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Abstract

This paper presents a new algorithm for fusioning im-

ages of text-documents taken with different exposures. It is

compared to several standard block oriented exposure- and

focus-blending-algorithms. The recognition rate of a pub-

licly available OCR-engine is used as a benchmark to quan-

tify the results. Experiments show in average an improve-

ment in the recognition rate from 0.46 to 0.64 by employing

exposure blending as preprocessing step to an OCR. The

presented algorithm of blending high-pass filtered images

instead of original images further increases the recognition

rate to 0.95.

1. Introduction

With current off-the-shelf cameras, there are often situa-

tions, where no single exposure time enables one to capture

the whole intensity range as exemplified in figure 1.

Figure 1. Camera cannot capture the full
range of intensities resulting in regions with

under- and overexposure

Parts of the image can be underexposed, while others

are overexposed at the same time. One common approach

is take several images of the same scene with various ex-

posures by varying shutter speed or aperture, and com-

bine them to a single High-Dynamic-Range-Image (HDR-

Image), later tone-mapping can applied to create a standard

image.

However, this requires constant illumination and knowl-

edge of the inverse camera intensity function, which has to

be calibrated.

A more simple approach is the direct blending of multi-

exposure images according to a blend function. Previ-

ous publications evaluated their results with either natural

scenes or buildings and focused on achieving a visually ap-

pealing result. Contrary to natural scenes, documents are

mostly black-and-white, and have large blank areas. This

could be a challenge for previous solutions. Also, further

document processing does not require the representation of

the whole range of intensities in the image, but rather the

whole local contrast for better readability.

In the following chapter, we present several published

methods of block-wise exposure blending. We then pro-

pose a new approach based on the blending of high-passed

filters according to the intensities of the edges. The algo-

rithms are evaluated in this new problem domain. Instead

of relying on the reader to evaluate the results aesthetically,

we quantify the results by determining the recognition rate

of the publicly available OCR-system Tesseract. The pro-

posed pre-processing step results in a significantly higher

recognition rate.

2. Related Work

Exposure blending or exposure fusion are often used syn-

onyms for the creation of DRI-images [11]. Usually a

weighted mean of either intensities [8] or CIELAB colours

[4] are used. The weight can be determined by either radial

basis function [4] or a power function of contrast, saturation

and well-exposedness.



Do we consider the creation of a high-contrast image as

a problem of image-composition, then we not only can im-

prove on exposure, but also on sharpness and the depth of

field [7, 5].

A common approach is dividing the images Ij , j =
1...N in d × d blocks and evaluating each block accord-

ing to some quality measure. A survey of several quality

measures used for multi-focus image fusion is given in [6].

From all blocks covering the same area, one selects the

block, which has the best result according to the quality

measure. The resulting image would introduce discontinu-

ities between the blocks, therefore a continuous blending

function is required.

Goshtasby [4] employs rational Gaussian surfaces:

wi(x, y) =
Gi(x, y)

∑M

j=1 Gj(x, y)
,

Gi(x, y) = e−
(x−xi)

2+(y−yi)
2

2σ2

where (xi, yi) is the centre of the ith-block of a total of

M blocks, and σ the width of the blending function.

The final composition H can be written as the weighted

sum over the selected blocks:

H(x, y) =
M
∑

i=1

wi(x, y)Iki
(x, y),

where ki is the index of the image with the highest qual-

ity in the ith-block.

The parameters d and σ are determined by maximising

the result of the quality measure for the whole composed

image, as it has been proposed by Goshtasby [4].

2.1. Variance

A simple quality measure is the variance of intensities in

the block B:

V(I, B) =
∑

(x,y)∈B

(I(x, y) − µ)
2
,

µ(I, B) =
1

|B|

∑

(x,y)∈B

(I(x, y) − µ)
2

A higher variance suggests a wider range of intensities,

indicating a better exposed image, but may also imply more

noise.

2.2. Entropy

Goshtasby proposed to use the entropy of a region of an

image as a measure to identify the part, which contains the

most information [4]. The entropy of a block B is deter-

mined by

E(I, B) =

255
∑

j=0

−pj(I,B) log(pj(I, B)),

where pj(I, B) is the relative frequency of the intensity

value j in the block B in image I .

2.3. Spatial Frequency

Eskicioglu et al published a quality measure called

spatial-frequency, also known as energy of gradient [3]:

SF(I, B) =
∑

(x,y)∈B (I(x, y) − I(x − 1, y))
2

+ (I(x, y) − I(x, y − 1))
2

2.4. Energy of Laplacian

Energy of Laplacian is simply the squared squared mag-

nitude of the Laplacian. This is another measure for the

power in the high frequency spectrum. We use the form as

given in [6] and summarise the values over the block B:

EOL(I, B) =
∑

(x,y)∈B

L(I)(x, y)

with

L(I) =





−1 −4 −1
−4 20 −4
−1 −4 −1



 ∗ I

where (∗) stands for the convolution operator.

2.5. Sum of Modified Laplacian

Nayar et al [9] noted, that the x- and y-components of the

Laplacian can have opposite signs, resulting in a low mag-

nitude, despite a large gradient. To alleviate this problem,

Nayar et al are proposing a modified Laplacian

ML(I, x, y) =|2I(x, y) − I(x − δ, y) − I(x + δ, y)|

+ |2I(x, y) − I(x, y − δ) − I(x, y + δ)|,

where δ can be chosen according to the properties of the

image. In our case, we followed [6] in selecting δ = 1.

The sum over the modified Laplacian of the whole

image-block yields the quality measure:

SML(I, B) =
∑

(x,y)∈B

ML(I, x, y),

for ML(I, x, y) ≥ T

2



3. Pixel-wise Exposure Blending

The rather arbitrary division in d×d axis-aligned blocks

seems inflexible, as a casted shadow, or the cone of a

spot light will seldom follow such a pattern. Therefore a

pixel-based approach seems worthwhile.

We suggest a simple extension of the block-oriented

approaches above: Instead of dividing the image in non-

overlapping blocks, one defines a window of d × d around

a pixel and determines its quality.

3.1. Pixel-based Entropy

Similar to the original entropy-based method, one could

simply select the pixel with the highest entropy

H[Max](x, y) = arg max
j

(E(Ij , Bd(x, y))),

where Bd(x, y) is a d × d block around (x, y).
As one expects from a discrete selection, the decision

boundaries will become visible and produce visual arte-

facts.

To avoid such discontinuities, a more gradual selection

seems prudent. Since entropy is by definition non-negative,

and, due to the overlapping nature of the d × d windows,

rather continuous, it seems prudent to define the resulting

pixel as the weighted mean of the original pixels at the same

position, weighted according to their respective entropy:

H[Pix](x, y) =

N
∑

j=1

wj(x, y)Ij(x, y),

wj(x, y) =
E(Ij , Bd(x, y))

∑N

k=1 E(Ik, Bd(x, y))

One has to consider, that the entropy in all images may

be zero. This happens, when all pixel in a window have the

same intensity, in which case the blended pixel assumes that

value.

3.2. Continuous Edge Intensity

Another quality measure isthe local edge intensity L in

the image I. By folding a Gaussian kernel G with the im-

age I and then subtracting this smoothed image from the

original image, we obtain the edge intensity image:

L = max (0, I − G ∗ I)

We limit the values to non-negative values. The spectrum

of edge intensities depends on the width of the Gaussian

kernel σ.

One can identify fore- and background of the image by

the signum of L. This method was also successful used to

binarise document images [2].

As we are not interested in the absolute intensities as

much as the local contrast, we blend the filtered images

Lj , j = 1...N by calculating for each pixel the weighted-

average of the local edge intensities

H[Cont](x, y) =

N
∑

j=1

wj(x, y)Lj(x, y),

wj(x, y) =
Lj(x, y)

∑N

k=1 Lk(x, y)
,

which can be summarised to:

H[Cont](x, y) =

∑N

j=1 L2
j (x, y)

∑N

k=1 Lk(x, y)

4. Experiments and Results

The hardware was a QuickCam Pro 9000 from Logitech,

which was fixed to the table, thereby minimising eventual

displacement. While such a setup does not reflect real world

situations, the problem of aligning of multi-exposure im-

ages can be considered as an independent one and has to be

solved and evaluated separately.

The camera provides a native resolution of 2-mega-

pixels. For the experiments, 40 different documents with

known content with various typefaces and font-sizes were

photographed with 3 different shutter times (example see

figure 2). Surrounding lights were positioned to provide for

different illumination situations for each document. Day-

light provided another light-source, increasing the light

spectrum even further.

Figure 2. Three 2-mega-pixel images with dif-

ferent exposures. Left image: Top-right and

lower-left is underexposed. Right image:
Central-right part is overexposed

For each of the 40 sets, the presented methods were

used to generate a resulting fused image, which was run

through the OCR-system Tesseract Version 2.03 [1]. The

accuracy of the recognition was determined according to the

Needleman-Wunsch-algorithm [10].
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As can be seen in figure 3, even when the source image

with the best recognition rate is selected, we only achieve

an accuracy of 0.47 in average, confirming the need for

image fusion techniques. All the presented block-based

approaches provide an improvement and, except for the

variance-based 0.56, even a significant one over a single-

exposure image. For further reference, the numerical values

are shown in figure 1.

Entropy (0.64), spatial-frequency (0.63), energy-of-

laplacian (0.62) and sum-modified-laplacian (0.64) do not

differ significantly. Still, the entropy seem to provide the

best results among those four quality measures. Simply ap-

plying this method on a per-pixel basis does not yield bet-

ter results (0.51). On the contrary, it is even bested by the

worst block-based solution, as the method introduces new

artefacts in the resulting image. By high-pass filtering the

images, we decrease the differences in intensity between the

various exposures. This reduces the artefacts introduced by

pixel-wise blending.

Simply blending those high-pass filtered images in-

stead of the original ones according to edge-intensities, we

achieve a recognition rate of 0.95. The result is not only

significantly better, but even at its worst with 0.92, it still

excels the best result of the runner-up (entropy with 0.86).

Figure 3. Box-and-whiskers plot of the bench-

mark results of the various implemented al-

gorithms

5. Conclusion and Future Work

We shown that standard exposure blending can be used

for document-fusion and introduced OCR-recognition rate

as a benchmark for this certain application. In context of

this benchmark, we improved on existing algorithms. In

order to eliminate the influence of the recognition algorithm

and preprocessing steps implemented in the chosen OCR-

system, we intend to expand the benchmark to other OCRs.

Other blending- and fusion-algorithms stand to be evaluated

in this new context of document fusion.

Table 1. Numerical results of the various im-

plemented algorithms in the new benchmark

Method Min 1st Q Avg 3rd Q Max

Best Source 0.24 0.39 0.47 0.55 0.70

Variance 0.41 0.48 0.56 0.63 0.84

EOL 0.42 0.55 0.62 0.69 0.81

Spatial Freq. 0.43 0.57 0.63 0.69 0.82

SML 0.45 0.58 0.64 0.71 0.83

Region Entr. 0.40 0.56 0.64 0.73 0.86

Pixel Entr. 0.30 0.44 0.51 0.58 0.67

Edge-Inten. 0.92 0.95 0.95 0.96 0.97
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(a) Best Source (b) Variance

(c) Energy of Laplacian (d) Spatial frequency

(e) Sum of Modified Laplacian (f) Region-based entropy

(g) Pixel-based Entropy (h) Edge -Intensity
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