of the failure
using only the formula structure, where the LTL formula
tree (Fig. 5a), the button “explain formula” and highlighted
values (Fig. 5c) help with visualization. Finally, the diagram
(Fig. 5b) combined with the presented method of individual
assignment explanation assists in the analysis of the system as
a whole.

As shown by the case study, the current version of OERITTE
already avails, moreover, it has potential in reaching a wider
audience in the future. Our future work includes broadening
the scope of supported models and developing the coun-
terexample explanation methods for timed and probabilistic
automata. Another enhancement that would enlarge the range
of models and specifications to be analyzed is relaxing input
data restrictions, i.e., introducing support for bounded and past
time LTL operators as well as removing necessity to specify
the data types in a NuSMV model.
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