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Abstract

We propose regularizing the empirical loss for semi-supervised learning by acting
on both the input (data) space, and the weight (parameter) space. We show that the
two are not equivalent, and in fact are complementary, one affecting the minimality
of the resulting representation, the other insensitivity to nuisance variability. We
propose a method to perform such smoothing, which combines known input-space
smoothing with a novel weight-space smoothing, based on a min-max (adversarial)
optimization. The resulting Adversarial Block Coordinate Descent (ABCD) algo-
rithm performs gradient ascent with a small learning rate for a random subset of
the weights, and standard gradient descent on the remaining weights in the same
mini-batch. It achieves comparable performance to the state-of-the-art without
resorting to heavy data augmentation, using a relatively simple architecture.

1 Introduction

In semi-supervised learning, we are given N' labeled samples 2! € X! with corresponding labels
y! € Y! and N unlabeled samples, 2" € X“. The entire training dataset is X with cardinality
N = N! + N*. For a discriminative model to exploit unlabeled data, there has to be some prior on
the model parameters or on the unknown labels (Chapelle et al.|(2009))). Such a prior can be realized
through a regularization functional acting on either the parameters (weight space) or the data (input
space). Both input-space regularization, or “smoothing” (Joachims| (1999); |Goodfellow et al.| (2014a);
Miyato et al.| (2017)) and weight-space smoothing (Hochreiter and Schmidhuber] (1997); |Chaudhari
et al.|(2016)) have been shown to improve both supervised (SL) and semi-supervised learning (SSL).
The first question we address is whether the two are, in some sense, equivalent.

To answer the question, we conduct experiments that show that, for nonlinear and/or over-parametrized
classifiers, input and weight smoothing are not only not equivalent, but they are complementary,
suggesting that applying both may be beneficial. The second question we address, therefore, is
whether this can be done efficiently and yield performance improvements relative to methods that
only smooth one of the two.

To address this, we propose a new algorithm for weight smoothing called Adversarial Block Coordi-
nate Descent (ABCD), which we combine with a standard input-smoothing algorithm (VAT), and test
the result on SSL benchmarks on the CIFAR10 and SVHN benchmark datasets. ABCD combined
with VAT achieves state-of-the-art performance with minimal data augmentation (translation and
reflection), without complex architectures (e.g. ResNet) and no sophisticated learning machinery.

While in this section our method is motivated heuristically, there are theoretical groundings for
performing joint regularization in weight- and input-space, which we discuss in the Supplementary
Material. In the next two subsections we describe input and weight smoothing, and in the following
subsection we show them to not be equivalent. In the next section we describe the proposed algorithm
ABCD, and in the following one we put it to the test on SSL benchmarks.

Preprint. Work in progress.



1.1 Input smoothing

We call a classifier “input smooth" when its predictions are robust to small perturbations in the input
space. So, input smoothing can be obtained with the following optimization problem:

min Z U f(zisw), fzi + Axisw))
i, €X

subject to Az; = arg max £(f(x;w), f(x; + Az w)) Ve € X (1)
[|Az;||<ea

where £() can be cross-entropy, Kullbach-Liebler (KL) divergence or the mean-square error.
f(x;w) € R is the network output with weights w and K is the number of classes. This problem
can be solved along with minimizing the objective function designed for the task, for instance the
cross-entropy loss for classification. In other words, a desirable classifier should not change its
predictions for any additive perturbation within a ball of small radius €, for any input x;. This
idea is also known as max-margin or low-density assumptions in the SSL literature, championed by
TSVM (Joachims|(1999)). Although the perturbations to which we seek insensitivity are unstructured,
in imaging data the largest perturbations are often due to nuisance variability (e.g.. changes in
illumination, vantage point, or visibility).

A popular way of attacking to this min-max problem is through the use of adversarial examples. The
underlying idea is to add a (regularization) term to the loss function, that penalizes the difference
between network outputs for clean samples, and samples with added adversarial noise. Adversarial
training (Goodfellow et al.|(2014a)) applies this idea to supervised learning where they change the
problem to being robust against noise by moving predictions away from the ground truth labels:

min 3" 0(f(xi;w), £z + Arisw))
zr;€X

subject to Az; = arg max £(P(y;|x;), f(x; + Az w)) Ve, € X (2)
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For this supervised setting, ground truth labels P(y|x) can be used in calculating the adversarial
noise Az. Instead of finding the exact Az for each input x,/Goodfellow et al|(2014a) calculates the
first order approximation of adversarial perturbation leading to maximum change in the classifier
predictions f(z; w):

Ar = €p 7
[lgll2

subject to g = V(P (y|z), f(x; w)) 3)

where P(y|z) is the ground truth label for sample 2. A natural extension of this idea to SSL is
introduced by Miyato et al.| (2015}, 2017). Since SSL algorithms do not have access to ground truth
labels P(y|x), their adversarial noise attempts to maximize ¢(f(z; w), f(x + Az;w)). But, in the
SSL case, the first-order approximation is not useful, because the first derivative of £( f(z;w), f(x +
Azx;w)) is always zero at Az = 0. Hence, Miyato et al.| (2015, 2017) make a second-order
approximation for Az and propose the following approximation to the adversarial noise for each
input z:

Azr ~ emi
llg]l2
subject to g = VaL(f(z;w), f(x + Az;w)) Aoetd ()]
where d ~ N (0, 1). Therefore, the regularization loss of Miyato et al.| (2015, 2017) is
@MWwﬁ:ﬂﬂ%MJ@+%ﬁ%wm
subject to g = Val(f(z; w), f(x + Az;w)) ot 5)

for one input sample z. We will minimize this regularizer as a way of doing input smoothing in our
final SSL algorithm.



1.2 Weight smoothing

Just like the input smoothing, weight smoothing can be formulated as a min-max problem. More
explicitly,

min Y 0(f(ziw), flziw + Aw))

r,€X

subject to Aw = arg max Z O f(xs;w), fla; w+ Aw)) (6)
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Unlike input smoothing, the parameters of both minimization and maximization are the same, namely
the weights of the network, w. It is important to note that maximum is taken within a ball of small
radius €,,. This appears counter-intuitive at first.

Just like input smoothing can be associated with insensitivity to nuisance variability in the data (hence
bias the representation towards invariance), weight smoothing can be associated with generalization,
as it has been observed empirically that so-called “flat-minima” (Hochreiter and Schmidhuber, |1997;
Jastrzebski et al.| [2017)) corresponds to solutions that tend to yield better generalization. Recent
methods (Chaudhari et al., 2016) try to bias solutions towards such flat minima, including using a
conservative penalty (Li et al.| 2014):

wy = arg min ((P(y|); f(z:w)) + l|w — w13 )

w

We follow a related, but different, approach: We explicitly find adversarial directions with respect to
random subsets of the weights, then force the network to be robust against these directed perturbation
using the remaining weights.

This problem of optimizing for the worst case is also studied in the robust optimization literature
(Bertsimas et al. 2010). Given “all” the possible adversarial Aw values maximizing the loss,
they suggest an optimization framework for finding descent directions with second-order cone
programming (SOCP) which would guarantee an optimal solution for a convex objective. Since
finding all possible adversarial perturbations is not feasible, they find the ones around a ball with
gradient ascent and solve SOCP for local solutions iteratively, which is related to our method.

1.3 Input smoothing and weight smoothing do not imply each other

For a linear classifier, the Hessian of the mean-square error (MSE) loss is the data covariance matrix.
The local geometry of the loss landscape around the solution where the weights converged does not
depend on the classifier structure, nor on its parametrization. The number of zero eigenvalues is
determined by the dimensionality of the input data matrix alone. However, it can be easily shown
that this is not necessarily the case for nonlinear classifiers. For instance, |Sagun et al.[(2017)) shows
that the number of zero eigenvalues of the approximate Hessian of the loss has a lower bound of
|w| — N, where N is the number of training samples and |w| is the number of weights. This simple
Hessian argument suggests that the robustness of a network to weight perturbations depends on
factors other than its robustness to input perturbations, like the number of parameters in the network,
for nonlinear classifiers. Even though they also have empirical evidence for this claim, the spectrum
of the Hessian alone is not necessarily a good measure of flatness (Dinh et al.,[2017). So, we construct
a toy experiment to verify that input smoothness does not necessarily imply weight smoothness.

We use a half-moon toy dataset whereby there are 4 labeled (larger circles) and 1000 unlabeled
samples from each cluster (first panel of Fig. [T). We run the VAT algorithm to find the max-margin
decision boundary (second panel of Fig. [T). We repeat this experiment for 3 multi-layer perceptron
(MLP) networks each having the same structure, except for a different number of weights. The
decision boundary is the same, as it can be seen in the second panel of Fig. |1} where they show as
one as they overlap perfectly. This implies that for any perturbation in the input space, the increase in
the error would be the same for each of these classifiers. To show that this also the case for the loss,
we also provide the network response and again they are indistinguishable (third panel of Fig. [I).
Hence, input smoothness is the same for each of three MLPs.

After training three MLP networks with VAT, we apply gradient ascent on the converged weights with
a small learning rate to evaluate the robustness of the networks with different number of weights. As
it can be seen in the right panel of Fig. |1} it takes more ascent updates for large networks to diverge.
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Figure 1: Over-parametrized networks are more robust to adversarial noises in the weight
space even when they have the same decision boundary (i.e. the same input smoothness). Three
MLP networks with different number of hidden units trained with VAT on the half-moon dataset (first
panel) have the same decision boundary (second panel). Moreover, the network response (probability
given to one of the classes) is almost the identical for each of three networks (third panel). Therefore,
robustness of the networks to input perturbation is not just same in “error" sense but also same in
“loss" sense. However, the larger the network gets, the more robust it is to the adversarial perturbations
in the weight space. Fourth panel shows the training loss versus number of gradient ascent directions
for varying sized networks. As it can be seen, having a visible increase in the loss takes more ascent
steps for larger networks. This experiment illustrates that networks with the same robustness to input
perturbations may have completely different sensitivities to perturbations in the weight space.

Thus, over-parametrized networks are more robust to perturbations in weight space. This experiment
shows that input smoothing does not necessarily imply weight smoothing. I.e. there are factors other
than input smoothness determining the geometry of the loss around the converged weight. Another
observation is that losses diverge suddenly, implying that it takes several iterations to increase the
loss, during which time the landscape is almost constant, before the loss increases sharply. |I| The
ascent learning rate chosen in the experiment is 0.005. During ascent, SGD without momentum and
weight decay is used. MLPs are in the form 2 — FC(n) — FC(n) - FC(n) — FC(n) — 2
where F'C'(n) is fully connected layer followed by a RELU and n is number of hidden units. We
report results for n = 1000, n = 2500 and n = 10000.

Note that we choose to make our experiments in two dimensional inputs to visualize the decision
boundary easily and verify that they are the same for different classifiers; not because these results
are restricted to small dimensional inputs. These results align with those of [Freeman and Bruna
(2016) where they suggest that the amount of uphill climbing for connecting arbitrary weight pairs

IThis plot implies that for very large networks and small dimensional inputs, reaching to a considerably
high loss level set may require many ascent iterations. This might seem counter intuitive when we consider a
typical Hessian histogram of a deep network weights as there are usually few large positive eigenvalues. But, it
is important to note that the MLP networks we use in this experiment have 4 hidden layers and the largest of
them has 10000 units per layer. So, the size of network we use for this experiment is much larger than those for
which Hessian histograms can be calculated. Unfortunately, calculating the Hessian of such a large network is
very expensive computationally. Similarly, it can take many descent iterations to reach a low level loss if the data
is too complex for the model. For instance, when training with random labels, it takes many epochs to reduce
the loss level (Cicek et al.||2018)) even though the loss goes to zero eventually (Zhang et al.,|2016).



is correlated to the size of the network. For more discussion on the effect of over-parametrization
on the loss landscape of DNNs see|Safran and Shamir| (2016)); Sagun et al.|(2014); [Baity-Jesi et al.
(2018)); |Soudry and Carmon| (2016).

1.4 Joint input and weight smoothing

Once established that input smoothness and weight smoothness are not equivalent, it is natural to try
enforcing both. So, the additional regularization we want to have can be framed as follows: E]

mm Z U f(z;w), fliw+ Aw)) + £(f (x5 w), fla; + Az w))
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subject to Aw = arg max (f(zg;w), fla;;w+ Aw))
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So, the regularization term we want to minimize for one input z is

L(z;w) = 0(f(x;w), f(z;w + arg max Z U f(xsw), f(ziw+ Aw))))+
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((f (z;w), f(x + arg max £(f (z;w), f(z + Az; w)); w)) 9
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Then, the overall problem we want to solve in the supervised learning setting becomes

ngn ZECE(Q:; w) + AL(x; w) (10)

where
lop(z;w) = —(P(y|z),log f(z; w)) (11)
is the cross entropy loss calculated for label estimates f(x;w) and ground truth labels P(y|x).

Calculating the exact Az for each input is not trivial. Instead, we will use VAT in Eq. ] to make our
classifier robust against input space perturbations. For achieving weight space smoothness, we will
use the proposed algorithm described next.

2 Adpversarial Block Coordinate Descent (ABCD)

Algorithm 1 Adversarial Block Coordinate Descent (ABCD)

1: Input: Minibatch set By, loss function £(-), initial weights wy.

2: Hyper-parameters: Ascent and descent learning rates 14 and np. Number of inner iterations L.
3: Output: Final weights w,.

4: forl =1:Ldo

T'; sample from {0, —1} forall¢ € {1,..., |wpol|}.

¢ =T, forallie {1,...,|wl}

Ff =I;+1foralli e {1,‘..,|w0|}.

/I Run stochastic gradient ascent with a small learning rate 14

B
Wp_1 = w1 —nal'* ©Vy, (\B ‘ Z| f|£(aji;wl—1)>
10: I Run stochastic gradient descent with a learning rate np > 14

11: wp=w;_1 —nDFdQVw (‘B i ZlB“E(Jci;wl_%D

B AR A

Note that here we take each smoothness term separately. Le. adversarial perturbations in weight space
Aw are calculated for the original images x; not for perturbed images « + Ax. Even though it is possible to
formulate the problem such that perturbations in the weight space (Aw) are functions of perturbations in the
input space (Ax), problem would be even more complicated in that case.



Since the parameters of both minimization and maximization are the weights of the network for the
min-max problem in Eq. (6)), we use a subset of the weights w for finding adversarial directions in
weight space and the rest to impose robust to such additive adversarial perturbations in weight space.
For this, at each update, we randomly choose half of the weights and take a gradient ascent step along
them with a small learning rate. Then, on the same batch, we apply gradient descent for the remaining
weights with ordinary (larger) learning rate. We call this algorithm Adversarial Block Coordinate
Descent (ABCD), for pseudo-code, see Alg. [T ABCD can be considered as an extension of Dropout
(Hinton et al., 2012} [Srivastava et al.| 2014) and coordinate descent (Wright, |2015). However, unlike
Dropout, we explicitly regularize our network to be robust against “adversarial directions" in the
weight space; instead of just being robust to zeroed out weights.

Algorithm 2 SSL algorithm using ABCD as optimizer; VAT and entropy as regularizers. ¢ g(z; w),
(g (z;w), by ar(z; w) are as defined in Eq. [11] Eq. [12] Eq. [§|respectively.

I: fort =1:Tdo

2: // Run ABCD on cross entropy for labeled samples:

Sample B!

wy = ABCD(BL, {cp(z;w), ws_1) // weight smoothing

// Run ABCD on entropy and SGD on VAT loss for unlabeled samples:
Sample By

wy = ABCD(B}, {g(x;w),wy) // weight smoothing

wy = SGD (B}, by ar(x; w), wy ) // input smoothing

BN AN

The randomness in ABCD are due to mini-batch optimization that we have to use for computational
reasons and the randomness in the mask I" selection. If we ignore these, it would be easier to see
the loss minimized by ABCD. The loss minimized by descent in ABCD is the “worst case” of the
nominal loss landscape. By worst case we mean that, at each point in the weight space, the loss
ABCD minimizes is the maximum that can be reached from that point with one small ascent step. In
other words, ABCD minimizes the maximum loss around a small ball at each point. Moreover, we do
not want the last update for any of the weight parameter to be ascent. So, we do not apply ABCD in
the last few epochs.

ABCD can be used for SSL in place of vanilla SGD. We use ABCD for SSL by minimizing the
empirical cross entropy for labeled data and the entropy of empirical estimates for the unlabeled data
with ABCD. That is,

lp(z;w) = —(f(z;w),log f(x;w)) (12)

for unlabeled data which is a well-known regularizer in the SSL literature (Dai et al.||2017;|Grandvalet.
and Bengio} 2005} [Krause et al., |2010; |Springenberg), [ 2015)).

We additionally report performance of ABCD combined with VAT to see the effect of applying both
input and weight smoothing. The pseudo-code using VAT as loss function and ABCD as optimizer for
SSL task is given in Alg. [2] For labeled data, ABCD used as an optimizer to minimize cross entropy
to achieve weight smoothing. We do not minimize ¢y a7 (x; w) for labeled data as proposed in the
corresponding paper. For unlabeled data, ABCD is used to minimize entropy ¢g(x; w) and SGD
is used to minimize fy 47 (x; w) for weight and input smoothing respectively. We set 4 = 107>
for all of our experiments. 17p can be chosen as usual with high initial value from {0.1,0.01} and is
decreased during training. In all the SSL experiments, we only use the network called conv-large
from [Miyato et al.|(2017); |Tarvainen and Valpolal (2017). Only translation and horizontal flipping
are used as data augmentations to allow fair comparison with some of the previous SSL algorithms.
Horizontal flipping is only used in CIFAR10.

In our implementation of VAT (Miyato et al., [2017), we set ¢, in Eq. [Z_f] to be 128 for CIFAR10
and 0.25 for SVHN. Even though we search ¢, in a fine grid, we could not get to the performance
reported in their paper for CIFAR10; possibly because we use a different optimizer (SGD instead
of ADAM), different learning rate scheme and different ZCA regularizer. The performance of our
VAT implementation is given in Table |1 Our implementation (13.28%) of VAT without entropy
minimization is about 2 percent worse than what is reported in Miyato et al.[(2017) (11.36%) for
CIFAR10. But, we still use the numbers reported in Miyato et al.|(2017) for comparison purposes in
Table|l} Additional details on training given in the Supplementary Material.
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Figure 2: Robustness of ABCD vs SGD trained networks to ascent updates. Starting from the
ABCD and SGD trained weights, we apply gradient ascent with learning rate 0.001 on the cross
entropy loss. This plot shows the increase in the training loss versus number of ascent steps. Both
weights diverge quickly, but ABCD trained network diverges later than that of SGD verifying the
robustness of ABCD to weight space perturbations. 1D visualization of loss landscapes of SGD
and ABCD trained weights. Training and test losses over the curve oo x wgep + (1 — @) *wapcp
are given as suggested by |Goodfellow et al.|[(2014b) where o € [-0.2,1.2]. « = 0and o = 1
correspond to the weights of ABCD and SGD trained networks respectively. This method compares
the flatness of two methods in one direction only and in that direction, ABCD seems much more
robust to weight perturbations.

3 Evaluation

To evaluate the robustness of ABCD-trained weights to adversarial weight space perturbations, we
report the number of ascent updates necessary for the loss to diverge. In Fig. 2] (left), the plot of
training loss v.s. number of ascent updates is given for SGD and ABCD-trained weights. As it can be
seen, the number of ascent updates needed for the loss to diverge for ABCD is more than for SGD.

Another way of comparing the local geometrical properties of the weights is by visualizing the loss
landscape around the converged weights. As the deep networks we use have very high dimension,
several visualization tricks have been suggested to visualize the loss landscapes in 1- or 2-dimensional
subsets of the weight space (Li et al} 2017} |Goodfellow et al., [2014bj Keskar et al. [2016). We
employ the technique suggested in|Goodfellow et al.| (2014b) in Fig. [2| (right): we plot the loss on the
curve o x wggp + (1 — ) * wapcp where o € [—0.2,1.2]. wgsep and wapep are the weights
converged when training with SGD and ABCD respectively. As it can be seen, the loss does not
increase around ABCD trained weights. We also report Hessian histograms in the Supplementary
Material. Further details on the networks and datasets used in the experiments given there.

In Table|l| we compare the performance of ABCD with state-of-the-art SSL algorithms. We report
performance of the proposed algorithm on SVHN (Netzer et al.,[2011)) and CIFAR10 (Krizhevsky
and Hinton, |2009) in SSL setting. SVHN consists of 32 x 32 images of house numbers. We use
73,257 samples for training, rather than the entire 600, 000 images; 26, 032 images are separated for
evaluation. CIFAR10 has 60, 000 32 x 32 images, of which 50, 000 are used for training and 10, 000
for testing. We choose labeled samples randomly. We also choose them to be uniform over the classes
as it is done in previous works (Miyato et al.,[2017). In CIFAR10, 4,000 and in SVHN 1, 000 of
training samples are labeled. Except|Sajjadi et al.|(2016)), all the methods use modest augmentations
(translation and horizontal flipping) and do not exploit recent deep learning models like ResNet (He
et al., 2016). We report ABCD with entropy minimization alone and combined with VAT. When
we run ABCD only with entropy minimization, it yields second-best SSL performance after VAT in
CIFAR10 excluding |Sajjadi et al.|(2016). Combining ABCD with VAT improves the scores verifying
that they are complementary.

4 Discussion and Related Work

Next, we discuss our contribution in the context of related and recent work in SSL.



Test error rate (%)
SSL Method CIFAR10 SVHN
Ni=4,000 N!'=1,000
N“=46,000 N"=172,257
VAT+EntMin Miyato et al.|(2017) 10.55 3.86
Stochastic Transformation [Sajjadi et al.| (2016) 11.29 NR
Temporal Ensemble Laine and Aila (2016) 12.16 4.42
GAN+FM [Salimans et al.|(2016)) 15.59 5.88
Mean Teacher |Tarvainen and Valpolal (2017) 12.31 3.95
EntMin (our implementation) 15.42 +0.22 6.02 £ 0.02
VAT without EntMin (our implementation) 13.28 £0.11 5.60 + 0.29
VAT+EntMin (our implementation) 11.81 4+ 0.07 4.10 + 0.06
ABCD+EntMin 11.98 £ 0.04 4.93 +0.04
ABCD+EntMin+VAT 10.11 £0.14 3.63 £ 0.03
Table 1: Comparison with the state-of-the-art on SSL tasks. Error rates on the test set are given

for CIFAR10 and SVHN. NR stands for “not reported.” CIFARI10 is trained using 4,000 labeled
and 46,000 unlabeled samples, SVHN using 1,000 labeled and 72,257 unlabeled samples. Results
are averaged over three random labeled sets. We report performance of ABCD alone and combined
with VAT. ABCD+EntMin+VAT refers to algorithm in Alg. [2] where ABCD is used as an optimizer;
entropy and VAT are used as regularizers in the loss function. ABCD+EntMin uses only entropy for
unlabeled data to report performance of ABCD without VAT. SSL baselines. Baseline algorithms
are EntMin, VAT and VAT+EntMin. EntMin minimizes the entropy of estimates for unlabeled data
with standard SGD. Similarly, VAT minimizes ¢y 47 from Eq. [5]and VAT+EntMin minimizes both
on unlabeled data. Note that these are the results we get with our own implementation of VAT.

Input smoothing in SSL. In addition to work referenced earlier, there are graph-based methods
(Solomon et al.| 2014} Yang et al., |2016) that penalize having different labels for similar input pairs.
For instance, given that s;; is the measure of similarity for input samples x; and z;, they minimize
the energy s;;(f(z;;w) — f(x;;w))? performing label propagation under the constraint of fitting to
labeled data. This forces the discriminant to change little in response to different inputs with large
;5. Generative models by Springenberg| (2015) suggests that they maximize the margin with the help
of fake samples.

Weight smoothing in SSL. Teacher-student methods (Laine and Aila, [2016; |Tarvainen and Valpola,
2017) average over many predictions or weights in a way that the teacher network can attract student
networks towards itself. A similar algorithm is suggested by|Zhang et al.|(2015)) for parallel computing
under communication constraint where each replica is attracted to the reference system. [Baldassi et al.
(2016) studies such algorithms for models with discrete variables and they argue that they achieve to
find robust local minimas. Thus, one can relate the success of teacher-student models of state-of-the-
art deep SSL algorithms for their ability to converge to robust weights. We recently became aware
that |Park et al.| (2017) also combine VAT with Virtual Adversarial Dropout (VAdD) and, like us,
improve upon the VAT baseline as a result. VAdD finds a zero mask of dropout adversarially at each
update rather than trying to be robust against adversarial “directions”. We find the latter approach
more effective in achieving weight smoothing and avoiding convergence to locations in the loss
landscape with strong ascent directions. As a result, we reach comparable performance to Park et al.
(2017) without using sophisticated rate scheduling like ramp-up and mean-only batch-normalization
(Salimans and Kingmal 2016).

Effect of noise to generalization. Adding random noise to gradients is known to improve the
generalization (Welling and Teh| [2011)). Jastrzgbski et al.|(2017) analyzes the effect of the inherent
noise due mini-batch usage in the properties of point converged by SGD. They conclude that for
larger noise, network favors wider minima more under the assumption that the noise is isotropic.
ABCD differs from these works by adding adversarial noise to weights instead of random noise.
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