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Abstract

Visual tracking in video sequences is a widely developed
topic in computer vision applications. However, the emer-
gence of panoramic vision using catadioptric sensors has
created the need for new approaches in order to track an
object in this type of images. Indeed the non-linear resolu-
tion and the geometric distortions due to the insertion of the
mirror, make tracking in catadioptric images a very chal-
lenging task. This paper describes particle filter for track-
ing moving object over time using a catadioptric sensor. In
this work different problems due to the specificities of the
catadioptric systems such as geometry are considered. The
obtained results demonstrate an important improvement of
the tracking accuracy with our adapted method and a better
robustness to clutter background and light changes.

1. Introduction
Tracking a moving target in complex environments is an

important task for variety of applications including video
surveillance, mobile robots navigation or human-computer
interactions. Despite many efforts, tracking is still a chal-
lenging problem due to the presence of noise, changes of il-
lumination and occlusions that introduce uncertainty in the
estimation of the targets state.

Though many methods have been developed, a very few
of them deal with the particular case of catadioptric sensors.
Such a sensor provides a wide field of view of the scene.
Thus the utilization of catadioptric vision systems allows
to enlarge the possibilities offered by a conventional per-
spective camera by the creation of a panoramic view with
a single camera. This kind of system can for instance al-
lows the surveillance of the totality of a room with only one
camera while many conventional cameras would be needed
for the same task. This is also a really desirable system for
robotic applications especially for navigation because the
vision of the entire environment of the scene permits a good
localization in space and the creation of a navigation map.

(a) (b)

Figure 1. Difficulties due to the geometry of catadioptric sensors.
(a) Image distorsion; (b) Illumination changes.

Catadioptric sensors are also useful in various domains like
3D reconstruction or structure from motion.

However, because of the non-linear mapping from 3D
world to the 2D image plane, using catadioptric images is
not straightforward, as the case of perspective images. In
fact, this kind of system leads several inconveniences, no-
tably a strong distortion of the image relative to the shape of
the mirror as can be seen in the figure 1(a) where the shape
of the red screwdriver is totally modified. A high sensitivity
to illumination changes due to the mirror (see figure 1(b))
is also a problem. Therefore, for employing such a sensor
in practice, many of the algorithms developed for perspec-
tive image systems have to be adapted, and new methods
have to be developed. Indeed, most of the conventional vi-
sual trackers are not able to properly follow a target through
a video sequence taken with a catadioptric camera. Con-
sequently the main purpose of this paper is the adaptation
of conventional particle filter to the catadioptric geometry.
This is done by adapting the window used to define the ob-
ject appearance on the unitary sphere.

This paper is organized as follows. First, a brief review
of existing tracking methods for catadioptric sensor is given
in Section 2. Section 3 describes the neighbourhood adap-
tation method, and Section 4 is dedicated to the color his-
togram representation of the target object. The color parti-
cle filter adapted to catadioptric geometry is defined in de-
tail in Section 5. Experimental results are shown in Sec-
tion 6 and some conclusions are derived in last section.



2. Related work
Visual tracking with catadioptric images offers a wide

field of possibilities, mainly for surveillance and navigation
but this topic has received little attention and the literature is
very limited. Among different approaches of visual track-
ing in catadioptric images, image unwrapping is certainly
the most widely used technique. This method needs a Sin-
gle View Point (SVP) camera in order to obtain a perspec-
tive image from the distorted one. The unwrapping process
of the image is described in [15]. After the unwrapping, the
geometrical distortion is reduced and a conventional track-
ing algorithm can be use. In [21] and [20] a particle filter
is used on the unwrapped image while in [1] a KLT algo-
rithm is applied. The limitation of this approach is the high
computation time. Some strategies can be used to reduce
the computation time, for example, in [21] a fisheye image
is undistorted using a Support Vector Machine in order to
accelerate the algorithm.

Tracking based on a priori is an efficient approach of-
ten used for robot navigation, visual servoing and 3D track-
ing. It needs a geometrical a priori knowledge about the
object (feature) to track, for instance planes [12] or lines
[14]. Plane tracking is mostly based on homography. For
example, Mei et al. [13] use homography for planar tem-
plate tracking. This method also requires certain condi-
tions to work properly such as a small and smooth displace-
ment of the plane between two successive images. Line
tracking uses another strategy. First a line detection algo-
rithm is apply on the catadioptric images to get lines fea-
tures [3, 11, 14]. And tracking is performed using a conven-
tional line tracking such as developed by Smith et al. [17].

Background subtraction can also be a good solution
when the camera is static, because it is not necessary to
take into account the distortion of the image. But back-
ground subtraction techniques are not robust to illumination
changes and catadioptric sensors are very sensitive to such
effects. This tracking method is often used for surveillance
with catadioptric system for its simplicity and its reliability,
for instance Boult et al. [6] give a good overview of this
approach.

Another approach presented in literature is to adapt con-
ventional visual tracking methods on the projected unitary
sphere, so this adaptation can be used for every camera
which respect the single view point constraint (fish eye,
catadioptric, perspective). The adaptation of conventional
techniques gives better results, because the neighbourhood
is adapted to the geometrical particularity and to the non lin-
ear resolution of the image. The main concept is developed
in [7], using the geodesic distance on the sphere. Neverthe-
less, only in [5] and [18] a color particle filter is adapted
with this kind of technique and gives a better result than the
conventional method.

The work presented in this paper is similar to the method

developed by Bazin et al. [5], however we introduce many
improvements such as the use of a kernel in order to have
a better spatial localization of the object and the utilization
of a multi-part histogram which gives a strong robustness
to scale variation and clutter background. Furthermore a
quantitative evaluation of the algorithm based on different
metrics is performed.

3. Neighbourhood adaptation for catadioptric
image

The adaptation of the neighbourhood is essential to im-
prove the accuracy of visual tracking because everything
in the image will be deformed under the same distortion
model. Indeed using an adapted tracking window, the ob-
ject will be selected and tracked with a highest precision
especially when it is subject to a strong distortion. With
a perspective image the neighbourhood is mostly defined
according to the Euclidean distance and represented as a
rectangle centered on the pixel of interest. Obviously, this
”conventional” sampling is not appropriated for an omnidi-
rectional image because it considers a constant resolution
in the whole image and it does not take into account the
distortion of the image.

Every image taken using a camera with a single view
point (SVP) can be modelled by a spherical image. This
unified projection model was introduced in [8] and [2]. The
utilization of the unit sphere is the most suitable approach in
order to adapt the neighbourhood for a SVP camera which
include distortions. In fact, the projection onto the sphere
takes into account the non linear resolution conforming to
the shape of the catadioptric mirror (or the specific distor-
tion generated by the fisheye lens) by using the geodesic
distance.

Basically the spherical coordinates are defined as:

x = (cos(φ) sin(θ), sin(φ) cos(θ), cos(φ)), (1)

where x is a point lying on the sphere S2, φ is the latitude
varying between 0 and π, and θ is the longitude varying
between 0 and 2π. The localization of a point with spherical
coordinates is defined by two parameters (θ, φ) as illustrated
in figure 2.

Firstly a center point, Xsph, of the neighbourhood has to
be defined onto the sphere. Xsph has spherical coordinates

Figure 2. Spherical coordinates system



(a) (b)

Figure 3. Neighbourhood with fixed value δθ=±0.2 and δφ=±0.1.
(a) Neighbourhood on the sphere; (b) Neighbourhood projected on
the image plane

(θ,φ). Then, the neighbourhood around Xsph is defined us-
ing a range of variation (δθ and δφ) as:

NS(XSph) = {XS = (θ′, φ′)εS2| |θ′ − θ| ≤ δθ and
|φ′ − φ| ≤ δφ}

Once the neighbourhood is obtained on the sphere it is
back-projected onto the image plane to get the spatial neigh-
bourhood on the image.

As we can see in figure 3, with constant parameters δθ
and δφ, the size of the window will vary according to its
spatial position.

4. Color histogram representation
The tracking method used in this work is based on color

features, more precisely on the color histogram of the ob-
ject. Histograms are fast to compute and are a robust way
to represent the appearance of an object.

4.1. Color distribution computation

Apperance of an object is represented by a color his-
togram which is computed using the following equation:

qu = C

np∑
i=1

k(‖ xi ‖2)δ[b(xi)− u], u = 1 . . .m, (2)

where m is the histogram’s size, δ is the Kronecker func-
tion, k a kernel profile, b(xi) the bin number of a pixel xi,
‖ xi ‖ the distance between the current point xi and the
center of the window, np the number of pixel in the window
and C a normalization constant. The color distribution can
either represented by a 3D histogram or by a 1D histogram
obtained by concatenating the 3 histograms. In this work
both methods have been tested, and, the full 3D histogram
is selected because it generally gives better results.

4.2. Color space

Color histogram representation is very sensitive to
changes in lighting conditions, and a catadioptric system

is very subject to this inconvenience (because of reflection
on the mirror for instance). Therefore, a suitable color rep-
resentation must be adopted. In this work, we use the color
space called ”transformed rgb” since it is defined as robust
to light and intensity changes and shifts [19]. The transfor-
mation is based on the normalization of each channel inde-
pendently: R′G′

B′

 =


R−µR

σR
G−µG

σG
B−µB

σB

 , (3)

where, σ is the standard deviation of the channel and µ its
mean value.

4.3. Kernel Profile

In order to have a better localization of the target, the
use of a kernel is highly recommended. In fact, the ker-
nel is used to account for the spatial repartition of colors in
the window. In our case, an Epanechnikov profile has been
chosen (of course, it is possible to use other kernels with
similar characteristics like Quartic kernel or Normal ker-
nel) to compute a non-parametric density estimation of the
color distribution. The kernel with Epanechnikov profile is
defined by

k(x) =
{

1
2C
−1
n (n+ 2)(1− x) if x ≤ 1

0 otherwise
(4)

where Cn is equal to the volume of the unit n-dimensional
sphere.

An adaptation of the profile is necessary to deal with the
distortion in catadioptric images. Since, we are working
on the unitary sphere, the distance from the center of the
window is computed using the geodesic distance. Consid-
ering two points lying on S2 (xsph and ysph), the geodesic
distance between them is equal to the inverse trigonomet-
ric function of the cosine of the scalar product of these two
points according to [7]:

∀xsph, ysph ∈ S2 d(xsph, ysph) = arccos(xsph.ysph)
(5)

4.4. Multi-part representation

In a catadioptric video sequence the scale of an ob-
ject can change ”suddenly” (for instance if the object is
close to the exterior border of the mirror). Thus a robust
method to adapt the size of the tracking windows is neces-
sary. The multi-part target representation allows to drasti-
cally increase the accuracy and even permits to keep a good
tracking result in difficult conditions (e.g. clutter back-
ground). In [10], the authors demonstrate the efficiency of
this method for perspective images. Instead of computing
only one histogram to represent the object model, we com-
pute seven histograms according to the arrangement defined



Figure 4. Multi-part representation. (a) whole patch; (b) division
in 4 parts; (c) scale sensitive division; (d) final model

in figure 4. The first histogram is computed over the entire
image window. Then, we compute 4 histograms by split-
ting the window. This layout originally permits to have an
information about the rotation of the object, so it is basically
used for tracking with a rotating tracking window. But dif-
ferent experimentals results show that it also allows to im-
prove the performance of tracking even without a rotating
window. The last division of the window into two parts (the
inside and outside area of the window) allows a good scale
adaptation.

Finally, a similarity measure is computed between two
color distributions using the following equation:

ρ(q, p) =
∑N
i=1 ρ[q

i, pi]
N

, (6)

where N is the number of histograms (seven in our case)
and qi and pi are respectively the histogram of the ith sub-
partition of the window for the model object and the candi-
date object. And ρ is the Bhattacharyya coefficient calcu-
lated as:

ρ(qi, pi) =
m∑
u=1

√
qiu.p

i
u, (7)

with m the number of bins of the histogram.

5. Particle filter adapted to the unitary sphere
The conventional color particle filter tracker uses the

(x,y) coordinates of pixels to propagate the particles directly
in the image plane. In our approach the particles are dif-
fused on the sphere to overcome the problem due to the dis-
tortion of the image, and to have a more ”natural” behaviour
adapted to catadioptric images. Then the state vector is de-
fined by:

S = [θ, φ, θ̇, φ̇, δθ, δφ], (8)

where the variables θ and φ are the coordinates of the center
of the window, and δθ and δφ are the size of the window.
The particles are propagated according to the dynamic
model:

St = A.St−1 +Wt−1. (9)

The matrix A defines the deterministic component of the
model, while W is a multivariate Gaussian random noise.

A similarity measure is computed between each particle
and the target model one by one. In order to compute the

weight necessary for the re-sampling operation, the follow-
ing equation is used [9]:

w(i) = exp((ρ(i) − 1)β). (10)

Here, ρ(i) is the similarity coefficient of the ith particle and
β is a fixed parameter.

The estimated position of the object is obtained as the
mean state of the system, given by:

E[S] =
N∑
i=1

w(i)S(i), (11)

where S(i) is the state of the ith particle and w(i) its weight.

6. Experiments and results
In this section, we evaluate the performance of the pro-

posed tracking method using four catadioptric video se-
quences acquired in different conditions. The conditions
include indoor and outdoor scenes, moving objects and per-
sons, moving or fixed camera, difficult illumination changes
and occlusion. Table 1 summarizes the characteristics of the
sequences employed in the experiments.

The image size of the sequences is 640 x 480 and all
algorithms are implemented using Matlab R2009b. We use
Scaramuzza [16] ’OCamCalib’ toolbox for calibration. We
also generate manual ground-truths for each sequence and
the adapted particle filter is compared with the conventional
one.

6.1. Performances evaluation of a tracking algo-
rithm

Many statistical methods are available to estimate the
performance of a tracking system. In this paper three cri-
teria are selected to evaluate the proposed method [4].

Firstly a ground-truth is needed for comparison with the
tracking results. The ground-truths are created manually
using a window adapted to the geometry of the catadioptric
sensors. We use the following measures for evaluation: the
overlapping between the ground-truth and the tracking win-
dow, the distance between the real center (from the ground-
truth) and the center estimated by the tracking algorithm and
the percentage of successfully tracked frames in a sequence.

Overlapping estimation. The spatial overlapping is rel-
ative to the percentage of common area A(St,Gt) between
two bounding boxes (the window resulted from the tracker
St and the window from the ground-truth Gt), as shown in
figure 5. The spatial overlapping is computed as:

A(St,Gt) =
Area(Gt ∩ St)
Area(Gt ∪ St)

(12)



Table 1. summary of particularities of used sequences
Localization Type of camera Illumination changes Occlusion Target Frames/sec Number of images

Sequence 1 Outdoor Non central No No Person 30 780
Sequence 2 Indoor Non central reflective surface No Object 30 649
Sequence 3 Outdoor Non central dazzlement Partial Person 30 602
Sequence 4 Indoor Central No Total Object 15 481

(a) (b)

Figure 5. Spatial overlap estimation. (a) Area(Gt∩St); (b)
Area(Gt∪St)

In order to determine the temporal overlapping (the num-
ber of frames where the tracking result is considered as
good), we define a threshold as the minimum percentage
of overlapping:

TO(St,Gt) =
{

1 if A(St,Gt) > TOv
0 if A(St,Gt) < TOv

(13)

So the temporal overlapping TO(St,Gt) is the percent-
age of frames with spatial overlapping greater than or equal
to TOv (20% in our experiments).

The distance between centers. The distance between
the center of the ground-truth and the output of the tracker
is a significant information about the accuracy of the track-
ing algorithm. This distance can be computed with the Eu-
clidean distance on the image plane. In this case the dis-
tance must be as low as possible if we wish a accurate re-
sult. This metric is less representative of the performance of
a tracker than the overlapping measure, but provides a com-
plementary information. For instance a tracking algorithm
can have a bad spatial overlapping score but can be properly
centered on the target.

6.2. Results

Some tracking results are shown in figure 6. In the im-
ages, the blue bounding box corresponds to the ground truth
object location, while the red and green bounding boxes cor-
respond to the estimated positions by the proposed method
and the conventional particle filter respectively.

The tracking performances are summarized in Table 2.
As can be seen, our adapted method outperforms the con-
ventional color based particle filter for all four sequences.
For instance, the non-adapted method loses the target ob-
ject after 44% of sequence 2 which comprises 649 frames,
while our method do not lose the object in the entire se-
quence. This sequence is particularly interesting because it
shows a reflective object moving far and close to the mirror,

which generates strong scale variations and important dis-
tortion of the object. The robustness of the proposed method
is also demonstrated with sequence 1, 3 and 4. In fact, even
with strong scale variation, occlusion and a strong change
in illumination, the algorithm can accurately follow the tar-
get thanks to the multi-part histogram representation and a
suitable color space.

Note that for each sequence the temporal overlapping is
computed based on Equation (13), and when the target is
lost (spatial overlapping less than 20%), the mean spatial
overlapping and the mean center distance given in Table 2
are computed based only on the correctly tracked frames of
the sequence.

In all four sequences, our adapted method gives a better
localization of the tracked object as shown by the mean dis-
tance between the true center of the object and the center
given by the algorithm. This good accuracy is due to the
utilization of the multi-part histogram representation. Fig-
ure 7 shows the tracking results with a sequence with clut-
ter background. Using the method described by Bazin et
al. [5], the tracked dwarf is totally lost at the frame 372.
However with the multi-part histogram, the target is accu-
rately followed until the end of the sequence (743 frames)
with our method.

7. Conclusion

In this paper, a tracking method for catadioptric image
sequences is presented. The method is based on adapting
a particle filter to account for the specific geometry of cata-
dioptric sensors. These adaptations are managed by the pro-
jection of the image onto the unitary sphere. A robust color
space is also introduced to deal with the high sensitivity of
catadioptric sensors to illumination changes. Experimen-
tal results with different sequences in different conditions
show the good performance of the approach compared with
a conventional color based particle filter for tracking. A di-
rection of future work would be an extension for multiple
object tracking, adding shape and texture features.
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