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Abstract

How to enhance the communication efficiency and quality on vehicular networks is one critical

important issue. While with the larger and larger scale of vehicular networks in dense cities, the real-

world datasets show that the vehicular networks essentially belong to the complex network model.

Meanwhile, the extensive research on complex networks has shown that the complex network theory

can both provide an accurate network illustration model and further make great contributions to the

network design, optimization and management. In this paper, we start with analyzing characteristics

of a taxi GPS dataset and then establishing the vehicular-to-infrastructure, vehicle-to-vehicle and the

hybrid communication model, respectively. Moreover, we propose a clustering algorithm for station

selection, a traffic allocation optimization model and an information source selection model based on

the communication performances and complex network theory.

I. INTRODUCTION

Due to the emerging of intelligent transport system, vehicular networks have received lots of

attentions. Although cellular networks enable convenient voice communication and simple en-

tertainment services to drivers and passengers, they are not well-suited for certain direct vehicle-

to-vehicle (V2V) or vehicle-to-infrastructure (V2I) communications [1]. In particular, how to

improve the performances of the communication system has already been under development [2],

http://arxiv.org/abs/1701.00240v3
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where some key technologies [3], e.g., small cells, device-to-device (D2D) communication,

mobile clouds, flexible spectrum management etc., can be considered to be employed in vehicular

networks.

In the literature of vehicular networks, many researches focused on improvement of the vehicle

mobility models [4], communication channel models and the routing strategies [5] [6], while the

network properties as well as the complex characteristics of the vehicular networks have not

been fully investigated. The vehicular networks are associated with a tremendous network size.

Moreover, diverse hierarchical structures and node types give rise to more complex interactions.

Furthermore, vehicular networks have a complex time-space relationship. The mobility of the

vehicles on the road lead to the dynamic evolutionary topology. In terms of some hot communi-

cation technologies, the ultra dense cellular deployment would lead to more than ever interactions

among vehicle units (vehicles to infrastructures and infrastructure to infrastructure) and the D2D

based vehicular-to-vehicular communication also lead to a more complex hybrid communication

network. Therefore, it is necessary to view the vehicular networks from the other dimension,

i.e., using complex network theory to discover the complex characteristics of vehicular networks,

based on which the network performance can be improved.

With the development of random graph model, the complex network theory emerged based on

the [7] and [8], which discovered the small-word property and the power-law distribution of the

node degree of the realistic complex networks. Based on the advantages of complex networks

theory, this paper proposes a complex network theoretic view on the vehicular networks with

following original contributions. For one thing, this is the first work to establish the vehicular

network V2V and V2I models with complex network theory. Moreover, We use the node degree,

average path length, clustering coefficient and betweenness centrality to analyze the topology of

a vehicular network based on the taxis GPS database of Beijing [9] and study the relationship

between the network topological properties and communication parameters. For another thing,

we propose a clustering algorithm, a traffic allocation model and an information source selection

model depending on the communication impedance.

The rest of this paper is organized as follows. Section II establishes a vehicular network system

model based on the complex network theory, and gives some key parameters and their characters.

Section III describes three typical vehicular communication models and three optimization

algorithm models. Section IV gives the simulation results for the proposed models. Concluding
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Fig. 1. The taxis GPS distribution in Beijing (longitude from 116.25 to 116.55 and latitude from 39.8 to 40.05).

remarks and future work are given in Section V.

II. DATA-DRIVEN COMPLEX NETWORK MODEL

A. Dataset Analysis

In vehicular networks, vehicles can communicate with each other (V2V), and can also establish

communication with the roadside infrastructures (V2I). In this subsection, we construct the

complex network model for the vehicular networks based on a real-world dataset, which contains

the taxi GPS data of Beijing (longitude from 116.25 to 116.55, and latitude from 39.8 to 40.05)

obtained from the Microsoft Research Asia [9].

Based on the aforementioned GPS dataset, we plot the vehicles position distribution in the

Fig. 1 at one moment. The vehicles position distribution clearly reflects the shape planning struc-

ture of Beijing and distinguishes its downtown and suburban areas. In the following subsection,

we will construct a weighted and undirected graph model based on some key communication

parameters for vehicular networks.

B. Weighted and Undirected Graph Models for Vehicular Networks

In accordance with the analyses above, we build the vehicular network model as a weighed

and undirected complex network in which the nodes represent the vehicles in the road segments

and the undirected edges represent the interaction between the nodes. The interaction in this

paper means the communication between each two vehicles. The edges weights measure the
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communication performances on the vehicular networks which depend on the distance between

the communication pairs, communication channel fading, the environment disturbance and the

cellular radius.

To simplify modeling and calculation, we assume that the communication ability of each vehi-

cle is identical and communication channel meets the COST 231-Bertoni-Ikegami model [10]. In

addition, we neglect the cellular gaps and the cellular shapes, which are not affected by terrain.

Accordingly, the weighted and undirected vehicular network is noted as a graph G=(V,E,R),

where V is the set of vertices representing vehicles and E is the set of edges representing

the interaction among the vertices. Weights R reflect the communication performance on the

vehicular network. R reflects the communication performance in the vehicular ad hoc network,

where the specific definition of the communication impedance R is based on the following key

communication technologies:

Channel Model: Because of the city dotted with tall buildings and luxuriant trees, signals

from sources may be attenuated severely to destinations. This paper use the COST 231-Bertoni-

Ikegami Model to analyze the transmission path loss. We assume that there exists a line-of-sight

transmission path between each two communication-capable vehicles. Therefore, the relatively

accurate path loss in the urban area, Lu can be calculated as:

Lu = 42.6 + 26 log d+ 20 log fc dB, (1)

where d is the transmission distance and fc represents the signal carrier frequency.

Ultra Dense Cellular Handover: Communication system tends to construct a multi-layer

heterogeneous network covering base stations and low power micro-stations. In order to improve

spectrum efficiency and the transmission capacity, we have made unremitting endeavor on the

enhancement of the modulation and encoding methods, while the decrease of cell radius can

also result in a sharp increase of system capacity. Therefore, an appropriate communication cell

radius improves spatial multiplex ratio and reduces the system power consumption. Nonetheless,

an ultra dense cellular handover means a frequency conversion, more shared-spectrum inter-

ferences and more difficulties in multi-point coordination. Spontaneously, the time-delay and

handoff dropping probability are both increased due to the ultra dense cellular handover, which

increases the impedance of communication of each communication link. We make a statistical
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calculation of the number of cellular switching on each communication link, noted as ns. Based

on the communication channel model and ultra dense cellular handover mentioned above and

considering the node degrees and betweenness centralities in the complex network theory, we

define the weight of the edge connecting node i and node j, marked as Rij , which is named as

link communication impedance:

Rij=




α(kiBi+kjBj)

υ+βLu
ψ−µ(ϑ/dij)

ξ + ζns, dij ≤ r

∞, dij ≤ r
(2)

where ki represents the degree of the node i and Bi notes the betweenness centrality of vehicle

i. ϑ shows the energy noise ratio, α, β, µ are characterized parameters varying with diffident

network topology, and υ, ψ, ξ and ζ are nonlinear control parameters. Based on the above

definition, the communication impedance depends on the node degree, link distance, frequency

of communication, average signal energy noise ratio and the cellular switching times. First, a

vehicle with a large degree or high betweenness centrality means it participating in quantities

of communication missions, which leads to a relatively long store-and-forward delay and high

probability of blocking. Second, long communication distance conduces high path loss and

consumes much more signal power. What is more, a small cellular radius leads to more cell

handovers ns, which also increases the time delay and deteriorates the communication per-

formance. In these two aspects, the communication impedance should be positively correlated

with k, B and ns. Third, a high average signal energy noise ratio per unit distance contributes

a robust communication, naturally being negatively correlated to the impedance. In this way,

we have completely established a complex network graph model for the vehicular network

communication.

C. Complex Network Verification

In this section, we quantitatively analyze and verify the small-world property and scaling-free

property of the vehicular networks. In the first place, we propose some key parameters depending

on the complex network theory.

Node Degree Distribution: The node degree of a vehicle i in the vehicular network, marked

as ki, is defined as the number of the vehicles it can communicate with. Moreover, p(k) is the

probability that a randomized node’s degree is k. And the distribution of p(k) is defined as the
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node degree distribution.

Clustering Coefficients: The characteristic that neighbors can also communicated with each

other is called the clustering characteristic, which measures the tightness of the network. The

vehicle i’s clustering coefficient is defined as the following:

Ci =
Ei

ki(ki − 1)/2
, (3)

where ki represents the node degree of vehicle i and Ei is the number of communication links

among neighbors. Further more, the general clustering coefficient of the entire network is the

average of Ci.

Betweenness Centrality: The normalized betweenness centrality B, and therefore, is defined

to measure the importance of the node from another dimension, i.e.,

Bi =
2

(N − 1)(N − 2)

∑

s 6=i 6=t

nist
gst
, (4)

where gst is the number of the shortest path from s to t, and nist notes the number of the shortest

path via i from s to t.

A data-driven numerical simulation is conducted for the vehicular network and we verify the

complex network properties based on the Taxi GPS dataset. Fig. 2 demonstrates the parameters

mentioned above of the proposed network with communication distance r = 500. Moreover, we

calculated the average network clustering coefficient C = 0.7225 and the average path length

l = 6.73374.

The simulation results conform to the small world property (a high degree of clustering and

a short average path length) and a scaling free distribution in node degree and betweenness

centrality. In consequence, we can quantitatively treat the vehicular network as a complex network

and the complex network theory bring us a new perspective in network design, optimization and

management for the communication on vehicular networks. Next section, we will propose three

optimization models under different communication models.

III. COMMUNICATION ON THE VEHICULAR NETWORKS

In Section II, we have discussed the network topology of vehicular networks. Based on the

analysis above, we establish the V2I (Section III-A), V2V (Section III-B) and the hybrid com-
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Fig. 2. The Complex Network Parameters Verification.

munication model (Section III-C), respectively, with the communication impedance. Moreover,

we propose a clustering algorithm for station selection, a traffic allocation optimization model

and an information source selection model.

A. Clustering Algorithm of the V2I Model

In the following, we will focus on the V2I communication model. Similarly, the vehicle

impedance in the V2I model is defined based on the Massive MIMO in vehicular communication

system, which is a technology to enhance the overall networks performance. With a large excess

of service antennas over terminals and time-division duplex operation, the extra antennas focuses

energy into ever smaller regions of space and bring huge improvements in communication

throughput and energy efficiency. In [11], the authors proposed the throughput R̃k (achievable
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rate of the uplink transmission from user k to measure the behavior of massive MIMO systems):

R̃k , (1− τ − ς) E[log(1 + γk)], (5)

where γk shows the the signal-to-interference-plus-noise-ratio (SINR) which is a function con-

taining channel model parameters and antennas parameters. τ is the channel estimation (CE)

time, and ς is the wireless energy transfer (WET) time. In our model, we only consider the

value of R̃k instead of its impact factors. We assume that the base stations directly communicate

with vehicles within its control range, which means that the distance from a vehicle to a base

station is less than the cellular radius in the V2I Model. In this way, we define the communication

impendence of vehicle i as follows:

Ri = α(kiBi)
υ + βR̃k

ψ
, i = 1, 2, ..., N. (6)

Similarly, ki represents the degree of the node i and Bi notes the betweenness centrality of the

vehicle i. R̃k shows the throughput of a certain vehicle-to-station communication link. Besides,

α and β are characterized parameters varying with diffident network topologies, while υ and ψ

are nonlinear control parameters. A clustering algorithm based on the generalized distance D is

presented.

Dij = ǫ(Ri +Rj) + (1− ǫ)dij , (7)

where Ri represents the vehicle impendence, dij represents the realistic distance of two vehicles

and ǫ denotes the weighting coefficient.

Clustering algorithm based on generalized distance.

Step1: Select one sample point as the clustering center c1.

Step2: Calculate the generalized distances to the center, and select the i with maxiDic1 as center

c2.

Step3: Calculate all the generalized distances to the two centers, and select the j with max{min{Djc1, Djc2}}

as center c3, the rest can be done in the same manner.

Step4: Based on the nearest neighbouring rule classifying other samples.

Fig.3 shows a clustering example based on the generalized distance, which provides a con-
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Fig. 3. A clustering example based on the generalized distances (different color dots distinguishing the categories).

structive suggestion on the base station selection and cellular division.

B. Traffic Allocation on the V2V Model

In terms of the complex communication missions in vehicular networks, a variety of services

like real-time voice services, high definition video services and Internet access services should

be supported whenever and wherever. However, how to allocate the communication traffic in

an optimal fashion is worth discussing in details. For simplification, we assume that there are

certain quantities of communication tasks transmitting from n vehicles to a destination vehicle.

The total communication demand quantity is marked as Q. Let v be the vehicle node set and the

starting vehicle set is denoted by S = s1, s2, ..., sn and X = x1, x2, ..., xn represents the allocated

communication traffic allocation set, where xi is the actual communication task quantity on the

ith communication link. We define the cost function C(x) as:

C(x) =

n∑

i=1

∑

u,v

xiR
i
uv, (8)

where Ri
uv is the communication impedance from vehicle u to vehicle v on the Dijkstra path

under the condition of transferring the communication traffic xi. Let c be the communication

capacity of each communication link, which denotes the maximum number of communication

tasks and let muv represents the total communication tasks on the communication link between
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vehicle u and v, muv ≤ c. We have the following optimization problem:

min C(x) =
n∑

i=1

∑

u,v

xiR
i
uv

s.t. xi ≥ 0, ∀i = 1, 2, ..., n,

n∑

i=1

xi ≥ Q,

muv =
n∑

i=1

xia
i
uv ≤ c, ∀u, v ∈ V,

(9)

where x = [x1, x2, ..., xn]
T

and aiuv = 1, when the traffic xi goes through the link connecting

the vehicle u and v, otherwise aiuv = 0. The network traffic allocation optimization problem can

be casted as a convex optimization problem in (11) by the definition of traffic-edge incidence

matrix A ∈ RE×n, and

Aij =




1, traffic j passing the edge i

0, otherwise
(10)

where E is the total number of probable links, x = [x1, x2, ..., xn]
T

, and 1 = [1, 1, ..., 1] T . Then,

we have

min C(x)

s.t. x ≥ 0,

xT1 ≥ Q,

Ax ≤ c1.

(11)

Furthermore, we can add a eigenfunction to this linear programming problem and rewrite it as

follows:

min xTRw +
n+E+1∑

i=1

−
1

t
log(−fi(x))

s.t. fi(x) = −xi, i = 1, 2, ..., n,

fi(x) = Q− xT1, i = n + 1,

fi(x) = Aix− c, i = n + 2, n+ 3, ..., n+ E + 1.

(12)
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where Ai represents the row vector of matrix A and auxiliary variable t > 0 controls the

computational accuracy. Rw is the sum of the communication impendence of each the allocation

routing.

The solution of the problem (12) is marked as x∗(t), which satisfies the condition:

tRw −
1

x
+

1

Q− xT1
· 1+AT 1

c1−Ax
= 0, (13)

where let 1
x
= [ 1

x1
, 1
x2
, ..., 1

xn
]
T

, ∀x ∈ Rn. And we can prove that the deviation between x∗(t)

and the optimal solution of primal problem is not more than (n + E + 1)/t. Many computer

simulation algorithms can solve the above optimization problem.

C. Information Source Selection on the Hybrid Model

The criterion for selecting the information source location is to make the network capacity

maximize. In another word, the information broadcasting facilities should be located near the

source vehicles associated with information replicas. In this subsection, we focus on the hybrid

communication model, where we study the optimal source vehicles selection strategy. Let q(i)

indicate the probability of any packet to pass node i, and nist and gst are defined identically as

(4):

q(i) =
∑

s(s 6=i)

∑

t(t6=i)

p(s, t)
nist
gst
, (14)

where p(s, t) is the probability of a packet to choose source vehicle s and vehicle t as its

destination. Instead of uniform distribution, the source vehicles obey the probability p(s), while

we assume that the destination vehicles of packets are uniformly distributed and are independently

selected. We have:

p(s, t) = p(s)p(t) =
p(s)

N − 1
. (15)

Then, the probability of any packet to pass vehicle i can be calculated as follows:

q(i) =
1

N − 1

∑

s 6=i

∑

t6=i

p(s)
nist
gst
. (16)
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Define the p(i|s) measuring the conditional probability of the situation where packet starts from

vehicle s to pass vehicle i,

p(i|s) =
1

N − 1

∑

t(t6=s,t6=i)

nist
gst
. (17)

Then, Rc can be estimated as:

Rc =
C

maxi{Ri

∑
s p(s)p(i|s)}

, (18)

where Rc indicates the upper bound packets generated per time step to maintain in a flow state,

and serves as a measure of the overall capacity of the network system, which is a function of

betweenness centrality and communication impendence Ri.

The base station selection model, therefore, reduces to a a min-max problem:

min maxi{Ri

∑
s
p(s)p(i|s)}

s.t. 0 ≤ p(s) ≤ 1,
∑

s

p(s) = 1.

(19)

After introducing an auxiliary variable Λ:

Λ = maxi{Ri

∑
s
p(s)p(i|s)}(i = 1, 2, ..., N), (20)

the optimization problem can be casted as a linear programming problem as follows:

min Λ

s.t. RAp− Λ1 ≤ 0,

pT1 = 1,

p ≥ 0,

(21)

where A = [p(i|s)], p = [p(s), s = 1, 2, ..., N ]T and 1 = [1, 1, ..., 1]. R is defined in (22)

R =



















R1 0 · · · 0

0 R2

...

...
. . . 0

0 · · · 0 RN



















. (22)
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Fig. 4. Communication impedances analysis and optimal information source selection on the hybrid model.

Thus, we can easily find the minimal Λ by linear programming algorithms and get the

numerical solution with the help of calculating computer.

IV. SIMULATION RESULTS

In this section, we conduct simulation on the extensive studies about the network topology and

the communication performances based on our models. First of all, we analyze the influence

of the maximum communication distance r and other key communication parameters on the

network topology.

Section III-B proposed a vehicular network V2V communication model based on the complex

network theory, relying on which we elaborated some complexity parameters to analyze the

performance of the network in the respect of topology structure. In the following, we analyze

the effect of communication parameters on the communication impedance. On this score, we

only concentrate on the topology properties of the vehicular network based on the Taxis GPS

in Beijing for the time being and give constructive suggestions on the traffic management and

communication design.

The carrier frequency mainly determines the transmission path loss Lu. We obtain five curves

with different maximum communication distances, as in Fig. 4 subgraph (a). The vertical coor-

dinates represents the average communication impedance for each of links and in this situation

we neglect the effect of node importance by letting α = 0 in (2). With the increasing of

carrier frequency under each scenario, the average communication impedance R ascends corre-

spondingly. Obviously, the conclusion can be deduced from the definition of the communication

impedance R. Likewise, a large maximum communication range r contributes the communi-

cation impedance with more power loss. Specifically, with a small maximum communication
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range r (200m∼500m), communication impedance R maintains a relatively small value but a

high growth rate with r. However, when the r reaches a specific distance (above 800m), the

grow is slowing and communication impedance is tending towards stability. To our knowledge,

the carrier frequency in communication may apply a high carrier frequency, but it needs a

comprehensive consideration on the path loss and the communication range. Fig. 4 subgraph

(b) shows the relationship between cellular radius and switching times under the condition of

different maximum communication ranges. Generally speaking, the switching times descend

with the increasing of cellular radius and the declining rate tends mildness. Even though we can

improve spectrum efficiency and the transmission capacity by narrow down the cellular radius,

large switching times reduce the communication performance in the same way. When we extend

the maximum communication range, obviously there is a soaring incasement in the switching

times under the scenarios of relatively small radiuses. As cellular radius rc > 700m, the switching

times have no significant changes. The simulation results are consistent with the actual situation.

The distribution of taxis in the city are concentrated in crowded areas, which is just the clustering

feature of the small-world network. The average path length l is surprisingly to a limited extent.

As a consequence, in terms of an appropriate cellular radius rc, the average switching times

hover in a narrow range. To summarize, the communication parameters to some extent affect

the impedance of communication. In the realistic engineering, we should synthetically consider

the carrier frequency, maximum communication distance, energy utilization efficiency, cellular

radius etc, where a trade-off may contribute a communication effects. This paper provides a

performance analysis method rather than the specific parameters.

As for the information selection model, Fig. 4 subgraphs (c) and (d) shows the related simula-

tion results with the maximum communication distance r = 500m. Subgraph (c) demonstrates the

communication impedance of each vehicle in the descend order. Subgraph (d) is the simulation

result about how to select the information sources. Obviously, we can conclude that the vehicles

play highly symmetrical roles in the information spreading. As shown in subgraph (d), only

a few vehicles should act as sources in heterogeneous vehicular networks. That’s means the

source vehicle should be distributed within a small number of the nodes. Therefore, we can

direct or manage fewer vehicles to control the entire vehicle network. More than that, an

appropriate communication distance means a small range communication defined above due

to the dispersed degree distribution and the low path loss. It makes great contribution to the
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green communication with a low power dissipation. As the vehicular network is a large-scale

heterogeneous network, our work suggests that to improve the network capacity, information

like traffic accident, congested roads or the traffic control should be broadcasted deriving from

certain source vehicles.

V. CONCLUSION

In this paper, we analyzed the V2V and V2I communication performances on vehicular

networks based on complex network theory. Furthermore, we proposed a clustering algorithm

for station selection, a traffic allocation optimization model and an information source selection

model, respectively which were viewed as examples for illustration of the concrete application

of the defined communication impedance.
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