
Xorbits: Automating Operator Tiling for
Distributed Data Science

Weizheng Lu1, Kaisheng He2, Xuye Qin∗2, Chengjie Li2, Zhong Wang2, Tao Yuan3

Xia Liao4, Feng Zhang1, Yueguo Chen∗1, Xiaoyong Du1
1Renmin University of China, 2Xorbits Inc.,

3China Communications Information Technology Group, 4Tsinghua University
luweizheng@ruc.edu.cn, {hekaisheng, qinxuye, lichengjie, wangzhong}@xprobe.io,

yuantao10@ccccltd.cn, liaoxia5018@163.com, {fengzhang, chenyueguo, duyong}@ruc.edu.cn,

Abstract—Data science pipelines commonly utilize dataframe
and array operations for tasks such as data preprocessing,
analysis, and machine learning. The most popular tools for
these tasks are pandas and NumPy. However, these tools are
limited to executing on a single node, making them unsuitable
for processing large-scale data. Several systems have attempted
to distribute data science applications to clusters while main-
taining interfaces similar to single-node libraries, enabling data
scientists to scale their workloads without significant effort.
However, existing systems often struggle with processing large
datasets due to Out-of-Memory (OOM) problems caused by
poor data partitioning. To overcome these challenges, we develop
Xorbits, a high-performance, scalable data science framework
specifically designed to distribute data science workloads across
clusters while retaining familiar APIs. The key differentiator
of Xorbits is its ability to dynamically switch between graph
construction and graph execution. Xorbits has been successfully
deployed in production environments with up to 5k CPU cores.
Its applications span various domains, including user behavior
analysis and recommendation systems in the e-commerce sector,
as well as credit assessment and risk management in the finance
industry. Users can easily scale their data science workloads by
simply changing the import line of their pandas and NumPy
code. Our experiments demonstrate that Xorbits can effectively
process very large datasets without encountering OOM or data-
skewing problems. Over the fastest state-of-the-art solutions,
Xorbits achieves an impressive 2.66× speedup on average. In
terms of API coverage, Xorbits attains a compatibility rate
of 96.7%, surpassing the fastest framework by an impressive
margin of 60 percentage points. Xorbits is available at https:
//github.com/xorbitsai/xorbits.

Index Terms—scalable data science, dataframe, array, tiling,
computation graph

I. INTRODUCTION

Data science (DS) pipelines are increasingly prevalent in
today’s world, owing to the emerging applications of ma-
chine learning (ML), artificial intelligence (AI), and data-
driven business intelligence (BI) [1], [2]. Dataframe and array
systems, specifically pandas [4] and NumPy [5], form the
most substantial portion of data science pipelines. The two
libraries have gained widespread recognition among develop-
ers globally [6] primarily attributed to their various operators,
flexible usage, and user-friendly interfaces. However, these two
packages suffer scalability problems as they cannot distribute

∗ Corresponding authors: Yueguo Chen and Xuye Qin.

to multi-cores or multi-nodes, missing big data processing
capability [7]. As datasets rapidly grow and workloads become
more complex, there is an ever-increasing need to scale
these libraries by utilizing computational resources far beyond
what a single CPU-only node can offer. Several frameworks,
such as PySpark [8], Dask [9], Ray [10], mpi4py [11],
and Modin [12], have been developed to address scalability
concerns for data science workloads. However, our empirical
studies reveal two significant issues with these tools. First,
they struggle with handling extremely large datasets due to
poor data partitioning and out-of-memory (OOM) problems,
particularly in data-skewing scenarios. These systems build the
computation graphs and partition data primarily by estimating
the size of initial data sources ahead of runtime [2]. However,
the size of in-memory data can fluctuate after executing a
series of data science operators, potentially diverging from the
initial size. This can lead to memory exhaustion on specific
worker nodes, especially during shuffle-intensive operations
such as groupby or merge. Second, they are not fully
compatible with widely-used pandas and NumPy APIs [13],
[14]. This necessitates substantial code rewriting from users
and is problematic as most data scientists only specialize
in data modeling rather than parallel programming. These
challenges significantly hinder users aiming to scale their data
science workloads.

To address these problems, we develop Xorbits, a scalable
data science engine that enables parallel execution of work-
loads like data-loading, preprocessing, scientific computing,
analyzing, machine learning, etc. First, to optimize computa-
tion graphs at a finer granularity, we design three types of
graphs—tileable graph (logical plan), chunk graph (coarse-
grained physical plan), and subtask graph (fine-grained phys-
ical plan), in conjunction with a multi-stage map-combine-
reduce programming model. Second, we introduce a novel
dynamic tiling approach for automatic graph construction. This
approach can switch between graph construction and graph
execution, enabling us to build graphs by leveraging metadata
from execution. It considers the current operator’s actual input
data shape. Leveraging this real-time metadata, Xorbits can
effectively partition and process data without encountering
OOM issues, even when the data’s shape substantially deviates
from the initial data source. Third, given the tiled graph, we

ar
X

iv
:2

40
1.

00
86

5v
2 

 [
cs

.D
C

] 
 1

9 
M

ar
 2

02
4

https://github.com/xorbitsai/xorbits
https://github.com/xorbitsai/xorbits


employ graph-level and operator-level fusion. We also apply
various optimizations, such as an intermediate storage service
that utilizes different levels of storage devices, especially
memory.

Xorbits can act as a drop-in replacement for the single-node
data science libraries (i.e., pandas, NumPy, HuggingFace’s
datasets, etc) while ensuring competitive performance. Since
Xorbits’ APIs are identical to the original libraries, using
Xorbits simply requires replacing the import code. As a result,
users can scale data science programs with as many computing
resources as they desire. As of October 2023, Xorbits and its
predecessor, Mars [15], have earned 3.4k stars on GitHub and
have nearly 3k weekly downloads. Our users have successfully
deployed Xorbits into their production environments, with up
to 5,000 CPU cores. Xorbits has significantly expedited vari-
ous data science and machine learning tasks such as financial
risk management, fraud detection, user behavior analysis, and
e-commerce recommendations.

We evaluate Xorbits’ performance on dataframe and array
operations using a combination of industry-standard bench-
marks, such as TPCx-AI [16] and TPC-H [17], along with
real-world workloads. Compared to the fastest state-of-the-
art solutions, Xorbits achieves a substantial 2.66× average
speedup on data science operations that are supported by all
baseline systems. Regarding API coverage, Xorbits attains a
compatibility rate of 96.7%, surpassing the fastest framework
by an impressive margin of 60 percentage points. To provide
an understanding of our optimizations, including dynamic
tiling, we present an ablation analysis that delves into their
effects on performance.

To summarize, this paper makes the following contributions:
• We present the design of Xorbits, formalize three types

of computation graphs, and propose the multi-stage map-
combine-reduce computation model.

• We propose the dynamic tiling approach, which leverages
metadata from execution to partition data automatically.

• We provide the details of optimization and implementa-
tions, including graph fusion, intermediate storage ser-
vice, and auto re-chunking, .

• We evaluate Xorbits against existing systems like PyS-
park, Dask, and Modin on various benchmarks. We
demonstrate significant speedups over these systems on
data science pipelines, data analysis, and array computing
workloads. Additionally, Xorbits supports a wide range
of APIs and usage patterns.

II. BACKGROUND AND MOTIVATION

A. Background

The daily work of a data scientist primarily revolves around
tasks such as loading, preprocessing, transforming, and con-
ducting feature engineering on data [1]–[3]. To accomplish
these tasks, they often utilize dataframe and array systems
like pandas [4] and NumPy [5]. According to the annual Stack
Overflow Developer Survey, which gathered data from 67,231
respondents, the usage of NumPy and pandas accounts for

20.25% and 18.97% respectively among diverse programming
languages and frameworks [6]. These percentages place them
just behind .Net and well ahead of other frameworks like
React Native and Apache Hadoop. NumPy, which underpins
almost every Python scientific computing library, offers a
n-dimensional array data type (ndarray) and array-aware
functions. These functions enable operations such as matrix
multiplication, finding the median of an array, indexing, etc.
Pandas, which supports a more user-friendly approach to
modern data analysis than SQL, offers a functional interface
that encourages quick and simple data exploration [2]. The
main data structure of pandas is the dataframe (DataFrame),
denoted as a tuple (A,R,C, T ). Here, A represents an m×n
array containing the data entries of the dataframe. R is an array
consisting of m row labels, C is an array containing n column
labels, and T is an array that specifies the types for each
column [12]. Dataframes support a wide range of operations,
including both relational and non-relational ones. Relational
operators, such as join (equivalent to the relational JOIN),
enable combining data from different sources. Non-relational
operations, like pivot, offer flexible data manipulation capa-
bilities.

Both pandas and NumPy are in-memory, single-node, CPU-
only computing engines. As datasets continue to grow in size
and exceed the memory capacity of a single computing node,
the demand for a more advanced distributed solution is becom-
ing increasingly urgent. To solve this problem, the community
has invested significant effort into building frameworks such as
PySpark [8], Dask [9], Ray [10], Modin [2], and mpi4py [11].
Due to the widespread popularity of pandas and NumPy, these
frameworks have attempted to mimic their APIs, enabling
users to transition to the new tools seamlessly.

B. Observation

Our empirical study reveals that these frameworks exhibit
poor scalability and migration issues for users. We conduct
tests using the TPC-H benchmark [17], which comprises a
total of 22 queries, to assess the scalability and usability of
these systems. We use three scale factors (SFs): 10, 100, and
1000. Initially, we implemented a version using pandas and
subsequently ported the code to other frameworks. Table I
presents the number of failed queries. Note that the PySpark
version is developed using the pandas API on Spark (formerly
known as the Koalas project) rather than Spark SQL. Based
on our observations, these frameworks exhibit two primary
issues.
TABLE I: Number of failed queries on TPC-H benchmark.

SF pandas PySpark Dask Modin
10 0 3 1 0
100 17 3 1 1

1000 22 4 5 22

Scalability and Performance. These systems exhibit poor
scalability and struggle to handle large datasets effectively.
While they may be able to successfully execute queries with
SF10, they encounter failures as the data size increases.



To investigate the reasons behind these failures, we analyze
their performance on the SF1000 dataset and summarize the
findings in Table II. Modin on Ray offers better compatibility
with pandas and can handle SF10 datasets. However, it faces
challenges when dealing with larger data sizes, leading to
OOM problems and termination of Ray workers. Running
all 22 queries with Modin on SF1000 is difficult. Similarly,
Dask has five failed queries, two hanging queries, and three
queries encountering OOM problems. This empirical study
demonstrates the limited scalability of these systems, as they
struggle with large datasets.

TABLE II: Reasons that frameworks fail on TPC-H SF1000.

Reason PySpark Dask Modin
API Compatibility 3 0 0

Hang 0 2 0
OOM or Killed 1 3 22

Total 4 5 22

API Compatibility. These systems face API compatibility
issues, and migrating data science workloads from a single
machine to clusters is challenging. Spark, the most popular
big data engine, fails mostly due to the absence of some
pandas APIs. As a result, users frequently need to spend hours,
or even days, searching for workarounds when encountering
API issues. Notably, both Spark and Dask openly acknowl-
edge that cannot achieve 100% compatibility with pandas, as
stated in their official documentation [13], [14], [18], [19].
It requires users to have a deep understanding and practical
experience with the frameworks they are using. Additionally,
users often need to rewrite their single-node code to make their
program able to run. Dask offers both array and dataframe
functionalities, but it’s not easy to scale horizontally. When
using Dask Array, users need to specify the chunk size. If
the chunk size is too small, Dask will generate many task
graph nodes (resulting in overhead). If the chunk size is too
large, the data may not fit into memory [20]. In some cases,
incorrect chunk size configuration can prevent the program
from running successfully. For instance, Dask’s qr and svd
functions only support specific matrix shapes, such as tall-
and-skinny or short-and-fat matrices. If users fail to follow
these chunking rules, Dask will throw exceptions. Users must
define chunk sizes explicitly using the rechunk function, as
exemplified in the Dask Array example presented in Listing 1.
Since Dask DataFrame and pandas API on Spark only partition
data on rows, they lack support for flexible operators. A
prime example is Dask’s inability to accommodate operations
like iloc, which involve row slicing. Example of Dask
DataFrame in Listing 1, which is quite common in the data
science community, will throw exceptions. Systems like Ray
and mpi4py are general-purpose parallel computing engines.
If users want to use Ray or mpi4py, they must build their
distributed programs from scratch. In short, scaling the single-
node data science code is not straightforward.

C. Key Objectives

Since we open-sourced our large-scale data framework,
we have collected nearly 4,000 feedback from industry and

academia. Based on these comments and recent progress in
data science and artificial intelligence, we have distilled and
identified the most pressing requirements of the data science
community.

Listing 1: API compatibility issues of Dask.
import dask.array as da
import dask.dataframe as dd

# Dask must specify chunk size
n = 10000
a = da.random.random(size=(n,n))
a = a.rechunk(chunks=(n, 1))
Q, R = da.linalg.qr(a=a)

# Dask failed with iloc
df = dd.read_parquet("<path>")
df = df.iloc[10]

• High Scalability and High-performance. Data analytic
and extract-transform-load (ETL) tasks in enterprises
often need to process terabytes of data or beyond, so
the data framework must be scalable enough to cope
with the growing volume of data. Furthermore, faster
data processing speed can yield multiple benefits, such as
quicker results for data analysts, more efficient utilization
of computing resources, and cost savings.

• API Compatibility. API compatibility stands as another
vital consideration. Most users start their data science
journey by learning pandas and NumPy. In the industry,
a common scenario involves conducting experiments on
small datasets using a single node and then scaling these
workloads onto clusters without the need to modify the
code.

• Python First. As Python prevails in data science and
artificial intelligence, users would like to use Python as
its core or maybe the only programming language. They
expect that Python could cover the whole data lifecycle,
including data ingestion, preprocessing, model training,
tuning, and inference. Since developers only need to be
proficient in one language and the corresponding software
stack, this reduces staff and employers’ costs.

Opportunity. None of the existing solutions mentioned
before can meet these requirements. These points drive us to
develop the Xorbits project, a high-performance data science
engine that is capable of handling terabytes of data and beyond
and is compatible with single-node libraries. When building
the project, we face the dual challenges. First, the framework
should scale seamlessly across a large number of computing
nodes and can handle very large datasets. Data-skewing, one of
the toughest issues that every big data framework faces, should
be avoided. Second, the tiling of data should be done behind
the scenes. Since single-node libraries do not have tiling or
partitioning operations, data partitioning should be hidden to
keep APIs compatible.

III. THE XORBITS SYSTEM

In this section, we first introduce the architecture overview
of Xorbits. Next, we present the user interface and the com-



putation graphs.

A. Overview

Architecture. The architecture of Xorbits is depicted in
Figure 1. Users can scale their data science workloads using
the very familiar APIs of pandas and NumPy. Based on the
distributed pandas and NumPy, Xorbits offers functionalities
including data loading, preprocessing, and distributed machine
learning, akin to PyTorch’s dataloader [21], HuggingFace’s
datasets [22], XGBoost [23], or scikit-learn [24]. Internally,
an API is defined as an operator. Our two most fundamental
data structures are Tensor and DataFrame, where Tensor
represents distributed arrays, and DataFrame denotes dis-
tributed dataframes. Xorbits implements several services to
support the execution of scalable data science. Each service
plays a particular management role. For instance, the session
service creates, maintains, or destroys a session on a Xorbits
cluster. All these services are based on an actor framework
called Xoscar. Users can start a Xorbits cluster on any infras-
tructure like bare metal or Kubernetes. Note that this paper
focuses on scaling data science workloads by dynamic tiling
and operator fusion, so distributed machine learning and actor
model of Xoscar are not main contributions of this paper.

a lightweight actor framework

Distributed Data Science
scikitUser

Interface

Execution
Layer

Service
Session Cluster Meta Storage

Task Subtask Scheduling Lifecycle

Tensor DataFrame datasets

API

Operator
tile execute

...

statsmodels

Actor

Fig. 1: Overview of the Xorbits architecture.

Xorbits Cluster. When creating a Xorbits cluster, two kinds
of daemons should be started: supervisor and worker. Users
should choose a node (e.g., bare metal, container, virtual
machine, etc.) to start the supervisor and spawn the workers on
other nodes. The supervisor’s main job is to manage subtasks,
sessions, scheduling, etc. The worker is dedicated to task
execution, carrying out the actual computational processes.
Once the cluster is set up, users can submit their workloads
to the supervisor, which will distribute tasks to workers.

Novelty. First, we introduce the dynamic tiling approach
(Section IV) to automatically build data science computation
graphs and tile data. Dynamic tiling can 1) prevent data-
skewing and OOM issues, 2) generate optimized graphs, and
3) avoid re-partition code and keep APIs compatible. Second,
we propose our novel graph fusion algorithm (Section V-A)
to fuse computation graphs for better performance. Third, we

have performed substantial optimization work in areas such as
scheduling V-B and storage services V-C. Fourth, to keep API
compatible, we design auto rechunk algorithm (Section V-D).

B. User Interface & Application Scenarios

User Interface. DataFrame and Tensor are the two
main distributed computing features provided by Xorbits. Xor-
bits can act as a drop-in replacement for pandas and NumPy.
The Xorbits’ APIs (function signatures, arguments, and seman-
tics) are exactly the same as those of the original packages.
As demonstrated in Listing. 2, users can easily scale their
data science workloads by changing lines of the import code
and adding an init method to tell which runtime Xorbits
should connect. When using Xorbits, users are relieved from
manually specifying chunk sizes, the number of partitions, or
performing operations like repartition. When migrating
to Xorbits, users do not need extra effort to change their
single-node code because Xorbits offers seamless integration
and compatibility with the original packages. Xorbits can
be effortlessly installed using the command pip install
xorbits within a Python environment, eliminating the need
for Java or any compilation processes.

Listing 2: Drop-in replacement of Xorbits.
import xorbits
import xorbits.numpy as np
import xorbits.pandas as pd
# init Xorbits runtime locally
# or connect to an Xorbits cluster
xorbits.init(http://<ip>:<port>)

# array example
a = np.random.rand(n,n)
Q, R = np.linalg.qr(a=a)
print(Q)

# dataframe example 1
df = pd.read_parquet("<path>")
df = df.groupby("A").agg("min")
print(df)

# dataframe example 2
df = pd.read_parquet("<path>")
filtered = df[df["col"] < 1]
print(filtered.iloc[10])

Application Scenarios. As Xorbits provides distributed ver-
sions of dataframes and arrays with the very familiar APIs, it
is a powerful tool for data scientists working on data-intensive
applications. For example, there are three types of workloads
in a real-world fraud detection workflow: dataframe-based
ETL from raw logs, graph-based processing, and neural-
network-based deep learning [25]. Xorbits can be adopted
in workflows of ETL, analysis, and ML. We have received
feedback from our open-source community, attesting to the
successful deployment of Xorbits into their production en-
vironments. Notably, the largest known Xorbits cluster has
over five thousand CPU cores. Our typical use cases in-
clude workflows for e-commerce recommendation systems,
where data scientists analyze user behavior logs, and financial
fraud detection. Moreover, Xorbits offers scalability for other



DS libraries. For example, machine learning libraries like
scikit-learn can be distributed with Xorbits’ Tensor and
DataFrame.

C. Computation Graph

Xorbits use directed acyclic graphs (DAGs) to describe the
data dependency and the operator execution order. There are
three different types of computation graphs in Xorbits: the
tileable graph (logical plan), the chunk graph (coarse-grained
physical plan), and the subtask graph (fine-grained physical
plan).

Figure 2 depicts the workflow of the three types of graphs.
Figure 3 illustrates the computation graph for the three ex-
amples provided in Listing 2. More specifically, Figure 3 (a)
represents a fragment of the chunk graph for the QR decompo-
sition example, while Figure 3 (b) and (c) depict the pipelines
for the dataframe examples. Note that Figure 3 is only for
illustration purposes, that the real graphs may have far more
nodes than what we show here.

Tileable 

Graph

Client
Tileable

Graph

Supervisor
Tileable 

Graph

Optimize

Column Pruning, etc

Chunk

Graph

Subtask

Graph

Schedule
Worker Worker Worker

Submit

Tile Optimize

Fusion, etc

Fig. 2: Workflow of optimizing and scheduling the computa-
tion graph.

Generally, each API offered by Xorbits is internally defined
as an operator. In our computation graphs, operators are
symbolized as circles, while squares signify data placeholders.
In this case, the xorbits.pandas.read_parquet oper-
ation is implemented as the ReadParquet operator. For each
operator, Xorbits implements three core methods: __call__,
tile, and execute. These three methods align with distinct
aspects of the processing pipeline: the __call__ method
corresponds to the tileable graph, the tile method associates
with the chunk graph, and the execute method relates to the
subtask graph.

Tileable Graph. The tileable graph represents a high-level,
coarse-grained structure functioning as a logical plan. Xorbits
calls the __call__ method of each operator on the client
and translates the user code into a node within the tileable
graph. Note that at this stage, the tileable graph has not yet
been divided into multiple partitions or chunks.

Chunk Graph. The tileable graph is then submitted to
the supervisor, where every operator’s tile method will be
invoked. The tile method divides the data into multiple
chunks according to the data size or other relevant cues. For
complex operators like groupby.agg, the tile method
adds internal nodes (i.e., the GroupbyAgg::map, Concat, and
GroupbyAgg:agg nodes in Figure 3 corresponding to the map,

combine, and reduce stages, respectively). The map stage in-
gests the upstream chunk data and produces intermediate key-
value pairs. The combine stage is a pre-aggregation phase that
combines a subset of chunks. In contrast to the MapReduce
programming model [29] that uses persistent storage to store
the key-value pairs, Xorbits is an in-memory computing en-
gine. All intermediate results are retained within our dedicated
storage service (Section V-C). We add the combine stage to
avoid too many chunks aggregating into a single worker node,
which may overwhelm the worker’s memory. Our combine
stage’s pre-aggregating can also improve performance. The
reduce stage will aggregate and convert the key-value pairs
into the actual result. Note that each operator has its unique
semantics, and not all operators would use the aforementioned
map-combine-reduce stages.

Subtask Graph. The subtask graph, or the coarse-grained
physical execution plan, is optimized from the chunk graph.
Although the chunk graph and the subtask graph resembles
each other, there are two differences. 1) Nearby nodes in the
chunk graph are fused to a subgraph called subtask. 2) Every
subtask in the graph is assigned with scheduling information
indicating which worker it should run on. In Figure 3 (b),
the ReadParquet and the GroupbyAgg::map are fused
to form a subgraph, which will be scheduled to a particular
worker. During the execution phase, the execute method is
called on the workers. Single-node packages are the backends
for calculation given the split chunk (i.e., pandas is the
backend for dataframes, and NumPy for arrays). There is also
ongoing backend development of CuPy [26] and cuDF [27]
for GPU support.

Chunk. Within the computation graph, circles represent op-
erators, while squares symbolize chunks. Chunks serve as data
placeholders, functioning as both the output for predecessor
operators and the input for successor operators. An operator
typically generates one or more chunks. As illustrated in Fig-
ure 3 (a), the TensorQR operator yields two output chunks:
Q and R. Partitioning the entire dataset into chunks, whether
it’s done row-wise, column-wise, or cell-wise, depends on the
semantics of the operator and the size of the data itself.

Indexing and Ordering. One notable distinction between
pandas dataframes and relational databases is the presence of
row labels (or index) in pandas, often used for ordering-based
operators like iloc. To preserve the semantics of pandas’
index and multi-level index, we introduce a distributed index
in each chunk. Illustrated in Figure 4, each chunk is a pandas
dataframe and our distributed index consists of a two-value
tuple (r, c), where the r indicates the vertical position of
the chunk in the complete dataframe, while c denotes the
horizontal position. This distributed index enables Xorbits to
locate any item in the original data, to implement operators
like iloc, transpose, and to speedup lookups.

IV. DYNAMIC TILING

After getting an overview of Xorbits in Section IV, we
present the dynamic tiling approach in this section. We first



Tensor
QR

Tensor
QR

Tensor
QR

... ... ...

Concat

Tensor
QR

Tensor
Slice

... ... ...

Chunk 

Graph

(a) Array example.

Read

Parquet

Tileable

Graph

Data

Groupby
Agg

Read

Parquet

Read

Parquet

Read

Parquet

Groupby
Agg

::map

Groupby
Agg

::map

Groupby
Agg

::map

Concat

Groupby
Agg
::agg

Chunk 

Graph

map

stage

combine

stage

reduce

stage

Data

...
Subtask

Graph

Fusion

Fused

Subtask

Fused

Subtask

Fused

Subtask

Fused

Subtask

(b) Dataframe example 1.

Read

Parquet

Read

Parquet

Read

Parquet

Filter Filter Filter

ILoc

Chunk 

Graph

4 8 5

execute

Unknown

Shape

Known

Shape

(c) Dataframe example 2.

Fig. 3: Illustration of computation graphs.

(0, 0)

ColumnsRow labels

...

...

...

... ...

Our Index

(0, 1) (0, 2) (0, 3)

(1, 0) (1, 1) (1, 2) (1, 3)

...

Chunk

Fig. 4: Distributed index.

discuss when and why dynamic tiling is necessary (Sec-
tion IV-A). Then we introduce the mechanism and implemen-
tation of dynamic tiling (Section IV-B). Finally, we showcase
three typical scenarios that can benefit from dynamic tiling
(Section IV-C).

A. Necessity of Dynamic Tiling

Performance and availability depend heavily on the tiling
strategy because tiling too many chunks would increase over-
heads, while too few may cause memory overflow. On the
other hand, the single-node packages do not need tiling, and
these packages have no chunk- or partition-related parameters.
Making users explicitly specify the tiling-related parameters
would break the API compatibility and require expertise in
parallel programming.

Unknown Shape Problem. Regarding the output data
shape, there are mainly two types of operators: static and non-
static. Static operators are those where the output data shape
can be computed based on the input shape. A classic example
is matrix multiplication. Non-static operators are characterized
by output data sizes that cannot be determined solely from the
input shape. These operators’ output sizes also depend on the
data content. Hence, the outputs’ shapes of these operators are
unknown, making tiling the rest of the data science pipeline
notably difficult, as the exact shapes remain unknown until

execution. Non-static examples include df["col"] < 1,
groupby, merge, drop_duplicates, etc. A pipeline
with only static operators is easy to tile because the output
of each operator’s shape is fixed, given the shape of the data
source. However, it is challenging to tile pipelines containing
numerous non-static operators before execution. Because the
intermediate results’ shapes differ significantly from the origi-
nal data sources, precisely determining the partitions of every
operator is difficult.

B. Dynamic Tiling

Our dynamic tiling approach leverages the metadata col-
lected from execution to tile during the graph construction
phase. Figure 5 (a) shows how this procedure works. Xorbits
begins by creating a coarse-grained chunk graph (Step 1⃝) and
running the operator on the first few chunks. Xorbits would
get the metadata (e.g., shape, columns, dtype, etc.) and then
store it in the meta service (Step 2⃝) so that the tiling process
can later access it. This type of metadata enables Xorbits to
create an optimized computation graph.

Yield. The core technology underlying Xorbits’ dynamic
tiling is the ability to switch between tiling (i.e., the graph
construction phase) and execution seamlessly. Xorbits gener-
ates the computation graphs on the fly by leveraging Python’s
yield mechanism. Figure 5 (b) shows a code snippet
when implementing the GroupByAgg operator. In the tile
method, metadata (in this case, the actual data size after
aggregation) is needed but currently missing, Xorbits will
yield to trigger execution. Unlike the return keyword,
which terminates the execution of the function, yield returns
and pauses at where it is called. After the first few chunks
are executed, and the metadata is collected, the function
resumes from the same point. With the collected metadata,
Xorbits can find the optimal way to tile the remaining chunks
efficiently, and the optimized chunk graph will be scheduled
again to workers. Although the yield solution sounds sim-



executetile

graph
metadata

1

2

result

(a) Switching between tiling and execution.

  def execute(cls, ctx: Dict, op: "GroupByAgg"):

    in_df = ctx[op.inputs[0].key]

    # map stage

    if op.stage == Stage.map:

      grouped = in_df.groupby(...)

                 metadata = ...

      ctx[op.outputs[0].key] = tuple(..., ...)

    elif op.stage == Stage.Combine:

      ...


class GroupByAgg():
  def tile(cls, op: "GroupByAgg"):
    chunks = []
    # run the first few chunks and collect metadata
    ...   
    # yield to trigger execution
    yield chunks
    # tile the remaining chunks with metadata 
    chunks = ...
    
    return op.new_dataframes(chunks=chunks)

Task

Subtask

Scheduling

Storage

MapReduce key-value pairs

meta

(b) An example of operator implementation.

Fig. 5: Dynamic tiling.

ple, developing the whole system is a non-trivial work, as
Xorbits provides the services (e.g., task, subtask, scheduling,
meta, storage, etc.) to guarantee transition between tiling and
execution.

Iterative Tiling. As data science workloads usually contain
a series of operators whose outputs’ shapes are unknown,
the dynamic tiling is done iteratively. Xorbits iterates over
each operator and switches between tiling and execution if
the metadata of that operator is needed. When encountering
an operator that lacks metadata, Xorbits interrupts the tiling
process, pauses, and submits a partial computation graph for
execution. After the metadata (e.g., shape, columns, dtype,
etc.) is updated, Xorbits continues the tiling process. In the
second dataframe example of Listing 2, the output shape of
df["col"] < 1 is unknown until execution. It is impossi-
ble to know which chunk contains the tenth row of the filtered
dataframe. This is where iterative tiling is utilized. The chunks
corresponding to filtered are submitted for execution, and
Xorbits will update the chunk shape based on the result. As
shown in Figure 3 (c), suppose the initial dataframe df is
divided into three chunks, and after filtering, the lengths of
each chunk are 4, 8, and 5, respectively. To get the tenth row,
we only need to append an ILoc operator to the second chunk
to obtain the final result.

C. Use Cases for Dynamic Tiling

Dynamic tiling can be applied to many operators and
scenarios. Here, we showcase three examples to illustrate how

Tree-reduce Shuffle-reduce

if

agg_size < limit

True False

(a) Auto Reduce Selection.

...

merged_size < limit

while

Merge

True

(b) Auto Merge.

Fig. 6: Typical use cases for dynamic tiling.

it helps to accelerate workloads and prevent OOM issues.
Auto Reduce Selection. One illustrative example is how

to choose the optimal reduce algorithm automatically. Fig-
ure 6 (a) shows the tree-reduce and shuffle-reduce algorithms
widely used for operators like groupby. Shuffle-reduce in-
troduces communication overhead as it dispatches data to
all downstream reducers, whereas tree-reduce transmits data
solely to the combined nodes. While tree-reduce offers speed
and simplicity, it is only efficient when the aggregated data
is small. Tree-reduce may encounter memory overflow as
the data volume grows. Therefore, a trade-off exists between
performance and availability. Other systems choose the reduce
algorithm according to rules or manually specified by users.
Given that most users lack enough knowledge of the reduce
mechanism, manual configurations by users could lead to
memory issues or performance degradation. With the dynamic
tiling technique, Xorbits can intelligently choose the optimal
reduce algorithm based on the metadata collected during
execution. To illustrate, let’s consider the groupby.agg
operation. Initially, Xorbits builds a temporary chunk graph
and runs on the first few chunks, obtaining the aggregated and
raw input data sizes. This metadata is then added to the meta
service and can subsequently be applied in tiling the remaining
chunks. If the size of the aggregated data falls below a
predefined threshold, Xorbits opts for the tree-reduce structure;
otherwise, it selects the shuffle-reduce. Importantly, this entire
process runs seamlessly without requiring user intervention.

Auto Merge. Large graphs would lead to the overhead of
graph dispatching and graph execution. Our auto merge mech-
anism can prevent this problem. In Xorbits, the configuration
file predefines a chunk size limit, which serves as an upper
bound for data chunk tiling. Initially, we may get a large
chunk graph with numerous small chunks, potentially causing
a substantial performance bottleneck. To keep the graph small
and simple, Xorbits merges chunks in the combine stage.
Given the metadata (in this case, the chunk size) collected from
the execution phase, Xorbits keeps concatenating data chunks
until the merged chunks reach the predefined size limit. This
process is illustrated in Figure 6 (b).

Deferred Evaluation. In contrast to lazy systems where
users are required to explicitly trigger execution, Xorbits
seamlessly merges both lazy and eager modes. We term this
approach “deferred evaluation,” signifying a delayed evalua-
tion until results are needed, without mandating users to trigger
computation. Since most single-node libraries only support



eager mode, this feature ensures that Xorbits is compatible
with those libraries and more user-friendly for exploratory
tasks within Jupyter Notebooks. In such environments, users
often rely on immediate feedback for their subsequent ac-
tions. The underlying technology for deferred evaluation is
straightforward, facilitated by Xorbits’ ability to seamlessly
transition between graph tiling and execution. We achieve this
by customizing the __repr__ method within our Tensor
and DataFrame classes, where programs will invoke the
execute function to activate the evaluation. When users
need to materialize the results, e.g., print, executions are
launched, but users are unaware of it. Alternatively, users have
the option to retrieve results without any delay by explicitly
invoking xorbits.run().

V. OPTIMIZATIONS AND IMPLEMENTATION HIGHLIGHTS

This section describes optimizations and key implementa-
tion highlights that underlie Xorbits’ high-performance and
scalable attributes.

A. Data Science Graph Optimization

When generating the chunk graph and the subtask graph,
Xorbits’ optimizer conducts a series of optimizations to
achieve better performance.

Graph-level Fusion. Xorbits introduces a graph-level fu-
sion algorithm based on coloring, to merge adjacent nodes.
A naive approach is to merge nodes straight in line, which
is insufficient in our data science scenario as many other
nodes are not involved in the fusion process. The graph-level
fusion algorithm, based on coloring, assigns distinctive colors
to each node in the chunk graph. Nodes sharing the same
color are candidates for merging into a subtask. This process is
illustrated in Figure 7, where the C label following numerical
values represent specific colors, as seen with ”C1” signifying
Color 1. The numbers within the circles serve to differentiate
between various operators; for instance, 1⃝ represents Operator
1. The coloring process consists of three main steps. In the
first step, initial nodes in the graph are assigned colors (C1 for
Operator 1⃝ and C2 for Operator 2⃝). In the second step, colors
are propagated based on the topological order. If a node has
multiple predecessors, and all of these predecessors share the
same color, the node inherits that color (e.g., C1 for Operator
3⃝). Otherwise, the node is assigned a new color (e.g., C3

for Operator 5⃝). The third step involves reverse topological
order propagation. In this step, each node is assessed alongside
its successors in the forward topological order. If all of a
node’s successors possess colors different from the node itself,
the node is skipped. However, if some successors share the
same color while others have different colors, new colors
are assigned to the successor nodes with the same color. For
example, in this step, the color of Operator 3⃝ is changed from
C1 to C6, and the color of Operator 7⃝ is changed from C2 to
C7. These new colors propagate to the respective successors,
such as C6 for Operator 4⃝. After these three steps, all the
nodes within the chunk graph are assigned a color label, and
nearby nodes that share the same color label are merged into a

subtask. The first two steps of the coloring algorithm identify
nodes that are in a straight line, while the third step tries to find
nodes that require separation. In this specific case, Operator 1⃝
should not be combined with either Operator 3⃝ or Operator
5⃝.

Subtask 3

Subtask 4

Subtask 5

Subtask 2

Subtask 1

Subtask 7

Subtask 6

C1

C2

C1 C1

C3

C2

C3

C4

C5

C6 C6

C7

1

3 4

8

9

65

7

2

Fig. 7: Coloring algorithm for graph-level fusion.

Operator-level Fusion. Operator-level fusion is carried out
after the completion of graph-level fusion. In this process,
we harness state-of-the-art operator fusion libraries, such as
numexpr [30] and JAX [28]. These packages achieve high
performance by combining multiple operators into a single
one, thereby preventing memory allocation for intermediate
results and minimizing memory access. Before execution,
Xorbits traverses the subtask graph, identifies operators suit-
able to fuse, substitutes these operators with a fused one,
and subsequently evaluates the computation with the fused
operator.

Column Pruning. Xorbits facilitates column pruning, akin
to predicate pushdown [33], [34], which removes unnecessary
data before it is loaded into memory or transmitted over the
network. Xorbits registers the required columns into every
operator when building the tileable graph. During the opti-
mization phase, Xorbits traverses backward from the data sink,
recording the columns needed for each operator.

B. Scheduling Data Science Subtasks
The purpose of graph optimization is to schedule subtasks

better. In Xorbits, a “band” is the basic unit for subtask
scheduling and execution. A band can be a NUMA (Non-
Uniform Memory Access) node or a GPU device. Every band
associated a hostname (or IP address) and a specific computing
device, namely a NUMA node or a GPU device. Every
subtask should be assigned to a particular band. We employ
a combination of breadth-first and locality-aware strategies to
guarantee that neighboring subtasks remain contiguous and to
enhance the overall scheduling efficiency.

Breadth-first. Xorbits first assigns the initial subtasks of the
computation graph with the breadth-first strategy. Breadth-first
means that Xorbits would find the initial subtasks that do not
have predecessors and try to assign more initial subtasks to one
worker. In Figure 7, Subtask 1 and Subtask 2 are the initial
nodes. Xorbits would first assign Subtask 1 to the first worker.
Subsequently, Xorbits continues to allocate new subtasks to
this worker until no bands remain available.

Locality-aware. To minimize the data transfer overhead of
the non-initial subtasks, Xorbits implements a locality-aware



strategy. This implies that successor subtasks should ideally
be scheduled on the same computing worker as their pre-
decessors, thus reducing data transfer overhead. As depicted
in Figure 7, it is far more efficient to assign Subtask 2 and
Subtask 5 to the same worker.
C. Storage Service of Intermediate Results

Even though CPU performance has increased dramatically
in recent years, the storage layer is often the bottleneck due
to storage devices’ latency. When developing Xorbits, we
find that the distributed storage service affects performance
and scalability when data size grows. Consequently, building
a distributed storage layer is of great importance. To meet
the performance requirements, we design a storage service to
hold the intermediate results of all the calculations (i.e., the
chunks produced by all the operators). Note that we here are
not discussing the persistent storage layer that holds the data
source or data sink.

Storage Backend. Xorbits presently provides multiple
storage backends (e.g., shared memory, mmap, cuda, Vine-
yard [25], Alluxio [32], etc.) that serve as the underlying
infrastructure for the storage service. The implementation of
the storage backend follows three key considerations. First, the
storage backend must utilize memory hierarchy. We define sev-
eral StorageLevels, including memory, GPU, disk, and re-
mote distributed filesystem. For example, the shared memory’s
StorageLevel is memory. Users can either only use main
memory, or combine main memory with disk and spill data
to disk when data is large. Moreover, if the intermediate data
is larger than the aggregated memory of a cluster, users can
switch to a remote filesystem like Alluxio. Second, we must
minimize data transfer. On each worker, Xorbits starts with
multiprocessing module, and the data transfer between
processes would introduce overhead. We adopt pickle5 [35]
to achieve zero-copy data access between processes. We also
add Vineyard support for data sharing between different data
systems, which can reduce (de)serialization overheads. Third,
the storage backend is a layer of abstraction that hides the
data access operations. Xorbits uses a unique ID (the key
highlighted in Figure 5) (b) for data indexing. Each storage
backend offers put and get methods, with key as one
parameter, to read and write data. In this way, each worker
can read and write data by indexing the key without knowing
where the data actually is.

Shuffling. Using the abstraction provided by the storage
service, Xorbits implements shuffling by writing data chunks
to the storage service. Each subtask is scheduled to a band,
and every data chunk has a distinct key. Xorbits maintains
a dictionary that tracks which band each data chunk is on.
Slightly different from non-shuffle data accesses, the shuffling
data needs to be sent to the specified bands. We also optimize
the shuffling by aggregating all the shuffling data together to
reduce data transfer overheads.

D. Auto Rechunk
When the underlying operator requires particular input sizes

and shapes, our auto rechunk mechanism automatically adapts

Algorithm 1 Auto Rechunk

1: function auto rechunk(shape, dim to size, itemsize,
config)

2: max chunk size← config.chunk limit
3: for i < len(shape) do
4: if i not in dim to size then
5: left dim to size[i]← empty list
6: left unsplit[i]← shape[i]

7: while True do
8: nbytes← all items in dim to size× itemsize
9: divided = max chunk size÷ nbytes

10: left dims← len(left dim to size)

11: cur size = max(divided
1

left dims , 1)
12: for j, ns in left dim to size do
13: unsplit← left unsplit[j]
14: ns← concat min(unsplit, cur size)
15: left unsplit[j]← left unsplit[j]− ns[−1]
16: if left unsplit[j] ≤ 0 then
17: dim to size[j]← ns
18: left dim to size[i]← empty list
19: if len(left dim to size) = 0 then break
20: return dim to size

chunk sizes to fulfill these requirements. This eliminates the
need for users to manually specify chunks or partitions,
thereby preserving the compatibility of Xorbits’ APIs with the
original single-node packages.

Array Auto Rechunk. For array operators like qr or svd,
Xorbits uses Algorithm 1 to choose the appropriate chunk
size automatically. shape represents the raw data size before
tiling. dim_to_size is a dictionary where the key is the
dimension, and the value is the chunk size we want to partition
on that dimension. {1 : 10000} indicates that there are 10,000
elements in the chunked data’ second dimension (index begins
with 0). itemsize is the number of bytes one array item oc-
cupies. The algorithm will return the right chunk size for each
dimension. Take the qr operator for example. Both Xorbits
and Dask adopt a MapReduce-based algorithm [29]. However,
before invoking the MapReduce-based QR algorithm, Xorbits
informs Algorithm 1 that the chunked matrices are tall-and-
skinny via the dim_to_size parameter. This prevents users
from manually selecting the appropriate chunk size. The auto
rechunk algorithm returns the ideal chunk size given the input
data shape. For instance, to adhere to the tall-and-skinny rule,
if the raw input shape of QR is (10000, 10000), Xorbits
specifies the dim_to_size with {1 : 10000}. The chunk
sizes determined by the auto rechunk algorithm are as follows:
(1677, 10000), (1677, 10000), ..., (1615, 10000).

VI. EVALUATION

In this section, we conduct experiments to evaluate the
performance of Xorbits with different workloads. Specifically,
we seek to answer the following questions:

1) What is the end-to-end performance of Xorbits com-
pared with other frameworks, and how well does Xorbits
scale data science workloads?



2) How much do our optimizations like dynamic tiling and
graph fusion accelerate execution?

3) How well can Xorbit cover APIs and use cases of single-
node libraries?

A. Experiment Setup

The experiments have been carried out on the AWS r6i
instance family. We start the supervisor of Xorbits (or the
corresponding component of Spark, Dask, and Ray) on a
r6i.large instance. All the workers are run on 16 r6i.8xlarge
instances. Each of these instances has 32 vCPUs and 256GB
memory. Different experiments use a subset of these instances
or all of them.

Benchmarks. We choose three distinct kinds of workloads:
data science pipelines, ad-hoc queries, and array computing.
Table III shows the overview of all the workloads we use to
benchmark different systems. For data science pipelines, we
concentrate on the data preprocessing and feature engineering
phases, which are common scenarios for pandas and NumPy.
We opt for a data science workload from TPCx-AI [16], an
industry standard, as well as those from Kaggle competitions
(census and plasticc) that reflect real-world pipelines. TPCx-
AI benchmark comprises 10 use cases. We focus on use case
(UC) 10 because other cases are too simple or complicated and
require additional libraries. For evaluating decision-making
and analytical processing performance, we use TPC-H [17].
All 22 SQL queries are rewritten using the pandas API,
with an emphasis on large datasets of SF100 and SF1000.
The array benchmark covers scientific computing workloads
like linear regression (LR) and QR decomposition. These
workloads span various scenarios, including DS preprocessing,
machine learning (ML), and analytic processing (AP). In
Table III, we also show the number of workers we use when
benchmarking different systems. We believe these workloads
can effectively evaluate the scalability and compatibility of our
Xorbits system. We run each workload seven times, excluding
the maximum and minimum values, to obtain the average
value.

TABLE III: Workloads to benchmark different systems.

Workload Size Format Workers W/ IO Type
TPCx-AI

UC10 SF100 34GB CSV 2 True DS, ML

census 21GB CSV 1 True DS, ML
plasticc 20GB CSV 1 True DS, ML
TPC-H
SF100 36GB Parquet 4 False AP

TPC-H
SF1000 358GB Parquet 16 False AP

QR Scale Synthetic 1-4 True DS
Linear

Regression Scale Synthetic 1-4 True DS, ML

API Coverage. In addition to these performance bench-
marks, we add an API coverage benchmark to evaluate the
compatibility of different systems. Most systems target the
pandas’ APIs, so we select 30 test cases from the airspeed
velocity (asv) benchmark code of the pandas’ GitHub reposi-
tory. we primarily focus on groupby, merge, and pivot,

because the statistics from the dataset [1], which collected
four million DS notebooks, indicate that these operators are
the most popular ones.

Baselines. We compare Xorbits with pandas [4], pandas
API on Spark [8], Dask [9] DataFrame, and Modin [12] on
Ray [10] for workloads related to dataframes. We compare
Xorbits with Dask Array for the workloads based on arrays.
We use the default configuration without any tuning or perfor-
mance optimization for all of these systems. Table IV shows
all the frameworks and their versions we use. In the table, A
denotes array, and D is short for dataframe.

TABLE IV: Other data science frameworks used for baselines.

NumPy pandas Xorbits PySpark Dask Modin
version 1.26 2.1.1 0.6.3 3.5.0 2023.9 0.24.1

API A D A + D D A + D D

B. DataFrame Performance

Data Science Pipeline. Figure 8 (a) shows the performance
of data science pipelines. Overall, Xorbits outperforms the
optimal baseline in each workload. These DS pipelines mainly
contain operators like data filtering, missing data handling,
and aggregated calculation for features. These operators are
quite common, and all these frameworks can support them.
The TPCx-AI UC10-SF100 includes a customer file of 3.2MB
and a financial transaction file of 34GB, which is much larger
than the previous one. The pipeline joins the two imbalanced
files based on customer IDs via the merge operator. There
is a severe issue of data imbalance here. Both Dask and
Modin cannot handle it well, and Xorbits is 29× and 37×
faster than the two frameworks because they partition the
task graph without knowing the actual data size. We observe
the workers’ CPU utilization; in this case, Dask and Modin
can only utilize one CPU core, making the rest of the cores
idle. This case illustrates that in scenarios involving data
skew, simply partitioning the data during graph construction is
insufficient. This is where our dynamic tiling approach excels,
as our approach tiles the first chunks of the data, realizes that
there is a data-skewing issue, and adjusts our computation
graph accordingly.

The census and the plasticc datasets can fit into the memory
of a single machine in our experimental environment. There-
fore, these two workloads show how these frameworks scale
on a single machine to utilize all the CPU cores. Pandas is the
slowest because it can run on only a single thread. Xorbits is
2.65× faster than Modin, which is the fastest on the census
pipeline, and is 3.86× faster than PySpark on the plasticc
pipeline.

Ad-hoc Query. Figure 8 (b) demonstrates the performance
of the ad-hoc queries on large datasets with the TPC-H
benchmark, with Xorbits standing out as the most compatible
and fastest. We use two scale factors of TPC-H (SF100
and SF1000) to evaluate Xorbits’ performance in analytic
processing and to assess how our framework scales across
nodes when dealing with large datasets. Table I and Table II
provide clear evidence that many other systems frequently
face challenges related to scalability and API compatibility.



TPCx-AI UC10 census plasticc
Workload

0
100

101

102

103

Ti
m

e 
(s

)

X

Data Science Pipeline
Xorbits
PySpark
Dask

Modin
pandas

(a) Data Science Pipeline.

SF100 SF1000
Scale Factor

0

1

2

3

4

5

6

7

Re
lat

ive
 T

im
e

X

Ad-hoc Query
Xorbits
PySpark
Dask
Modin

(b) Ad-hoc Query.

1S 2S 4S 6S 8S
Size

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Th
ro

ug
hp

ut

1e5 LR
Dask
Xorbits

(c) Linear Regression.

1S2S 4S 6S 8S
Size

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Th
ro

ug
hp

ut

1e6 QR
Dask
Xorbits

(d) QR.

Fig. 8: End-to-end performance on different data science workloads.

For instance, three PySpark queries fail to run correctly when
using code migrated from pandas, while Dask, PySpark, and
Modin all encounter Out-Of-Memory (OOM) issues.

The TPC-H benchmark is designed primarily to evalu-
ate different SQL systems. It is more complex than typical
data science workloads due to intensive operators, such as
groupby.agg and merge. Internally, Xorbits, Dask, and
Modin use pandas as the execution backend to distribute tasks
to multiple nodes. PySpark, on the other hand, translates
pandas-like code into Spark’s logical and physical plans. Using
the TPC-H benchmark to evaluate our system is fundamentally
unfair, as pandas has no performance advantage over SQL-
based systems. Despite pandas-based systems having limi-
tations in SQL queries, Xorbits still outperforms PySpark.
Since not all of these baselines can successfully execute all
22 queries, we exclude the unsuccessful ones and calculate
the overall relative time compared to Xorbits. We tried hard
to execute Modin on Ray with SF1000, but the Ray workers
are often dead because of memory overflows and disk space
shortages.

C. Array Performance
We perform a weak-scaling test to evaluate how Xorbits

scales array workloads. We adjust the input size of each test
case as computational resources expand, maintaining a con-
sistent per-socket problem size. We use the linear regression
and QR workloads: the linear regression is a classical ML
workload, and the QR decomposition is a typical scientific
computing operator upon which SVD can be constructed.
Figure 8 (c) and (d) show the throughput, which is calculated
via the problem size divided by time. Xorbits far surpasses
Dask on both of the two workloads. First, on average, Xorbits
outperforms Dask by factors of 5.88 and 1.74 on the two
workloads. Second, when we raise the computing resources
from one CPU socket to two, both workloads show a per-
formance improvement. Because our machines have 2 CPU
sockets, Xorbits can effectively schedule subtasks according
to the NUMA sockets available and utilize the memory access
patterns. Third, Xorbits shows higher throughput on the linear
regression workloads as we increase the computing resources.

Thus, Xorbits is a promising backend for a scalable ML toolkit
because array APIs can also implement other ML algorithms.
Fourth, Both Xorbits and Dask employ NumPy’s qr as the
backend, and the same MapReduce algorithm [36] when
implementing the distributed version of QR. Xorbits’ auto
rechunk mechanism not only partitions data more efficiently
but also avoids manually rechunk operations.

D. Ablation Study on Dynamic Tiling and Graph Optimization

We evaluate the potential for dynamic tiling and graph
fusion to boost applications. For this purpose, we choose
some TPC-H queries and alternately enable and disable these
optimizations. The outcomes of these tests are illustrated in
Figure 9.

Dynamic Tiling. Dynamic tiling can significantly speed up
DS workloads, as depicted in Figure 9 (a) (“dy” denotes dy-
namic tiling). It is by default enabled in Xorbits for operations
like merge and groupby.agg. In our experiments, Q2 has
four merge operations, and Q7 has nine. When dynamic tiling
is enabled, it yields 7.08× and 10.59× speed enhancement
over its disabled state for these two queries, respectively. This
outcome underscores the effectiveness of dynamic tiling.

Graph Optimization. Graph optimization, particularly the
coloring-based graph-level fusion (“g” in Figure 9 (b)), plays
a crucial role in enhancing performance. When the coloring-
based graph-level fusion is activated, it results in a 3.80×
and 2.04× acceleration in speed for Q7 and Q8, respectively,
compared to when it is disabled. Operator-level fusion (“o”
in Figure 9 (b)) is also preferred, as it can provide a 16%
improvement.

E. API Coverage

Table V displays the coverage rate in the API coverage
benchmark. Xorbits and Modin demonstrate superior com-
patibility with the original library, while Dask and PySpark
encounter difficulties during code porting. In particular, the
merge operators of Dask and PySpark do not support the
sorting of join keys in the resulting dataframe. PySpark faces
challenges with its aggregation functions; for instance, it is
not user-friendly for user-defined aggregation functions, and



Q2-SF1000 Q7-SF100
Query

0

200

400

600
Ti

m
e 

(s
)

w/ dy
wo dy

(a) Dynamic Tiling.

Q7-SF100 Q8-SF100
Query

0

50

100

150

Ti
m

e 
(s

)

w/ g + w/ o
wo o
wo g

(b) Graph Fusion.

Fig. 9: Ablation study of dynamic tiling and graph fusion.
“dy” means dynamic tiling, “g” stands for graph-level fusion,
and “o” is for operator-level fusion.

does not support NamedAgg, which is the helper for column
specific aggregation with control over output column names.
PySpark also offers a SQL-based interface [37], which differs
from conventional dataframe APIs. Online documentation and
tutorials often mix SQL-based and pandas-based content,
which increases the learning cost for users. We believe this
coverage benchmark can, to some extent, show the poten-
tial challenges users may encounter when transitioning from
single-node libraries to these frameworks.

TABLE V: Coverage rate. Higher values are better.

Xorbits Modin Dask PySpark
coverage rate 96.7% 96.7% 46.7% 36.7%

F. Results and Findings

Among all the baseline frameworks, Xorbits stands out
as the most scalable, high-performance, and compatible. It
outperforms all other frameworks in data science, analysis
and array workloads. While PySpark exhibits competitive
performance, it encounters compatibility challenges. Users
frequently have to rewrite their existing single-node code
to accomplish specific tasks, posing a substantial burden.
Despite Modin’s compatibility with pandas, it can only handle
a moderate volume of data. Modin’s lack of support for
array operations restricts its capability for distributed ML
tasks. Dask, meanwhile, wrestles with both performance and
compatibility issues.

VII. RELATED WORK

There is a strong need to scale data science workloads
horizontally [38], [39], and numerous systems have attempted
to do so by providing similar APIs of popular libraries of
pandas [4], [41] and NumPy [5].

Apache Spark [8], a popular big data engine, provides a
Python interface called PySpark, enabling users to perform
dataframe analysis on large datasets. However, PySpark users
often encounter challenges related to API compatibility and
are compelled to employ workarounds when migrating their
code from pandas [13], [18]. While Spark provides an SQL
optimization technique known as Adaptive Query Execution
(AQE) that leverages runtime statistics for the selection of

the execution plan [42], [43], its performance on the PySpark
DataFrame API appears to be insufficient. Spark runs on JVM,
and JVM has limitations when integrating with the Python or
C/C++ ecosystems and using GPU accelerators. PySpark lacks
array APIs and is less interoperable than other Python-native
libraries. Dask [9] is another widely used Python library for
parallel and distributed computing. At the low level, Dask
designs a tasking mechanism. At the high level, it offers
distributed arrays and dataframes. Dask’s APIs are similar to
those of NumPy and pandas, but Dask requires the explicit
specification of chunks and partitions. Modin [2] claims to be a
scalable and drop-in replacement for pandas. It formalizes the
dataframe algebra and outlines a set of decomposition rules.
However, our empirical study shows that it cannot handle data
skewing and fails on large datasets. Although it claims it
can support array computing, it currently lacks NumPy-like
APIs. Ray [10] and mpi4py [11] serve as general-purpose
parallel computing engines, necessitating users to re-develop
their single-node code entirely.

Legate primarily concentrates on array computing. It is
implemented with a runtime called Legion [44] and offers
a limited set of APIs compared to NumPy. JAX, on the
other hand, provides interfaces similar to NumPy and utilizes
XLA [45] as its execution backend. While JAX, PyTorch [21],
and TensorFlow [46] have gained widespread acceptance for
deep learning training and inference, they may not be as well-
suited for data science preprocessing.

Auto-Suggest [1] conducted research into the behavior of
data scientists, collecting millions of data science notebooks. It
subsequently introduced an automated method for generating
data preparation code. MagicPush [34] implemented predicate
pushdown techniques for data science pipelines.

VIII. CONCLUSION

Data scientists frequently perform various tasks on increas-
ing volumes of data, typically employing tools like pandas and
NumPy. It is of great significance to extend pandas and NumPy
to adapt to modern hardwares. Existing distributed frameworks
suffer from scalability and usability issues. They do not
partition big data well by constructing the computation graph
only before execution. Xorbits can scale well while providing
compatible interfaces by designing three types of computation
graphs and introducing a novel dynamic tiling approach.
Xorbits’ dynamic tiling can switch between graph building
and graph execution and thus can tile data automatically
by leveraging the execution metadata. Extensive experiments
demonstrate that Xorbits significantly outperforms the state-
of-the-art frameworks on various data science workloads.

ACKNOWLEDGMENT

This work is partly funded by the China National Science
Foundation (Grant No.62272466 and No.62322213). We thank
AWS and PCC@RUC for providing computing resources. We
also thank all the contributors of Xorbits and Mars.



REFERENCES

[1] C. Yan and Y. He, “Auto-Suggest: Learning-to-Recommend Data Prepa-
ration Steps Using Data Science Notebooks,” in Proceedings of the 2020
International Conference on Management of Data (SIGMOD 2020),
Portland, OR, USA: ACM, 2020, pp. 1539–1554.

[2] D. Petersohn, S. Macke, D. Xin, W. Ma, D. Lee, X. Mo, et al., “Towards
scalable dataframe systems,” Proceedings of the VLDB Endowment. vol.
13, no. 12, pp. 2033–2046, 2020.

[3] F. Zhang, J. Zhai, et al., “POCLib: A high-performance framework for
enabling near orthogonal processing on compression,” IEEE transactions
on Parallel and Distributed Systems, vol. 33, no 2, pp. 459-475, 2022.

[4] W. McKinney, “Data structures for statistical computing in python,” in
Proceedings of the 9th python in science conference 2010 (SciPy 2010),
Austin, USA, 2010, pp. 56–61

[5] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen,
D. Cournapeau, et al., “Array programming with NumPy,” Nature, vol.
585, no. 7825, pp. 357–362, Sep 2020

[6] “2023 Developer Survey” https://survey.stackoverflow.co/2023/ (ac-
cessed Sep. 28, 2023).

[7] “GlobalInterpreterLock - Python Wiki.” https://wiki.python.org/moin/
GlobalInterpreterLock (accessed Jun. 26, 2023).

[8] M. Zaharia, R. S. Xin, P. Wendell, T. Das, M. Armbrust, A. Dave, et
al., “Apache spark: a unified engine for big data processing,” Commu-
nications of the ACM, vol. 59, no. 11, pp. 56–65, 2016.

[9] M. Rocklin, “Dask: Parallel Computation with Blocked algorithms
and Task Scheduling,” presented at the Python in Science Conference,
Austin, TX, USA, 2015, pp. 126–132.

[10] P. Moritz, R. Nishihara, S. Wang, A. Tumanov, R. Liaw, E. Liang,
et al., “Ray: A distributed framework for emerging AI applications,”
in Proceedings of the 13th USENIX conference on operating systems
design and implementation (OSDI 2018), Carlsbad, CA, USA: USENIX
Association, 2018, pp. 561–577.

[11] L. Dalcı́n, R. Paz, and M. Storti, “MPI for python,” Journal of Parallel
and Distributed Computing, vol. 65, no. 9, pp. 1108–1115, 2005.

[12] D. Petersohn, D. Tang, R. Durrani, A. Melik-Adamyan, J. E. Gonzalez,
A. D. Joseph, and A. G. Parameswaran, “Flexible rule-based decomposi-
tion and metadata independence in modin: a parallel dataframe system,”
Proceedings of the VLDB Endowment, vol. 15, no. 3, pp. 739–751, Nov.
2021.

[13] “From/to pandas and PySpark DataFrames” https://spark.apache.org/
docs/3.5.0/api/python/user guide/pandas on spark/pandas on spark/
pandas pyspark.html (accessed Aug. 26, 2023).

[14] “Dask DataFrames Best Practices” https://docs.dask.org/en/stable/
dataframe-best-practices.html (accessed Sep. 26, 2023).

[15] ”Mars” https://github.com/mars-project/mars (accessed Oct. 21, 2023).
[16] C. Brücke, P. Härtling, R. D. E. Palacios, H. Patel, and T. Rabl, “TPCx-

AI - an industry standard benchmark for artificial intelligence and
machine learning systems,” Proceedings of the VLDB Endowment, vol.
16, no. 12, pp. 3649–3661, 2023.

[17] P. Boncz, T. Neumann, and O. Erling, “TPC-H analyzed: Hidden
messages and lessons learned from an influential benchmark,” in Perfor-
mance characterization and benchmarking, Cham: Springer International
Publishing, 2014, pp. 61–76.

[18] “Best Practices” https://spark.apache.org/docs/3.5.0/api/python/user
guide/pandas on spark/best practices.html (accessed Aug. 26, 2023).

[19] “Best Practices” https://docs.dask.org/en/stable/array-best-practices.html
(accessed Sep. 26, 2023).

[20] “Choosing good chunk sizes in Dask” https://blog.dask.org/2021/11/02/
choosing-dask-chunk-sizes (accessed Aug. 31, 2023).

[21] A. Paszke et al., “PyTorch: An Imperative Style, High-Performance
Deep Learning Library,” in Advances in Neural Information Processing
Systems, Curran Associates, Inc., 2019. Accessed: Jul. 08, 2022.

[22] ”Datasets” https://github.com/huggingface/datasets (accessed Oct. 21,
2023).

[23] T. Chen and C. Guestrin, “XGBoost: A Scalable Tree Boosting System,”
in Proceedings of the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, San Francisco, CA, USA,

August 13-17, 2016, B. Krishnapuram, M. Shah, A. J. Smola, C. C.
Aggarwal, D. Shen, and R. Rastogi, Eds., ACM, 2016, pp. 785–794.

[24] F. Pedregosa et al., “Scikit-learn: Machine learning in python,” Journal
of Machine Learning Research, vol. 12, no. 85, pp. 2825–2830, 2011.

[25] W. Yu et al., “Vineyard: Optimizing data sharing in data-intensive
analytics,” Proceedings of the ACM on Management of Data, vol. 1,
no. 2, Jun. 2023.

[26] “CuPy,” CuPy. https://cupy.dev/ (accessed Jun. 26, 2023).
[27] “RAPIDS — GPU Accelerated Data Science.” https://rapids.ai/ (ac-

cessed Jun. 26, 2023).
[28] J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary, D.

Maclaurin, et al., “JAX: composable transformations of Python+NumPy
programs.” 2018.

[29] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing
on large clusters,” in Sixth symposium on operating system design
and implementation (OSDI 2004), San Francisco, CA, USA, 2004, pp.
137–150.

[30] R. McLeod, F. Alted, A. Valentino, G. de Menten, M. Wiebe, cgohlke,
et al., “pydata/numexpr: NumExpr v2.6.9.” Zenodo, Dec. 2018.

[31] “multiprocessing.shared memory — Shared memory for direct ac-
cess across processes” https://docs.python.org/3/library/multiprocessing.
shared memory.html (accessed Aug. 31, 2023).

[32] H. Li, A. Ghodsi, M. Zaharia, S. Shenker, and I. Stoica, “Tachyon:
Reliable, memory speed storage for cluster computing frameworks,” in
Proceedings of the ACM symposium on cloud computing (SOCC 14),
New York, USA: ACM, 2014, pp. 1–15.

[33] J. D. Ullman, Principles of database and knowledge-base systems:
Volume II: The new technologies. USA: W. H. Freeman & Co., 1990.

[34] C. Yan, Y. Lin, and Y. He, “Predicate pushdown for data science
pipelines,” Proceedings of the ACM on Management of Data, vol. 1,
no. 2, 2023.

[35] “PEP 574 – Pickle protocol 5 with out-of-band data” https://peps.python.
org/pep-0574/ (accessed Aug. 31, 2023).

[36] A. R. Benson, D. F. Gleich, and J. Demmel, “Direct QR factorizations
for tall-and-skinny matrices in MapReduce architectures,” in 2013 IEEE
international conference on big data, Los Alamitos, CA, USA: IEEE,
Oct. 2013, pp. 264–272

[37] “Spark SQL” https://spark.apache.org/docs/3.5.0/api/python/reference/
pyspark.sql/index.html (accessed Oct. 21, 2023).

[38] G. E. Gévay, T. Rabl, S. Breß, L. Madai-Tahy, J.-A. Quiané-Ruiz, and
V. Markl, “Efficient control flow in dataflow systems: When ease-of-use
meets high performance,” in 37th IEEE international conference on data
engineering (ICDE 2021), chania, greece: IEEE, 2021, pp. 1428–1439.

[39] S Xue, S Zhao, et al, “Kronos: towards bus contention-aware job
scheduling in warehouse scale computers,” Frontiers of Computer Sci-
ence, vol. 17, no. 1, pp. 171101, 2023.

[40] M. Bauer and M. Garland, “Legate NumPy: accelerated and distributed
array computing,” in Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis (SC
2019), Denver, USA: ACM, 2019, pp. 1–23.

[41] W. McKinney, “pandas: a foundational Python library for data analysis
and statistics,” Python for high performance and scientific computing,
vol. 14, no. 9, pp. 1–9, 2011.

[42] “Adaptive Query Execution” https://spark.apache.org/docs/3.5.0/
sql-performance-tuning.html#adaptive-query-execution (accessed Dec.
29, 2023).

[43] M. Olma, M. Karpathiotakis, I. Alagiannis, M. Athanassoulis, and
A. Ailamaki, “Adaptive partitioning and indexing for in situ query
processing,” The VLDB Journal, vol. 29, no. 1, pp. 569–591, 2020.

[44] M. Bauer, S. Treichler, E. Slaughter, and A. Aiken, “Legion: Expressing
locality and independence with logical regions,” in Proceedings of the
international conference on high performance computing, networking,
storage and analysis (SC 2012), Washington, DC, USA: IEEE, 2012.

[45] A. Sabne, “XLA: Compiling machine learning for peak performance.”
2020.

[46] M. Abadi et al., “TensorFlow: A system for large-scale machine learn-
ing,” in Proceedings of the 12th USENIX conference on operating
systems design and implementation (OSDI 2016), Savannah, GA, USA:
USENIX Association, 2016, pp. 265–283.

https://survey.stackoverflow.co/2023/
https://wiki.python.org/moin/GlobalInterpreterLock
https://wiki.python.org/moin/GlobalInterpreterLock
https://spark.apache.org/docs/3.5.0/api/python/user_guide/pandas_on_spark/pandas_on_spark/pandas_pyspark.html
https://spark.apache.org/docs/3.5.0/api/python/user_guide/pandas_on_spark/pandas_on_spark/pandas_pyspark.html
https://spark.apache.org/docs/3.5.0/api/python/user_guide/pandas_on_spark/pandas_on_spark/pandas_pyspark.html
https://docs.dask.org/en/stable/dataframe-best-practices.html
https://docs.dask.org/en/stable/dataframe-best-practices.html
https://github.com/mars-project/mars
https://spark.apache.org/docs/3.5.0/api/python/user_guide/pandas_on_spark/best_practices.html
https://spark.apache.org/docs/3.5.0/api/python/user_guide/pandas_on_spark/best_practices.html
https://docs.dask.org/en/stable/array-best-practices.html
https://blog.dask.org/2021/11/02/choosing-dask-chunk-sizes
https://blog.dask.org/2021/11/02/choosing-dask-chunk-sizes
https://github.com/huggingface/datasets
https://rapids.ai/
https://docs.python.org/3/library/multiprocessing.shared_memory.html
https://docs.python.org/3/library/multiprocessing.shared_memory.html
https://peps.python.org/pep-0574/
https://peps.python.org/pep-0574/
https://spark.apache.org/docs/3.5.0/api/python/reference/pyspark.sql/index.html
https://spark.apache.org/docs/3.5.0/api/python/reference/pyspark.sql/index.html
https://spark.apache.org/docs/3.5.0/sql-performance-tuning.html#adaptive-query-execution
https://spark.apache.org/docs/3.5.0/sql-performance-tuning.html#adaptive-query-execution

	Introduction
	Background And Motivation
	Background
	Observation
	Key Objectives

	The Xorbits System
	Overview
	User Interface & Application Scenarios
	Computation Graph

	Dynamic Tiling
	Necessity of Dynamic Tiling
	Dynamic Tiling
	Use Cases for Dynamic Tiling

	Optimizations and Implementation Highlights
	Data Science Graph Optimization
	Scheduling Data Science Subtasks
	Storage Service of Intermediate Results
	Auto Rechunk

	Evaluation
	Experiment Setup
	DataFrame Performance
	Array Performance
	Ablation Study on Dynamic Tiling and Graph Optimization
	API Coverage
	Results and Findings

	Related Work
	Conclusion
	References

