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Abstract—In a smart grid environment, we study coalition
formation of prosumers that aim at entering the energy market.
It is paramount for the grid operation that the energy producers
are able to sustain the grid demand in terms of stability and
minimum production requirement. We design an algorithm that
seeks to form coalitions that will meet both of these requirements:
a minimum energy level for the coalitions and a steady production
level which leads to finding uncorrelated sources of energy to
form a coalition. We propose an algorithm that uses graph tools
such as correlation graphs or clique percolation to form coalitions
that meet such complex constraints. We validate the algorithm
against a random procedure and show that, it not only performs
better in term of social welfare for the power grid, but also that
it is more robust against unforeseen production variations due
to changing weather conditions for instance.

I. INTRODUCTION

One of the key ideas in the smart grid revolves around
the introduction of communication means inside the power
grids. This could enable complex improvements in the energy
management and leads progressively to a greener energetic
system [1] [2]. Distributed energy resources (DER) such
as wind turbines or photovoltaic panels are not supposed to
emerge only in remote farms, but also in residential areas.
Together with electric vehicles, and demand side management
programs [3], they will constitute the building blocks which
will help to turn the today pure energy consumers into true
actors of the grid operation [1]. Such agents that both consume
and produce energy are ready to make concessions (appliances
delays, V2G) to ensure grid stability, and are commonly called
prosumers [1], [4].

There seems to be a clear consensus on the benefit of having
bidirectional communication flows between the prosumers
and the grid, as demand side management relies on such
an architecture [2]. Nevertheless as the number of active
prosumers is expected to rise, it is safe to assume there is
a need for more complex communication patterns (prosumers
grouping together into so-called "coalitions") that will help to
decrease the communication burden and satisfy the multiple
requirements of the power grid management. Formation of
coalitions inside a smart grid environment could be applied to
various types of agents such as self sufficient micro-grids [5],
sizable and adjustable virtual power plants (VPP) [1], [6], or
fleet of electric vehicles that back up the grid in emergency
situations (V2G) [1]. These are only a few use cases where
the coalition of multiple agents can enhance the grid reliability

and in the mean time reduce the communication burden.
In this paper, we consider the case where prosumers wanted

to be clustered together into coalitions in order to be able to
produce enough power which may be sold to the grid. If
the coalition’s production is sufficiently high and stable, the
coalition can negociate on a day by day basis with the grid
by announcing each day an expected production for the next
day. We focus on how to statistically improve the production
stability by carefully forming coalitions of prosumers that have
greater probabilities of staying in acceptable range of pro-
duction. By using prediction techniques, we form coalitions
that meet the contract values ranges proposed by the grid,
enabling it to schedule its production accordingly. Meeting
contract values for the prosumers is especially relevant in
power trade conditions, where energy is traded based on day-
ahead predictions. In this context, participants should try to
minimize their prediction errors in order to maintain a stable
state for the grid. They may even occur some penalties if the
productions deviate from the initial contract values. However,
it remains pertinent for both side to maintain the production
as stable as possible : for the prosumer, the stability (with
renewable energy sources) will impact its net gain, and for
the power grid, it will help to maintain its reliability.

In this paper, we seek to form coalitions that are able to
announce "high contract values with high reliability". We thus
aim at:

• Building a realistic prosumer model with renewable pro-
duction sources based on weather data (see section III-A).

• Define a coalition formation model that enables the grid
to set some requirements under which any group of
prosumers will be allowed to sell its production (see
section III-B)

• Define a utility function that will satisfy the grid re-
quirements and maximize the stability of the prosumer
coalition productions (see section III-C)

• Define a coalition formation algorithm (see section IV)

In section III, we consider that the agent’s production
depends on meteorological conditions (wind turbines and
photovoltaic panels (PV) as generators), various energy mix
and preferences, and their appliances (loads). We use meteo-
rological data (see section III-A) to account for seasonal and
daily variations in the prosumer’s energetic profiles as well
as realistic geographical correlations between different agents.
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With these ingredients, we are able to run realistic simulations
and record the different output profiles as time-series.

In order to select groups of prosumers that lower the
volatility of the coalition’s productions, we define an algorithm
based on a popular approach for stocks market clustering [7].
We use a modified clique percolation algorithm (see section
IV) that will enable us to expand the cliques as needed in order
to form proper coalitions that fulfill both the grid requirements
and lower the production volatility. Finally, section V provides
some results and a conclusion in section VI.

II. RELATED WORK

Traditionally, forming coalitions in a pool of agents can be
done either in a centralized way where a single central unit
is responsible for all the computations or in a distributed way
where agents have only local knowledges and take actions
accordingly. It is of common use to represent the situation
and assess the stability of the solution by using game theoretic
tools. Some papers [8] [9] focus then on finding an optimal
coalition structure giving a pool of autonomous self interested
agents using distributed merge/split algorithms.

Tackling the stability issues of renewable DER, the
TradeWind project [10] simulated the impact of wind power
on electricity exchange and cross-border congestions by us-
ing a flow-based market model. The idea revolves around
identifying key european interconnections (already existant or
not) in order "to make optimal use of the european spacial
de-correlation of wind power". It was indeed shown that
geographical aggregation provides smoothening effects and
that the amount of prediction errors for wind power in a
geographical region diminishes as the region size increases,
especially for short forecast horizons.

On a narrower scale, [11] study the formation, in a game
theoretic setting, of virtual power plants (VPP) composed of
multiple self-interested DER. Two requirements for the for-
mation of virtual power plants are considered : the reliability
of supply and the minimization of entities the grid has to
deal with. From this, [11] builds a pricing mechanism that
encourages VPP to report true estimates of their aggregated
production and penalizes prediction errors. A redistribution
scheme of the VPP to the DER is also constructed such that
the payoff allocation lies in the core of the game, meaning
that no DER has an incentive to leave the coalition.

In this paper we do not consider stability against player de-
fection but focus on a statistics-oriented definition of coalition
stability. We want to form coalitions based on utilities that de-
pend on statistical properties of time-series values. The setting
is thus similar with some financial studies on stock exchanges,
where researchers tried to find relevant correlated clusters of
stocks based on their daily prices variations. There exists well-
known algorithms such as K-means or hierarchical clustering
that are traditionally used for such purposes. Nevertheless,
despite their popularity, they do not appear particularly well
suited for meaningfully translating complex correlation rela-
tionships between time series while clustering them, especially
when these series exhibit complicated underlying patterns. In

[7] the author introduced an approach where stocks time-series
of their daily log returns, are organized in a graph such that
stocks exhibiting similar price fluctuation patterns are close
to each other. This closeness notion is formalized with a
similarity measure based on Pearson correlation coefficient

(dij =
1

2

√
2(1− ρij) or dij = 1−ρ2

ij ) that enables to weight
the edges of the graph.
ε-graphs, consists in filtering edges based on their weight,

only keeping edges whose weights are less than ε. In [12],
[13], the authors studied the topological properties (average
clustering, connectivity, relative number of cliques) of the
correlation graph against those of growing random graphs,
depending on the threshold ε. However, there is no well
defined method to select a right tradeoff ε as a function of
the network topology.

Presented in this way, the time-series clustering task seems
very close to graph community detection. Communities in
networks are indeed often seen as groups of nodes exhibiting
high internal densities of links as well as a low density across
communities, and several topology oriented techniques for
finding communities are present in the litterature ( [14] [15]
[16]). For our purpose where decorrelation is the closeness
notion, such algorithms tend to have some difficulties because
only a few inclusions of very high correlations can strongly
affect the stability of a coalition. However, local cliques,
where all nodes are linked, provide uncorrelated groups of
nodes. There exists greedy heuristics based on cliques in the
litterature such as clique percolation [17] which realizes local
optimizations of a fitness function and results in overlaping
community structures. Detection of overlapping communities
is actually a very active field of research, especially in social
networks where a person might belong to several communities.

III. MODEL

A. Prosumer model

Our major concern is to characterize a prosumer behavior
with realistic patterns of consumption, production as well as
realistic geographical correlations between them. Only wind
turbines and PV will be used as generators throughout this
paper, and we denote by A = {a1, ...aN} the set of prosumers.
To account for the production of a prosumer, we rely on
French’s weather data from 2006 to 2012 sampled every 3
hours [18] (similar data are available for the United States
covering 2010 [19]). As shown in the first part of figure 1, the
first step consists in discretizing the studied zone around well
chosen weather stations and gathering three kinds of traces
(wind speed, cloudiness, and temperature) that we organize
in a structure we will refer to as "climate vector" in the
following. We consider that climate vectors are constant over
their area, meaning that, if two agents are in the same area,
they are exposed to the same climate vector. We use existing
DER models enabling conversion between weather variables
and output powers (see power curves in [11] [20]). [21]
provides also a convenient way of using cloudiness traces as
realistic degradation factors in a "clear blue sky" solar model,
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Figure 1: Process diagram

which enables us to rebuild realistic solar irradiance traces for
stations that do not provide such information directly.

Consumption behaviors are characterized by a model we
designed, which takes into account two major cycles :
• Daily cycles : Consumption is low during night, and

higher during the day with two picks in the morning and
evening. Some noise is added so that prosumers have
similar but not identical cycles.

• Seasonal cycles : Consumption is higher in the winter
because of heating and low in the summer (air condition-
ing is not considered). Temperature traces are used for
modeling these cycles.

At this point, modeling agents consists in fixing a few
parameters (most of the time drawn from random distribu-
tions) such as the geographical position, the number of wind
turbines, PV, appliances, the temperature of confort, and so on.
The objective is that, depending on the weather of his zone,
the DER and appliances he owns, and the way he decides
to heat his home, a given prosumer is able to compute his
production/consumption at any time.

Let Pi(t) be the instantaneous available power of agent i at
instant t (his instantaneous production minus his instantaneous
consumption). During the simulation (from t0 to tK), all
agents record their values with an hour time interval. As
expected, the prosumer’s time-series exhibit high seasonal
patterns, but completely different from agent to agent be-

cause they depend both on the energetic mix and the habits.
Nevertheless, these macro variations can hide the interesting
information in the correlation coefficients and twist the rest
of our process. Thereby, we remove these seasonal effects
for all agents (see second block of figure 1). We denote by
Ti = {Pi(t0), ..., Pi(tK)} the resulting time-series for agent i,
and by F(Pi) the corresponding probability distribution.

B. Coalition formation model

Let us recall that our goal is to group prosumers into
coalitions so that the global power production resulting of
the superposition of individual prosumer’s productions be
sufficiently predictible and above a minimum power level. We
thus extend the agent notations to any coalition s ⊂ A :
• Ps(t) =

∑
i∈s Pi(t)

• Ts = {Ps(t0), ..., Ps(tK)} with F(Ps) the corresponding
probability distribution

Furthermore, we consider that a coalition S has the possibil-
ity to announce a contract value PCRCTs on the market. Due
to the volatile nature of DER productions or user consump-
tions, the available power of a coalition will oscillate around
PCRCTs . It is of the responsibility of the information system
that forms coalitions to select agents in order to provide a
production as stable as possible. The probability of s value
being below its contract value Pr[Ps ≤ PCRCTs ] appears
therefore as a quantity of interest that we would want to keep
as low as possible.

To illustrate what is done in the following, let us consider
a very simple example with two agents, say i and j, with a
production following a gaussian value probability distributions
F(Pi) = N (µi, σi) and F(Pj) = N (µj , σj), such that the
joint probability distribution F(Pij) of the coalition {ij} is
also a gaussian with the following parameters :{

µij = µi + µj

σij =
√
σ2
i + σ2

j + ρijσiσj
(1)

ρij the Pearson correlation coefficient between Pi and Pj .
We can easily write the probability Pr[Pij ≤ PCRCTij ] as :

1

2

[
1 + erf

(
PCRCTij − µij

σij
√

2

)]
(2)

Let φ ∈ [0, 1] be the reliability constraint imposed to
the coalition {ij}. It stipulates that if {ij} wants to join
the market, the probability of {ij} value (at any instant t)
being below its contract value should at most be φ. That is,
Pr[Pij ≤ PCRCTij ] ≤ φ. We also impose to {ij} a minimum
contract value constraint denoted by PMIN , which states that
the coalition should announce more than PMIN to be accepted
(PCRCTs ≥ PMIN ).

Coalition {ij} has thus potentially a set of possible contract
values that respects both rules. The strategy of {ij} (and
all other coalitions in the paper) consists then in choosing,
if it exists, the maximum value of this constrained set. We
denote by Pφ(s) this maximum value for a coalition s. For



Pi(t) ∈ R (Ps(t)) Instantaneous production of agent i at time t
F(Pi) (F(PS)) Probability distribution of i’s production
φ ∈ [0, 1] Reliability threshold
PMIN ∈ R+ Min value threshold
PCRCTs ∈ R+ Contract value announced by coalition s
Pφ(s) ∈ R+ Max contract value under φ constraint
Uφ, PMIN (s) Utility function
τi(s) ∈ R Overlapping to disjoint coalitions mapping
ε ∈ [0, 1] Pruning threshold for the correlation graph
NCOAL ∈ Z+ Number of desired coalition
CS Set of all coalition structures
Θ(G) Set of non overlaping cliques in graph G

Table I: Notations

{ij}, Pφ(s) can be computed using eq. 2 : Pφ(ij) =
µij − σij

√
2erf−1(1 − 2φ). If Pφ(ij) ≥ PMIN , then {ij}

can announce PCRCTij = Pφ(ij) on the market, else it is
not allowed to enter. It thus appears (as it was intuitively
understandable) that, for equivalent sizes, coalitions with low
relative standard deviations ( σij/µij ) are able to announce
higher contract values.

What this paper investigates in the following is the devel-
opement of a heuristic that organizes prosumers such that the
synergy terms of the standard deviations (ρijσiσj in the ex-
ample above) are minimized. More formally, we consider the
following problem (Table I summarizes the main notations):

arg min
S⊂CS

|S|=NCOAL
∀s∈S, |s|6=0

PCRCTs ≥PMIN

∑
s∈S

Pr
[
Ps ≤ PCRCTs

]
(3)

As explained in the example above, if a coalition s wishes
to join the market, it has to choose a contract value within a
constrained set. Only coalitions whose set is not empty are
able to enter the market (valid coalitions). For simplification,
we consider that valid coalitions will always apply the same
economically consistent strategy of announcing the highest
possible contract value of this set ( PCRCTs = Pφ(s)).
Basically, a coalition s is valid if and only if :{

Pr[Ps ≤ Pφ(s)] ≤ φ (reliability rule)

and Pφ(s) ≥ PMIN (min value rule)
(4)

C. Utility function

Adressing the problem of eq.3, we choose a utility function
(eq. 5) that derives directly from the above remarks. If a coali-
tion cannot provide a valid contract value, it receives naturally
a utility of zero. Furthermore, it seems obvious that the utility
should increase with the contract value. The 1/|s| term in eq.
5 indicates that we favor small coalitions, mainly because they
are easier to maintain in terms of communications.

Uφ, PMIN (s) = 1s valid
Pφ(s)

|s|
(5)

Obviously, maximising this utility function amounts to
maximizing the coalition contract value with the minimum
possible number of agents. In such settings, and through the
clique percolation procedure (section IV), we will show that
coalitions with high utilities can be computed.

IV. COALITION FORMATION

This section explains the process with which we form
the coalitions (see the third block of Figure 1). First, we
need to simulate the time-series of available power (first two
blocks of Figure 1). We consider a pool A of 200 agents,
whose parameters were chosen randomly. The prosumers
are positioned (also randomly) on a square lattice previously
filled with climate vectors obtained from the french data
sets (see section III). Simulations were run from february
2006 to december 2010 such that we are dealing with 200
hourly sampled time-series of available power over this period.
Removing season trends finally leads us to the formation of
coalitions.

The model we used in order to simulate time-series of
available production provides some diversity because of the
combination between the energetic mix (renewable generators
combination) and climate vectors. Nevertheless, as the number
of agents grows, the time-series tend to exhibit similar pat-
terns. This is apparent when creating a correlation graph with
similar metric such as defined in [12] or [13] (1− ρ2

ij), where
well defined clusters appear in the ε-graph for any values of
ε.

However, these clusters of strongly correlated time-series
are the exact opposite of what we are seeking. We can indeed
consider them directly as coalitions and compute their utilities,
and the results show (see the green curves on figure 4), as
expected, terrible values (far worse than a random split of the
agents in the same number of coalitions). We thus opt for
reversing the metric (ρ2

ij) such that uncorrelated time-series
are close to each other in the graph and correlated time-series
are distant. We defined a graph Gε(A, E) where A is the set
of agents and E the edge set. A given link between i and j
is present if ρ2

ij ≤ ε, that is, ei,j = 1{ρ2ij≤ε}ρ
2
ij . As expected

[13], independently of the ε parameter, Gε exhibits henceforth
much less clustering and communities seem hardly visible.
Therefore, using classical clustering or community detection
algorithms seem to provide poor results.

However, as seems intuitively understandable, cliques of
this graph tend to exhibit very good utility values. Such
structures contain indeed a link between every two nodes,
meaning that the overall correlation is quite small. Obviously,
the ε parameter is indirectly responsible for the sizes of the
cliques : if it is too low, Gε does not provide enough cliques,
conversely, if ε is too high, we loose important information
as the graph becomes very dense and cliques tend to overlap
strongly. For large values of ε and for non trivial number
of agents, finding cliques can even become computationally
intensive. Despite being direct and simple, improving the sizes
of the cliques by increasing ε seems too brutal. Furthermore,
as the utility function is also focused on maximizing Pφ(s),
it might be the case that some cliques benefit from additional
agents even if they don’t form a clique anymore. Cliques
for small values of ε appear thus as good seeds for stable
coalitions. We define NCOAL as the desired number of
coalitions fixed by the user. Furthermore, let Θ(Gε) be the set
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of non overlaping cliques in Gε, we choose the ε parameter
as the smallest value such that Gε contains at least NCOAL
non overlaping cliques :

ε? = min
ε∈[0,1]

{
ε s.t |Θ(Gε)| ≥ NCOAL

}
(6)

We construct Gε? such that it contains at least NCOAL
potential seeds that may or may not be above the grid
requirements, but exhibit low correlations among the members.
Naturally, grid requirements could eventually be reached and
social welfare increased by incorporating more nodes into the
seeds. For this purpose, we use a clique percolation algorithm
on Gε? that will extend the seeds over a correlation constrained
environment. The main idea behind this algorithm is to make
the seeds grow by local optimization of a fitness function,
usually based on internal and external degrees of the seeds
[17]. The main difference between our case study and this
algorithm for community detection is that we chose the fitness
function as our utility function (cf. eq.(5)) that both maximizes
the production and minimizes its volatility. As explained in
section II, clique percolation leads generally to overlapping
communities. For simplicity, in this paper, we wish to keep the
coalitions disjoint and leave the management of overlapping
coalitions for future work. We thus implemented a simple
heuristic that considers nodes in multiple seeds one by one
and chooses its final coalition as the one that “needs it the
most” in terms of utility loss. More formally, for a coalition
s and a node i ∈ s, we define :

τi(s) =
Uφ, PMIN (s)− Uφ, PMIN (s− {i})

Uφ, PMIN (s)
(7)

If node i belongs to multiple coalitions, the only coalition
including node i is the one that maximizes τi. At this point, we
have three degrees of freedom : the reliability (φ), the required
power to enter the market (PMIN ), and the number of desired
coalitions (NCOAL). Next section shows the utility behavior
within the parameters space {φ, PMIN , NCOAL} and provides
results of our 200 agents test.

V. RESULTS

As shown in figure 2a, the parameters φ and PMIN shape
the utility function such that, if φ is close to zero, the reliability

requirement is very high. Only small values of PMIN could
then potentially lead to valid coalitions (and positive utilities).
Conversely, the higher φ, the less constraints are imposed to
the coalitions and more valid coalitions can arise for a larger
spectrum of PMIN . Obviously, the highest utility values are
found for high φ, because the formed coalitions are able to
announce higher contract values, yielding higher utilities.

In figure 2b, we fix the reliability to a given empirical
value (φ = 0.08). We can observe how the social welfare∑
s∈S Uφ, PMIN (s) evolves according to PMIN and NCOAL.

In our setting we notice a maximum point around NCOAL = 3,
followed by a decrease. There is clearly a maximum number
of coalitions sustainable for a given set of parameters. After
that value the coalitions newly formed won’t be able to
pass the grid requirements. Moreover, reckon that increasing
NCOAL means also increasing ε, leading to denser graphs,
meaning that the algorithm performance will also decrease.
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Figure 3: Evolution of the coalitions for different values of
PMIN for clique percolation (blue dots) and random process
(red dots). The diameters of the dots are proportional to the
coalition sizes. The hatched zero utility zone corresponds to
the "under-requirement space".

In fig. 3, we perform a simulation with 200 prosumers,
and we fix the reliability φ = 0.1 meaning that coalitions
should produce more than their contract values at least 90%
of the time. We observe the result of our algorithm for a fixed
number of coalitions of NCOAL = 10 and let the algorithm
form the coalitions as the grid changes according to PMIN .
We compare our algorithm with a random process that splits
the agents in NCOAL coalitions. Fig. 3 shows this evolution
for our algorithm (blue dots) and for the random process (red
dots). The diameter of a dot is proportional to the number of
agents in the coalition and the higher the dot, the higher its
utility. The PMIN values of the x axis are expressed in tenth
of MW for readability and the hatched zone corresponds to the
"under-requirement space", meaning that whenever a coalition
is in this zone, it has a null utility. Looking at fig. 3, we can
see first that our algorithm performs better than the random
formation algorithm at finding high valued coalitions. The
blue dots allowed to enter the market (non hatched zone) are
indeed outnumbering the red dots, especially when the grid
requirements are neither too low nor too high (PMIN = 5 in
fig. 3).
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Figure 4: Evolution of the social welfare a) and the percentage
of coalitions able to enter the market b) for different values of
PMIN . Blue curves represent clique percolation, red curves,
the random process, and the green ones, correlated coalitions.

In more details, figure 4a presents the evolution of social
welfare as the number of coalitions increases (all other param-
eters are kept constant) for random (red curve), clique perco-
lation (blue curve), and correlated coalitions (green curves)
that stands for a worst case scenario. As for figure 4b, it
shows the percentage of coalitions able to enter the market
for different values of PMIN . For consistency, we average
the results of both plots over 100 realizations (colored zones
around the curves shows the standard deviations). When the
grid requirements are constant (figure 4b), and the number of
desired coalitions is low, clique percolation generally performs
better than random case. Moreover, when NCOAL gets bigger,
the performance of a random split tumble down rapidly while
our clique percolation is able to maintain efficiently the social
welfare of the coalitions formed. When the grid requirements
vary, for very low PMIN , all coalitions for all algorithms are
able to enter the market, yielding an acceptance percentage
of 100%. But as PMIN increases, we see the percentage of
the correlated coalitions is going down very quickly. After
a few increases in PMIN , the percentage of the random
procedure starts dropping while it stays almost constant for
our algorithm. For PMIN = 8, we see that only a little more
than half of the coalitions for the random case are able to
enter while approximately 85% of them enters for the clique
percolation algorithm. Finally, when the grid requirements
becomes too high, the acceptance percentage of our algorithm
tends slowly to zero (not shown in this plot for readability).

VI. CONCLUSION

We believe that the originality of this paper lies in its
willingness to exploit the de-correlation of prosumer profiles in
order to build stable coalitions. In this direction, we presented
a model based on meteorological traces, that captures the
complex "energetic mix/climate vectors" combination and gen-
erates realistic production and consumption patterns. We then
built a framework that enables the grid to specify stability and
minimum production requirements for filtering the coalitions.
On this basis, we proposed a simple algorithm that seeks for
uncorrelated prosumer patterns as potential seeds and expand
them in coalitions able to rise above the grid requirements. We
validated our algorithm against a random choice of coalitions,

which can be considered as an average case. We showed that
it performs better (coalitions are more stable and the overall
production is more important) and that it exhibits a higher
robustness/flexibility against grid requirements changes. The
worst case scenario is represented by coalitions of correlated
prosumers. Interesting leads for future works would be the
use of correlated clusters to reduce the number of entities
the algorithm has to deal with, or the introduction of a
payoff allocation towards the prosumers such that the stability
against player defection could be analyzed through game
theory. Showing that maintaining the coalitions formed with
our algorithm necessitates less communication and less storage
capacity could also conduct to a stimulating project. Besides,
we believe that not restricting the algorithm to non overlapping
coalitions and studying the strategies and weights of nodes
with multiple options could lead to interesting works.
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