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Abstract—In this paper, we investigate the millimeter-wave
(mmWave) near-field beam training problem to find the correct
beam direction. In order to address the high complexity and
low identification accuracy of existing beam training techniques,
we propose an efficient hashing multi-arm beam (HMB) training
scheme for the near-field scenario. Specifically, we first design a set
of sparse bases based on the polar domain sparsity of the near-field
channel. Then, the random hash functions are chosen to construct
the near-field multi-arm beam training codebook. Each multi-arm
beam codeword is scanned in a time slot until all the predefined
codewords are traversed. Finally, the soft decision and voting
methods are applied to distinguish the signal from different base
stations and obtain correctly aligned beams. Simulation results
show that our proposed near-field HMB training method can
reduce the beam training overhead to the logarithmic level, and
achieve 96.4% identification accuracy of exhaustive beam training.
Moreover, we also verify applicability under the far-field scenario.

Index Terms—Beam training, sparsity, hashing, multi-arm
beam, soft decision, voting mechanism.

I. INTRODUCTION

Millimeter-wave (mmWave) has become a highly sought-
after next-generation mobile communication technology due
to its large bandwidth, high frequency, and its ability to
suppress multi-path effects and clutter echo interference [1]–
[3]. However, the high frequency makes the signals more sus-
ceptible to penetration loss and path loss, resulting in reduced
communication coverage [4]–[6]. An effective approach is to
increase beamforming gain using large-scale antenna arrays
[7], [8]. Fortunately, this is feasible owing to the development
of massive multiple-input multiple-output (MIMO) technology
[9]–[11].

In a MIMO setting, the beamforming technique allows sig-
nals to be transmitted in the form of directional beams, resulting
in higher spatial resolution and beam directivity. This technique
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requires precise knowledge of the angle of arrival (AoA) and
angle of departure (AoD) of the mmWave propagation channel,
which is usually acquired during the beam training stage prior
to the data transmission [12]–[15]. Among the existing training
methods, the exhaustive training method requires traversing
the entire beam space [14], which is the most accurate but
has significant delay and training overhead [16]. Hierarchical
training, on the other hand, consists of multiple stages. In
each stage, the beam space is divided into two halves until
the resolution requirement is met [17]. The downside is that
there is a serious inherent error propagation problem [18]. In
addition, the equal interval multi-arm beam (EIMB) training
method employs a pre-determined sequence of multiple beams,
and the optimal beam direction is obtained through ensemble
operations after multiple rounds [15]. However, its fixed beam
composition leads to fixed leakage interference, which limits
the identification accuracy of the beam training to a certain
extent.

Specifically, we first construct the near-field single-beam
training codebook, which maintains the interference between
the training beams as small as possible. Further, for each BS,
we use hash functions and jointly design the antenna responses
to construct HMB codebook. At each time slot, each BS
selects one multi-arm beam codeword to transmit the signal,
and users record their received signals until all the predefined
codewords in the HMB codebook have been traversed. Finally,
soft decisions and voting based on the received signal power
are applied to obtain the aligned beam. Simulation results
show that our proposed near-field HMB training method can
significantly improve the identification accuracy of near-field
beam training to 96.4% of the exhaustive beam training method
while reducing the training overhead to the logarithmic level.
Further, we validate its applicability under the far-field scenario.

The rest of the paper is organized as follows. Section II
introduces the channel and signal models of the interest sce-
nario; Section III details the generation method of the training
codebook, the working principle of the decision, and voting
mechanisms. Section IV provides the numerical results of the
proposed beam training technique. Finally, Section V is the

ar
X

iv
:2

40
3.

06
07

4v
2 

 [
cs

.I
T

] 
 9

 A
pr

 2
02

4



…

…

Fig. 1. Downlink mmWave communication scenario with K
BSs, and a typical user.

conclusion of the paper.

II. SYSTEM MODEL

As shown in Fig. 1, we consider a downlink mmWave
communication scenario where K BSs and U users are dis-
tributed in the 3D space. The BS is deployed in the xz-plane,
which employs a hybrid precoding architecture that equips V
radio-frequency (RF) chains and an M × N antenna uniform
planar array (UPA), where V ≪ MN . Each user device
is equipped with a single antenna. The central wavelength,
horizontal/vertical antenna spacing, and operating frequency
are λc, dx/dz , and fc, respectively. The coordinate of the
(m,n)-th antenna element of the k-th BS is (xk,n, yk, zk,m),
where xk,n = rk cos θk sinϕk + ndx, yk = rk sin θk sinϕk,
zk,m = rk cosϕk + mdz , n = 1 − N+1

2 , ..., N − N+1
2 ,

m = 1−M+1
2 , ...,M−M+1

2 . rk, θk, and ϕk denote the distance,
azimuth angle, and elevation angle from the original O to the
k-th BS. For beam training, K BSs transmit training symbols
in several directions while the users listen to the channel in
all directions using a quasi-omnidirectional beam. Since the
alignment for each user requires only its received multi-BS
superimposed signal power, we can perform downlink beam
training for different users simultaneously without interference.
For simplicity, we only discuss a typical user located at the O
position.

Let hk ∈ CMN×1 denote the channel from the BS k to the
user, each BS transmits the same symbol x with power P0,
thus the received signal y at the user can be expressed by

y =

K∑
k=1

hHk FRFk
fBBk

x+ n, (1)

where fBBk
∈ CV×1, FRFk

∈ CMN×V denote digital precoder
and analog beamformer at the k-th BS, n ∼ CN (0, σ2) denotes
Gaussian additive white noise.

We focus on the radiated near-field region. Based on the
spherical wave assumption, the near-field channel can be rep-
resented as

hk =
√
MN

L∑
l=1

βk,le
−jψk,lgk,l, (2)

where βk,l and ψk,l denote the complex path gain and phase
shift of the l-th path from the typical user to the k-th BS.

In the line of sight (LoS) link dominated channel, we have
βk,1 ≫ βk,l, l ̸= 1, thus hk ≈

√
MNβk,1e

−j 2π
λc
rkgk,1, where

βk,1 =
√
ρ0
rk

with ρ0 denoting the reference channel power gain
at a distance of 1 m,

gk,1 =
1√
MN

[ej
2π
λc

(D(−M−1
2 ,−N−1

2 )−rk), ...,

ej
2π
λc

(D(m,n)−rk), ..., ej
2π
λc

(D(M−1
2 ,N−1

2 )−rk)]T ,

(3)

where D(m,n) denotes the distance between the (m,n)-th
antenna of the k-th BS and the user. Assuming in the near-
field region, dx/rk ≪ 1 and dz/rk ≪ 1, we can approximate
D(m,n) by a second-order Taylor expansion [19] as

D(m,n)

=((rk cos θk sinϕk + ndx)
2 + (rk sin θk sinϕk)

2

+ (rk cosϕk +mdz)
2)

1
2

=(r2k + n2d2x + 2rkndx cos θk sinϕk

+m2d2z + 2rkmdz cosϕk)
1
2

≈rk + ndx cos θk sinϕk +
n2d2x(1− cos2 θk sin

2 ϕk)

2rk

+mdz cosϕk +
m2d2z sin

2 ϕk
2rk

. (4)

Thus the phase of gk,1 can be divided into two parts
related only to m and n, i.e., j 2πλc

(ndx cos θk sinϕk +
n2d2x(1−cos2 θk sin2 ϕk)

2rk
) and j 2πλc

(mdz cosϕk +
m2d2z sin2 ϕk

2rk
).

Hence we obtain
gk,1 = vx(θ, ϕ, r)⊗ vz(ϕ, r), (5a)

[vx(θ, ϕ, r)]n=e
−j 2π

λc
(ndxcosθksinϕk+

n2d2x(1−cos2θksin2ϕk)

2rk
)
, (5b)

[vz(ϕ, r)]m = e
−j 2π

λc
(mdz cosϕk+

m2d2z sin2 ϕk
2rk

)
. (5c)

where [·]n denotes the n-th element of this vector.
To find information about the user’s location relative to each

BS, we can design the beam-aligned observation vector a =
FRFk

fBBk
, which can be simply obtained as a = gk,1.

III. NEAR-FIELD CODEBOOK GENERATION

In this section, we focus on solving the mismatch between
the existing far-field codebook and the near-field. We first
design a single-beam training codebook applicable to the near
field, then generate a multi-arm beam training codebook using
the hashing method.

A. Near-Field Single-Beam Codebook

Since the scattering paths are limited and the far-field
steering vectors are only angle-dependent, the channel sparsity
of the far-field in the angle domain can usually be obtained
by discrete Fourier transform. However, the near-field channel
model in (5) shows that channel hk is nonlinear with respect to
the antenna subscripts m, n, instead of being a discrete Fourier
vector, it can be described jointly by several far-field Fourier
vectors. This implies that there is severe interference between
the angle-discretized training beams, and applications in the
near field will suffer a significant performance loss.



Although the angular domain sparsity in the near-field region
no longer exists, the number of paths is still finite. Therefore,
the near-field channel is also compressible. Since channel hk
is determined by both the distance and angle, an intuitive idea
is to reconstruct a set of orthogonal bases a(θs, ϕs, rs) that
satisfy sparsity for the near field by devising an angle- and
distance-sampling approach,

a(θs, ϕs,rs) =
1√
MN

[ej
2π
λc

(Ds(−M−1
2 ,−N−1

2 )−rs), ...,

ej
2π
λc

(Ds(m,n)−rs), ..., ej
2π
λc

(Ds(M−1
2 ,N−1

2 )−rs)],

(6)

where Ds(m,n) denotes the distance from the (m,n)-th an-
tenna of the BS to the sampling point.

The distance and angle sampling principle is making η as
small as possible,

η ≜ max
p ̸=q

f(θp, θq, ϕp, ϕq, rp, rq), (7)

where f(θp, θq, ϕp, ϕq, rp, rq) = |a(θp, ϕp, rp)a(θq, ϕq, rq)H |
denotes the projection between the two sampled near-field
steering vectors. To obtain a closed-form expression for the
projection, we make an approximation similar to (4). Thus,

f(θp, θq, ϕp, ϕq, rp, rq) =
1

MN

|

N−1
2∑

n=−N−1
2

ej
2π
λc
gn(θp,θq,ϕp,ϕq,rp,rq)

M−1
2∑

m=−M−1
2

ej
2π
λc
gm(ϕp,ϕq,rp,rq)|,

(8a)

gm(ϕp, ϕq,rp, rq) = −mdz(cosϕp − cosϕq)

+
m2d2z sin

2 ϕp
2rp

− m2d2z sin
2 ϕq

2rq
,

(8b)

gn(θp,θq,ϕp,ϕq,rp,rq)=−ndx(cosθpsinϕp−cosθqsinϕq)

+
n2d2x(1−cos2θp sin2ϕp)

2rp
−n

2d2x(1−cos2θq sin2ϕq)
2rq

.
(8c)

Based on (8a), we can design the angular and distance
sampling method as follows,

cosϕs =
2s−M − 1

M
, s = 1, ...,M, (9)

| sin
2 ϕp
rp

− sin2 ϕq
rq

| ≥ 2λcζ
2
∆

M2d2z
, (10)

where ∆ is the projection threshold, and |C(ζ∆)+jS(ζ∆)
ζ∆

| = ∆.
Consequently, we take the observation vector a to be the set of
orthogonal bases a(θs, ϕs, rs), and the near-field single-beam
codebook C can be expressed as

C = [a(θ1, ϕ1, r1); ...;a(θS , ϕS , rS)]. (11)

It is worth noting that the above codebook construction method
can be also applied to the far-field region when the sampling
distance rs tends to infinity, which can be validated by subse-
quent simulations.

B. Hashing Multi-Arm Beam Codebook Generation

To further reduce the time slot of beam training, and at the
same time ensure identification accuracy, we now discuss how
to generate multi-arm beams that point in multiple directions
simultaneously. First, with reference to the structure of the
sparse Fourier transform, we consider selecting codewords

Fig. 2. The schematic diagram for hashing implementation.

from the single-beam codebook C to combine into a multi-arm
beam [20]. we denote the universe of keys with total order as
U = {0, 1, ..., NC−1}, the hash function as h : U → T , where
T = {0, 1, ..., B − 1} is the interpreted hash value, NC is the
number of codewords and B is the number of hash value. Here,
U is fixed and we randomly select hash functions from a family
H = {h1, h2, ..., h|H|}, where |H| represents the number of
distinct hash functions in the family H.

Next, we use the hashing results D to generate the multi-arm
beams, where each bucket db containing R = NC/B keywords
corresponding to a hashing multi-arm beam (HMB), can be
represented as

D = [d1; ...;dB ], db = [d1b , ..., d
R
b ], (12)

where commas (,) and semicolons (;) denote the row separators
and column separators, respectively. Fig. 2 illustrates two
times hash that the codewords representing 16 directions are
hashed uniformly into 4 multi-arm beams, each covering a total
of NC/B = 4 different directions. Specifically, in the first
hash, the 16 directions are divided into 4 buckets, which are
[1, 6, 9, 13], [2, 8, 12, 16], [3, 5, 10, 15], and [4, 7, 11, 14].

In contrast to the simple antenna partitioning approach [15],
we jointly design the response of all antennas to generate the
multi-arm beam codebook C̃ for training. Specifically, for db,
we make the digital precoder fBBk

to map the data stream
to the working RF chain, while the analog beamformer FRFk

selects V = R codewords from the single-beam codebook C
to determine the beams to be transmitted over the working RF
chain, i.e.,

[f bBBk
]i =

ejϑ(i)

√
V
, i = 1, ..., V, (13)

FbRFk
(:, i) = C(dib, :)

T , i = 1, ..., V. (14)

Therefore, the user’s received power from BS k can be derived
as (15), where (16) is the normalized multi-arm beam radiation



|yk|2(db,ϑ)
(a)
≈ |

√
P0|β1|

√
MNe−j

2π
λc
rk
√
W (rk, θk, ϕk,ϑ,db) + n|2 (15)

W (rk, θk, ϕk,ϑ,db) =

V∑
i=1

1

V
ejϑ(i)

N−1
2∑

n=−N−1
2

N−1
2∑

m=−M−1
2

1

MN
e
−j 2π

λc
(Ddib (m,n)+D(m,n)−r

di
b
−rk) (16)

W ′(rk, θk, ϕk, s) =

N−1
2∑

n=−N−1
2

N−1
2∑

m=−M−1
2

1

MN
e
−j 2π

λc
(Ds(m,n)+D(m,n)−r

di
b
−rk) (17)

pattern of db, and (17) is the normalized radiation pattern of
the s-th single beam.

Because the different near-field single beams interfere with
each other in their respective main lobes, the s-th near-field
single beam has a main lobe region of cosϕ′ ∈ [cosϕs −
1
M , cosϕs +

1
M ], cos θ′ ∈ [cos θs − 1

N , cos θs +
1
N ],

r′ ∈ [
1 +

rsλcζ
2
∆

sin2 ϕsM2d2z

1
rs

+
2λcζ2∆

sin2 ϕsM2d2z

,
1− rsλcζ

2
∆

sin2 ϕsM2d2z

1
rs
− 2λcζ2∆

sin2 ϕsM2d2z

]. (18)

We define the unit deviation of W (rk, θk, ϕk,ϑ,db) and
W ′(rk, θk, ϕk, d

i
b) as

δW (ϑ, dib) ≜
∫
r′

∫
θ′

∫
ϕ′

|W (rk, θk, ϕk,ϑ,db)−W ′(rk, θk, ϕk, d
i
b)

W ′(rk, θk, ϕk, dib)
|dϕdθdr.

(19)

Further, define the average deviation of the multi-arm beams
and single-beam radiation patterns in the corresponding main
lobe as

δW (ϑ,db) ≜
1

V

V∑
i=1

δ(ϑ, dib). (20)

Therefore, based on the above HMB combination db, we can
minimize δW (ϑ,db) by adjusting ϑ = ϑb to produce a well-
shaped multi-arm beam, denoted as C̃(b, :) = FbRFk

f bBBk
.

IV. NEAR-FIELD BEAM TRAINING

The training process includes the scanning phase and the
voting phase. To ensure the accuracy of beam training, we con-
duct a total of L rounds of hashing mapping. Specifically, BS k
randomly selects L different hash functions hk1 , ...h

k
L from the

family H to obtain Dk
1 , ...,D

k
L, and simultaneously sends train-

ing symbols with its own multi-arm beam codebook C̃k
1 , ..., C̃

k
L

during the scanning phase, significantly reducing the complex-
ity of traditional alternate scanning of all BSs. Thus, a total of
Q = BL time slots are needed, which yielding Q received sig-
nal power, denoted as P = [P (1, 1), ..., P (l, b), ..., P (L,B)],
where the measurement P (l, b) of the q = (l−1)B+ b-th time
slot is the recorded power of the signal received by the b-th
multi-arm beam of the l-th round of hashing,

P (l, b) = |
K∑
k=1

hHk FRFk
fBBk

x+ n|2. (21)

In the following, for multi-BS superimposed signals, we design
a demultiplexing algorithm to isolate signals from different

BSs and use soft decision and the voting mechanism to obtain
aligned beams for each BS.

Suppose that the direction of the user with respect to BS
k is γk ∈ U , the probability of two arbitrary BSs seeing
this user at the same time is Pr(hi(γi) =

(i ̸=j)
hj(γj)) = 1

B2 ,

which is small enough so that the received signal of each
time slot almost contains the signal of at most one BS. Also,
the different distances from different BSs to this user result
in different channel gains, with the same transmit power,
we can obtain distinguishable received signal strengths as
Ṗm1 > Ṗm2 > ... > ṖmK

, where mk is the BS with the
k-th strongest channel gain. Based on this, the demultiplexing
algorithm can be designed in conjunction with the soft decision,
i.e., assigning the L time slot with the (k− 1)L+1-th - kL-th
largest value in the received signal power P to BS mk, which
means

qmk
= arg max

(k−1)L+1:kL
descend(P), (22)

where descend(·) represents sorting the vector in descending
order. The reason for L is that each BS sees the user in only
one time slot per round of hashing.

Now that we distinguish the received signal power of differ-
ent BS, we can then conduct voting on D̃k(qmk

, :) to find γk,
where colon (:) denotes all the elements of the row/column.
The reason that the vote can end up with a unique direction
is that if we fix x1 and x2 that satisfy hi(x1) = hi(x2), we
have Pr[hi′(x1) = hi′(x2)] =

1
B , where i′ ̸= i, hi, hi′ ∈ H.

That is, the probability of arbitrary two keywords x1 and x2
being hashed to the same address simultaneously by different
hash functions is sufficiently small. It ensures that multiple
rounds of hashing make the directions dispersed from each
other. However, based on the demultiplexed time slot qmk

which contains the aligned beam, it’s most likely the direction
γmk

that gets the highest votes.
In general, the detailed steps of beam training for multiple

users are discussed in Algorithm 1. Firstly, in the scanning
phase, all BSs simultaneously send training symbols utilizing
the predefined multi-arm beams with the same power P0, until
all the predefined multi-arm beams are traversed. Meanwhile,
all users receive from the channel omnidirectionally. Next,
we demultiplex the multi-BS superimposed signal power Pu

received by user u, by soft decision that assigns the L time
slot with the (k− 1)L+1-th - kL-th largest value in Pu to BS
mk. Afterward, voting on D̃k(qmk

, :) and obtain the highest
votes as γuk , and the aligned beam of BS k corresponding to
user u is the γuk -th code word in the single beam codebook C,
denoted as C(γuk , :).



Algorithm 1 HMB Training

Input:
Hashing results for all BSs {Dk

1 , ...,D
k
L}Kk=1

Multi-arm beam codebooks {C̃k
1 , C̃

k
2 , . . . , C̃

k
L}Kk=1

Transmit signal x
Number of BS K
Number of hashing rounds L and time slot Q

Output:
Aligned beam index {γu}Uu=1, γu = [γu1 , ..., γ

u
K ]

Aligned beam of BSs corresponding to users
1: for q = 1 to Q do
2: ∀ BS k transmit x by the q-th multi-arm beam in
{C̃k

1 , C̃
k
2 , . . . , C̃

k
L}

3: all users record the multi-BS superimposed received
signal powers {Pu}Uu=1

4: end for
5: for (∀ user u) k = 1 to K do
6: qmk

= arg max
(k−1)L+1:kL

descend(Pu)

7: γuk ← most votes on D̃k(qmk
, :)

8: aligned beam of BS k to user u is C(γuk , :)
9: end for

V. SIMULATION RESULTS

We now evaluate the performance of our proposed beam
training method with simulation results. The number of BSs
and the operating frequency are set to K = 5 and fc = 28GHz
respectively, and the signal wavelength is λc = 0.01m. The
planar antenna array of BS contains M = 4, N = 128 anten-
nas, and the spacing between the antennas is dx = dz = λc/2.
The reference signal to noise ratio (SNR) is γ = P0MNρ0

r20σ
2

with ρ0 = −72dB, P0 = 15dBm, σ2 = −70dBm. And
the achievable rate in bits/second/Hz (bps/Hz) is given by
R = log2(1 + γ|fTBBFTRFg1|2).

Fig. 3 plots the effect of SNR on the identification accuracy.
With the same simulation setup, we use exhaustive, EIMB
training with the near-field codebook and exhaustive training
with the DFT codebook ("Exhaustive-DFT") as the baseline.
Firstly, it can be seen that with increasing SNR, the influ-
ence of noise becomes smaller and the identification accuracy
of all beam training methods gradually increases; under the
exhaustive beam training, the accuracy with the near-field
codebook converges to 1, while that with the far-field codebook
is significantly lower, which confirms the effectiveness of the
designed codebook in near-field conditions.

In addition, the performance of EIMB is quite lower com-
pared to the exhaustive and HMB approaches when utilizing
near-field codebooks. In HMB training, when the number of
multi-arm beams B ≥ 32 and the SNR is not less than 5 dB,
at least 96.4% of the performance of exhaustive training can
be achieved. Moreover, when the SNR is relatively low, the
identification accuracy is considerably improved compared to
EIMB training. However, it can be noticed that as the num-
ber of multi-arm beams B decreases, the accuracy gradually
decreases, the reason being that the number of sub-beams R
increases as B decreases, which makes the leakage interference

Fig. 3. Success beam identification accuracy versus SNR.

Fig. 4. Success beam identification accuracy versus SNR when
considering soft and hard decisions.

between sub-beams have a greater effect on the identification
result.

Fig. 4 plots the beam identification accuracy versus SNR
when considering soft and hard decisions. where only "HMB"
training uses the soft decision, and the others use the hard
decision of threshold comparison. It can be seen that our
proposed HMB training method has the optimal performance,
especially when the SNR is relatively small. Specifically, when
the SNR = 10dB and the number of beams B = 32, the soft
decision can improve the accuracy by 96.9%. This is because
when the SNR is very low, the intensity of the signal power can
be of the same order as the noise power, or even submerged
in the noise. Thus the threshold of hard decisions needs to be
determined more accurately and adaptively, but it is difficult.
on the contrary, the soft decision is based on relative value
comparisons, which does not need to determine the threshold
and is less affected by noise as well. In addition, when the
SNR is higher than 20dB, the HMB codebook can improve the
accuracy by 22% over the basis of EIMB codebook, because the
equal interval method has a fixed leakage interference, while
the randomness of hashing adds a random perturbation to the
leakage interference between sub-beams, so that the effect of
this interference on the subsequent decision can be reduced.

Fig. 5 plots the beam identification accuracy versus SNR
under the far-field simulation condition. The Rayleigh distance
can be calculated as Z = 81.92m, therefore, we take the dis-
tance between the user and the antenna as r = 300m. It can be



Fig. 5. Success beam identification accuracy versus SNR under
the far-field simulation condition.

Fig. 6. Training overhead versus codebook size.

seen that the codebook constructed by our method has almost
the same accuracy as the DFT codebook, which verifies the
excellent applicability of the proposed HMB training method
even in the far-field region.

Fig. 6 plots the effect of different codebook sizes on the beam
training overhead, where the training overhead is defined as the
number of time slots required for scanning during training. The
exhaustive approach traverses the entire beam space and the
training time is proportional to the codebook size, resulting in a
very high training overhead. HMB training is at the logarithmic
level with a training time of Q = BL = O(BlogMN), which
can significantly reduce the training overhead compared to
exhaustive beam training. Although the training overhead of
EIMB is low in the figure, it presents a much lower accuracy.

VI. CONCLUSION

In this paper, the HMB training method was proposed for
the near-field and verified to be applicable to the far-field as
well. Firstly, by exploiting the polar domain sparse property of
the near-field steering vectors, we minimized the projection be-
tween the vectors at different sampling points and constructed
the training beams for the near field. To further improve the
performance of beam training, we use hash functions to gener-
ate multi-arm beams and employ the soft decision and voting
mechanism to obtain the best-aligned codeword to maximize

the received SNR. Simulation results show that our proposed
beam training method has maintained stable and satisfactory
performance in terms of beam identification accuracy, reaching
96.4% out of the exhaustive training performance while ensur-
ing that the training overhead is significantly reduced to the
logarithmic level.
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