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Abstract

Clustering methods become increasingly important in analyzing heterogeneity of treatment effects, 

especially in longitudinal behavioral intervention studies. Methods such as K-means and Fuzzy C-

means (FCM) have been widely endorsed to identify distinct groups of different types of data. 

Build upon our MIFuzzy [1], our goal is to concurrently handle multiple methodological issues in 

studying high dimensional longitudinal intervention data with missing values. Particularly, this 

paper focuses on the initialization issue of FCM and proposes a new initialization method to 

overcome the local optimal problem and decrease the convergence time in handling high-

dimensional data with missing values for overlapping clusters. Based on the idea of K-means+

+ [9], we proposed an enhanced Fuzzy C-means clustering (eFCM) and incorporated it into our 

MIFuzzy. This method was evaluated using real longitudinal intervention data, classic and generic 

datasets. Compared to conventional FCM, our findings indicate eFCM can improve computational 

efficiency and avoid the local optimization.

I. Introduction

Longitudinal behavioral intervention data are complex, typically high-dimensional and 

highly heterogeneous with missing values. For such data, we developed multiple imputation 

based fuzzy clustering (MIFuzzy) and its evaluation methods [1], [5], [6], [11], [12], [14], 

[16], [23].

MIFuzzy is a soft clustering method. Different from hard clustering techniques such as K-

means, K-means++ and spectral clustering [2], [9], [3], which decides if a point belongs to a 

cluster or not, soft clustering techniques such as FCM determine the degree of a data point 

belonging to different clusters [4]. In medical and especially longitudinal studies, 

overlapping clusters are common; therefore, soft clustering has gained increasing popularity 

in this field. Our previous studies indicate, MIFuzzy, which integrates FCM multiple 

imputation models and validation methods seems to consistently outperform other 

conventional methods such as K-means, hierarchical, probability-based and SOM-based 

neural networks for incomplete longitudinal intervention data [11]. However, the literature 
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indicates that initialization of a clustering algorithm may affect its accuracy and convergence 

time, especially in big data. K-means++ [9] is a method that uses special seeding of initial 

centroids as an enhancement to guarantee a globally optimal solution and to improve 

convergence speed in standard K-means. Motivated by this idea, we proposed eFCM for 

original longitudinal intervention data to overcome the local optimal solution and improve 

convergence speed for FCM.

Our experiments showed that in terms of convergence eFCM can reduce the running time up 

to 30 seconds, compared to the standard FCM. Our eFCM also can overcome local 

optimization for datasets with overlapping clusters. When incorporating eFCM in MIFuzzy, 

eFCM was able to identify the optimal number of clusters in high dimensional longitudinal 

intervention data in a shorter time while maintaining the clustering accuracy. Besides, eFCM 

has performed better on synthetic datasets where different degrees of overlapping exist.

The following sections are organized as follows: Section II discusses the motivation and 

drawbacks of existing methods. Section III, proposes our new approach, eFCM to solve the 

issues addressed in Section II. Section IV evaluates eFCM on longitudinal intervention data, 

and synthetic datasets. The last section concludes our findings.

II. Literature Review

It is possible that K-means and FCM produce local optimal solution because they both use 

random initialization of cluster centroids. Due to the heterogeneous nature, missingness, and 

high-dimensionality of longitudinal data, K-means is not the best option for identifying 

overlapping clusters. Although FCM can process overlapping clusters, FCM cannot deal 

with missing data and is prone to local optimization, due to the random centroid 

initialization.[5], [12]

A variant of K-means, called K-means++, overcomes the local maximal solution in the 

standard K-means by using the special seeding of the initial clusters to achieve the global 

optimization[9]. The idea behind K-means++ is to place the initial cluster centroids as 

further as apart from each other so that the algorithm will not only be able to converge faster 

but also, guarantees to avoid local maximal solution. However, these K-means based 

algorithms exist in longitudinal intervention data.

As mentioned earlier, missing data are common in longitudinal trial data. Our MIFuzzy 

handles missing values under three data missing mechanisms: completely at random, 

missing at random and missing not at random[11], [12]. (1) select the intervention attributes 

from data, which will be used by the algorithm. (2) perform MIfuzzy clustering on each of 

the imputed datasets. (3) validate optimal clusters by using multiple validation indices such 

as Xie-beni(XB) [7] and visualization.[10]

It is evident that in MIFuzzy performs the knowledge mining by incorporating the soft 

clustering techniques such as FCM and the fuzzy logic theory [12]. Like K-means, we chose 

an initial number of clusters and we randomly assign each point to a cluster by the degree of 

its cluster membership. The algorithm is terminated if the change of parameters between two 

iterations is no more than the given sensitivity threshold. The fundamental difference 
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between K-means and FCM is the addition of membership values and the fuzzifier. When 

the value of fuzzifier is 1, the resulting clustering would be equivalent to the K-means 

algorithm. Since FCM is also a heuristic algorithm, it prones to local optimal solution 

similar to K-means.

In the following sections, we introduce and illustrate our proposed enhanced version of FCM 

eFCM, which can be incorporated in MIFuzzy to handle longitudinal intervention data. 

Also, we compare the performance of eFCM with FCM on synthetic and real longitudinal 

data sets.

III. Methods

Our goal is to overcome the possible local optimal and improve the computational efficiency 

of standard FCM algorithm, which we have mentioned earlier by adapting the initialization 

scheme of K-means++. We also incorporate eFCM in MIFuzzy to handle longitudinal 

intervention data with missing values.

The objective function of eFCM can be formulated as below:

E(C) = ∑
i = 1

N
∑
j = 1

C
(ui j)

mdi j
2 (1)

where, ui j = 1

∑k = 1
C di j

dik

2
m − 1

(2)

V j =
∑i = 1

N ui j
m . xi

∑i = 1
N ui j

m (3)

Where, C is the number of clusters, dij is the distance from ith point to jth centroid, uij is 

membership value of ith point to the jth cluster and m is the fuzzifier.

The steps involved in eFCM algorithm can be described as below:

1. Initialize membership matrix U = [uij] with initial value U(0)

2. InitializeCentroids (Algorithm 2):

a. Sample a point uniformly from the dataset as the first centroid.

b. Sample the next centroid from the dataset with probability proportional 

to the squared distance of the point to its nearest centroid.
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c. Repeat above step until we have number of centroids equal to the 

required number of clusters.

3. Calculate the cluster centroid matrix V (r) = [vi] with U(r), using equations (2), 

(3)

4. Calculate U(r+1)

5. If ||U(r+1) − U(r)|| < ε, then converge otherwise, go to step 3. (0 < ε < 1 is 

predefined threshold)

Unlike the standard FCM algorithm, our proposed initialization approach does not choose all 

the initial centroids at random Instead, one of the centroids is chosen uniformly at random 

from the sample space. Remaining centroids are chosen one at a time, based on assigned 

probabilities with respect to the squared distance of the point to its nearest centroid. This 

process will ensure that all the centroids will stay farther apart from each other.

Our eFCM was further incorporated into MIFuzzy to extend its capability to handle 

longitudinal intervention data. Algorithm 1 shows the description of eFCM for clustering 

data with missing values. Same as MIFuzzy, given the terminating cluster using the rule of 

thumb, the square root of (N/2) [1], [6], [22], eFCM performs multiple imputations on 

incomplete longitudinal data. Each imputed data set is clustered using eFCM. The optimal 

number of clusters is selected using average XB [7], [1] across all imputed datasets.

Algorithm 1

eFCM Algorithm

procedure eFCM(X, n) ▷ Where, X: Incomplete Data, n: Imputation Times

 EM(X) ▷ Expectation Maximization

 EM Posterior

 for i = 1 : n do

  Build Markov Chain

  Between imputation steps

  Interior Imputation Steps

  Impute X to get Yi

  for cluster = 2 : maxCluster do ▷ Find Best

Clusters number

 for m = 1 : 10 do

  Initialize U(0)

  InitializeCentroids(Yi, ClusterNumber)

  for r = 1 : MaxIteration do

   Calculate V(r)

   Calculate U(r)

   if max|U(r) − U(r−1)| < ε then

    Break

  Update Xb Matrix and Lx Matrix

 Per Xb matrix, extract best cluster no. and fuzzifier
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 return Lx, Cluster, Fuzzifier ▷ Output

End procedure

Algorithm 2

InitializeCentroids

procedure InitializeCentroids(Yi, ClusterNumber)

 V ← sample a point uniformly from Yi

 while |V|< ClusterNumber do

  Sample x ∈ Yi with probability prop. to D2(x)

  V ← V ∪ x

  Return Initial Centroids

IV. Evaluation

Our eFCM is evaluated on a longitudinal intervention dataset, called TDTA [19], also on the 

IRIS [20], one synthetic dataset and S-sets, which contains four synthetic datasets[13] with 

varying complexity in terms of spatial distribution.

TDTA data were collected from a longitudinal culturally tailored smoking cessation 

intervention for 109 Asian American smokers. It contains three culturally adaptive response 

patterns identified by MIFuzzy [19]. For this intervention, researchers have used three 

components: Cognitive behavioral therapy, cultural tailoring, and nicotine replacement 

therapy. The first two components were measured by scores on Perceived Risks and 

Benefits, Family and Peer Norms, and Self-efficacy scales. Each scale has four repeated 

measurements, total 20 attributes, of which only Perceived Benefits and Family Norms were 

as input for our algorithm.[16] To evaluate if eFCM can generate the same patterns as 

MIFuzzy, the proposed eFCM algorithm was performed on TDTA data set.

We incorporated eFCM into MIFuzzy in MATLAB. Our code uses the Mean of XB index 

across all multiply imputed datasets to select the optimal number of clusters using the elbow 

value of XB index. Same as MIFuzzy, eFCM identify three optimal clusters. In terms of 

computational efficiency, the average runtime of MIFuzzy is 0.027 seconds while eFCM 

takes 0.013 seconds to converge.

A generic data set, IRIS, was also used to evaluate eFCM in comparison to FCM. IRIS 

dataset contains four attributes (sepal length, sepal width, petal length and petal width) and 

150 observations, which divided into 3 clusters. Due to the overlapping clusters and multiple 

attributes in IRIS data, hard clustering methods(K-means, K-means++) seem not to identify 

clear cluster boundaries as well as soft clustering methods, FCM and eFCM. The results 

show that the misclassification rate of FCM is 0.11333(88.66% accuracy), while eFCM has 

0.10667(89.33% accuracy). Additionally, the accuracy of K-means and K-means++ were 

below 81% on IRIS dataset.
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We also simulated a synthetic dataset with 998 observations and two attributes, with induced 

overlap to test the performance of eFCM regarding its speed and ability to avoid the local 

optimal. While FCM takes 0.2793 seconds(67 iterations), eFCM takes only 0.1344 seconds 

(7 iterations) to converge to the global optimal. Figure 2 shows the final centroid location of 

K-means, K-means++, FCM, eFCM. Same as above, Figure 2 shows the clustering result 

and the centroids in comparison with K-means++, FCM, eFCM. In the figure, ’o’, ’Δ’,’+’ 

indicate final centroids of K-means, K-means++, FCM, eFCM respectively. From Figure 2, 

resulting centroid of FCM does not seem accurate as its centroids do not always in the center 

of clusters. However, eFCM seems to overcome the local optimal with the centroids around 

the centers in each cluster.

eFCM was tested on manually picked S-sets of Clustering Datasets [13]. S-sets contain four 

datasets s1, s2, s3, s4 each with, 5000 vectors and 15 clusters. These 4 data sets have similar 

cluster shapes with different spatial distribution. These datasets will help evaluate how 

eFCM can overcome the local optimal issue with FCM. From Figures 3–6 even when the 

clusters were drawn closer, from s1 to s4, eFCM was able to successfully identify the 

clusters when compared to FCM, K-means and K-means++ in terms of the centroid location. 

As mentioned earlier, XB index is used to identify the optimal number of clusters, which is 

widely used in fuzzy clustering [7], [19]. The smallest value of XB indicates the best cluster 

number. From II, for all the datasets eFCM seems to perform better than FCM. Also, II 

summarizes the run time for both FCM and eFCM, and XB values for Synthetic data set, s1, 

s2, s3, s4. Especially in the case of the Synthetic data set, given the number of identified four 

clusters, it significantly reduces the XB value, ie., the ratio of between and within cluster 

variance, and reduced the convergence time by half. In the case of the s1 dataset where the 

clusters were well separated, FCM took a longer time to converge because of its random 

initialization, while eFCM reduces the runtime by four folds. For s2, s3, s4 datasets, even 

when there is an increase in overlap, eFCM were able to converge faster than FCM in all the 

scenarios.

V. Conclusion and Future work

In this paper, we discuss the underlying local optimization issue that the FCM algorithm is 

potentially facing. The solution to this problem could be similar to that K-means algorithm 

exploited: carefully selecting the initial centroids. We incorporated the centroid initialization 

idea of K-means++ algorithm into conventional FCM to solve the local optimization issue 

and exploit our MIFuzzy to handle complex longitudinal intervention data. Our proposed 

eFCM identified the same optimal number of clusters as MIFuzzy and seems to achieve 

better computational efficiency. Compared to FCM, eFCM produce better clustering results 

regarding the number of optimal clusters and computational speed. Similar to K-means++, 

eFCM seems to solve the local optimal problem but better than K-means++, while handling 

overlapping clusters. Although limited by the data features used in this paper, the eFCM 

shows the potential to be fully incorporated into MIFuzzy and could handle complex 

longitudinal data with better computational speed, potentially more important in processing 

big heterogeneous data.
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Figure 1. 
eFCM built in MIFuzzy
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Figure 2. 
Centroids for K-means, K-means++, FCM, eFCM for synthetic dataset
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Figure 3. 
Centroids for K-means, K-means++, FCM, eFCM for s1 dataset
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Figure 4. 
Centroids for K-means, K-means++, FCM, eFCM for s2 dataset
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Figure 5. 
Centroids for K-means, K-means++, FCM, eFCM for s3 dataset
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Figure 6. 
Centroids for K-means, K-means++, FCM, eFCM for s4 dataset
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Table I

Notation Table

C Number of Clusters

N Number of Observations

P Number of dimensions

X Observations in RN×P as {x1, x2, x3, …, xN}

U Membership matrix

uij Membership value of ith point in jth cluster

dij Distance from ith point to jth Centroid

V Vector of Centroids v1, v2, …, vC

i index of ith point

j, k Index of jth or kth Centroid

r Iteration

m Fuziffier

ε Iteration termination criterion
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Table II

Evaluation Table

Dataset FCM* eFCM* FCM(XB) eFCM(XB)

Synthetic 0.2793 0.1344 6033 76

s1 3.0592 0.6291 82586 19183

s2 1.2689 0.6165 90009 1793

s3 1.3714 0.3067 65861 28246

s4 0.4912 0.4366 24978 24345

*
Columns indicates the running time of algorithm in seconds.

Int Conf Comput Netw Commun. Author manuscript; available in PMC 2019 March 21.


	Abstract
	I. Introduction
	II. Literature Review
	III. Methods
	Algorithm 1
	Algorithm 2
	IV. Evaluation
	V. Conclusion and Future work
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Table I
	Table II

