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Abstract—A class of recovering algorithms for 1-bit compres-
sive sensing (CS) named Soft Consistency Reconstructions (SCRs)
are proposed. Recognizing that CS recovery is essentially an
optimization problem, we endeavor to improve the characteristics
of the objective function under noisy environments. With a family
of re-designed consistency criteria, SCRs achieve remarkable
counter-noise performance gain over the existing counterparts,
thus acquiring the desired robustness in many real-world applica-
tions. The benefits of soft decisions are exemplified throughstruc-
tural analysis of the objective function, with intuition described
for better understanding. As expected, through comparisons with
existing methods in simulations, SCRs demonstrate preferable
robustness against noise in low signal-to-noise ratio (SNR) regime,
while maintaining comparable performance in high SNR regime.

I. I NTRODUCTION

Compressive sensing (CS), as an emerging signal process-
ing technique, has drawn considerable research interests in
recent years, due to its potential to revolutionize future digital
communication, wireless networking and even broader areas.
Its applications can be found in many fields, such as image
recovery [1], radar detection [2], spectrum sensing[3][4], chan-
nel estimation [5] and random access [6]. Even though, fun-
damental works on the algorithm design still bear substantial
significance and await further breakthroughs.

CS reconstructs sparse signal by specific non-linear algo-
rithms with its sampling rate significantly lower than the
Nyquist rate [7][8]. AnN -dimension signal x is defined as
K-sparse if it satisfies||x||0

.
= |supp(x)| 6 K. The signal

is sampled intoM measurements by measurement matrix
Φ ∈ R

M×N ,
y = Φx+ n, (1)

wheren is theN -dimension noise vector. It has been demon-
strated in [9] thatΦ obeying restricted isometry property (RIP)
guarantees accurate recovery of the sparse signalx with high
probability.

In practice, we can never acquire infinitely precisey.
Real-valued measurements are quantized to discrete bits. The
extreme 1-bit quantization puts forward the notion of 1-bit
compressive sensing [10]. The value of each measurement is
confined to a binary output.

y = sign(Φx+ n), (2)

wheresign(·) is the sign function, equaling1 for positive and
−1 for negative.

After the introduction of 1-bit compressive sensing, several
recovery algorithms have been developed. The goal is to search
for the best sparse estimate from the candidate space. Binary
Iterative Hard Thresholding (BIHT) algorithms [11] outper-
form the other similar algorithms, such as Matching Sign
Pursuit (MSP) [12] and Restricted Step Shrinkage (RSS) [13].
It is shown that the one-sidedl2-norm (BIHT-l2) objective
penalizes on the overall error, and thus excels in the adventof
frequently switching measurements caused by noise. Alterna-
tively, the one-sidedl1-norm (BIHT-l1) objective stringently
forces measurement consistency between the original and the
estimated signal, thus is suitable for less noisy scenarioswith
fewer sign flips in measurements..

On the one hand, high level of noise at the quantizer will
flip the near-zero positive measurements to negative (and vice
versa), which is the main and the most common cause of
performance deterioration during reconstruction. On the other
hand, noisy measurements are very common in all types of
CS applications. Hence, the counter-noise issue deserves to be
addressed as a supplement to the existing literature. To thebest
of our knowledge, [14] provides a method to deal with the sign
flips of noisy measurements. It picks out positions where sign
flip may occur and recovers the sparse signal from “seemingly
correct” measurements, outperforming BIHTs significantly.
Unfortunately, the best performance is achieved using prior
knowledge, i.e., the exact number of distorted measurements.
Therefore, the method has some limitations.

In this paper, we propose a class of CS recovery algorithms
named Soft Consistency Reconstructions (SCR). The contri-
butions of this paper are twofold.

1) We re-design the objective function in the CS recovery
algorithm using soft-decision-based consistency crite-
rion, and provide structural analysis to justify its su-
periority over the conventional counterparts.

2) We develop a class of SCR algorithms which, in the
absence of prior knowledge on noise distortion, work
well in both noisy and noiseless scenarios, and compare
their performances with the existing algorithms, i.e.,
BIHTs.

Three aspects are taken into consideration while comparing
SCRs with BIHTs, as summarized in Table I.

The remainder of this paper is organized as follows. Section
I reviews the problem formulation of BIHT algorithms. In
Section III, the notion of SCR is introduced and the algorithms
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TABLE I: Comparison between SCRs and BIHTs

Prior knowledge SCRs=BIHTs
Complexity SCRs=BIHTs

Accuracy
high SNR SCRs≈BIHTs
low SNR SCRs>BIHTs

are described with their advantages analyzed. Section IV val-
idates the proposed algorithms through extensive simulations.
Finally, conclusions are drawn in section V.

II. A R EVISIT OF THE BIHT A LGORITHMS

Consistency is crucial for CS reconstruction algorithms. In
BIHTs, the purpose is to find the sparse candidate vector (or
estimate), which, after left multiplied by the measurement
matrix Φ, has the most elements being consistent with the
measured vectory. Let φi be the i-th row of the measurement
matrix Φ, and the above description of consistency requires

yi = sign(φix̂) (3)

⇔ yi · (φix̂) > 0. (4)

Therefore, the BIHT algorithms in [11] (BIHT-l1 or BIHT-
l2) are designed based on the following optimization problem

min
x∈RN

M
∑

i=1

D(yiφix) + λ||x||1, (5)

s.t. ||x||2
2
= 1,

whereD(·) is the one-sidedl1 (or l2)-norm:

D(t) =

{

0, if t > 0

−t (or t2), if t < 0
. (6)

Different choices of the parameterλ will result in different
sparsity of the estimatêx. When the sparsityK of x is
unavailable, we can setλ according to how many largest
coefficients inx we are interested in. There exist some proper
λs that can achieve the exact sparsityK. In this case, it is most
likely to find a very accurate estimate. So the reconstruction
problem of (5) evolves to

min
x∈RN

M
∑

i=1

D(yiφix), (7)

s.t. ||x||2
2
= 1, ||x||0 6 K.

III. SOFT CONSISTENCYRECONSTRUCTIONALGORITHMS

In this section, we introduce the novel idea of Soft Consis-
tent Reconstruction (SCR). We first describe the inspirations
behind the new consistency metric, and then provide some
performance analysis in comparison with the conventional
methods. Finally, we formalize the SCR algorithms and ex-
plain the roles of its two key parameters.

A. A Novel Consistency Metric

First of all, let us examine the following functionFa(·)

Fa(t) =
eat − 1

eat + 1
, (8)

where the parametera reflects the steepness ofFa(t) near the
origin (e.g., a=5 in Fig. 1).
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Fig. 1: sign(t) v.s.Fa(t)

Designed to imitate the binary output of the 1-bit quantizer
in the encoder, the functionFa(t) is used by the decoder to
produce a soft output, also ranging from -1 to 1, from the
estimated real-valued measurementsΦx̂. In soft consistency
reconstructions, we measure consistency through calculating
the difference betweenFa(φix̂) and its corresponding 1-bit
measurement, namely|Fa(φix̂)−yi|. As in Fig. 1,|Fa(φix̂)−
yi| will approach zero only if the absolute value ofφix̂
is larger than1/a and has the same sign asyi, indicating
consistency. Aφix̂ with the same sign asyi but having a
small absolute value will still result in a noticeable valuein
|Fa(φix̂)− yi|.

Therefore, to minimize the overall inconsistency of M items,
the general optimization problem is expressed using a novel
objective

min
x∈RN

M
∑

i=1

|yi − Fa(φix)|
p, (9)

s.t. ||x||2
2
= 1, ||x||0 6 K,

where the parameterp denotes power of the inconsistency
term. Differentps produce different forms of SCR algorithms,
such as SCR-1, SCR-2, SCR-3 and so on, collectively called
the SCR family.

Remarks: An intuitive explanation of adopting the current
form of Fa(t) is that, as will be elaborated later,Fa(t) is
able to mitigate the flipping effect of noise on near-zero
measurements, compared with the conventional consistency
metric of sign(t).



B. Structural Analysis

To provide some insights into the differences between
BIHTs and SCRs, we convert (9) into a similar form of (7).

min
x∈RN

M
∑

i=1

Ga(yiφix)
p, (10)

s.t. ||x||2
2
= 1, ||x||0 6 K,

where functionGa(·) is a variant ofFa(·)

Ga(t) = 1− Fa(t). (11)

The equivalence is demonstrated as follows.
Proof: To demonstrate that (9) and (10) are equivalent, it

suffices to prove that

|yi − Fa(φix)| = Ga(yiφix) (12)

The functionFa(·) is a centrally symmetric function, that
is,

Fa(−t) =
e−at − 1

e−at + 1
=

1− eat

1 + eat
= −Fa(t) (13)

If yi = 1, considering|Fa(φx)| 6 1 and (11), there exists

|yi − Fa(φix)| = 1− Fa(yiφix) = Ga(yiφix). (14)

If yi = −1, considering|Fa(φx)| 6 1, (11) and (13), there
exists

|yi − Fa(φix)| = 1 + Fa(φix) (15)

=1− Fa(yiφix) = Ga(yiφix).

Therefore, combining (14) and (15), we have (12).
After the transformation, the termyiφix should be paid

attention to, which is used to calculate consistency in both
(7) (BIHTs) and (10) (SCRs). A negativeyiφix indicates
inconsistency. The larger the absolute value of the negative
yiφix has, the lower the level of consistency is. Because (7)
and (10) are both functions ofyiφix, the essential difference
between BIHTs and SCRs lies clearly in the distinct structures
of D(·) andG(·), as presented in the Fig. 2.
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Fig. 2: D(yiφix) in BIHT-l1 vs. G(yiφix) in SCR-1

In Fig. 2, we put BIHT-l1 and SCR-1 together. In a structural
analysis of the two functionsD(·) andG(·), one similarity and
one difference should be paid attention to. The similarity is
that they are both monotonically decreasing functions and their
values approach zero whenyiφix→∞. In this case, gradient
descent method will promote a largeryiφix until the gradient
approximates zero.

The difference lies in the right part of curves. For all0 <
yiφix < yjφjx, we have

BIHT-l1 :D(yiφix) = D(yjφjx) = 0, (16)

SCR-1:G(yiφix) > G(yjφjx) > 0. (17)

Remarks: (16) means that SCR-1 still has a significant
impact on positiveyiφix near zero. It believes that in noisy
environment, a small positiveyiφix is likely to be flipped
from a negativeyiφix due to positive noise, and thus has low
credibility to guarantee the correctness of the corresponding
yi. By contrast, according to (17), BIHT-l1 only aims to push
yiφix above zero and does not think so much.

Simply put, the SCR algorithms try to seek consistency
between the estimatêx and the original signalx, while the
BIHT algorithms aim at forcing consistency between the
estimatex̂ and the binary quantization outputy.

Note that it is easy to take the derivative of (10), therefore
the optimization problem can be solved by gradient descent
methods, as is shown below.

C. Soft Consistency Reconstruction Algorithm

The proposed algorithm searches for the optimal solution
to the optimization problem of (10). The steps are straightfor-
ward, as shown in Algorithm 1. In the interest of space, the
derivation process of Step 3 is given in Appendix.

Algorithm 1 Soft Consistency Reconstruction

Inputs: y ∈ {±1}M , Φ.
Initialization: l = 0, lmax, a, p, K, τ ,

x̂0 = Φ
T y

||ΦT y|| .
Repeat

1. l ← l + 1
2. g(i)← Ga(yiφix̂

l−1), i = 1, 2, ...,M .
3. t← − 1

2
apΦT [y ⊙ gp ⊙ (2 − g)].

4. b← x̂l−1 − τ · t.
5. u← b|K .
6. x̂l = u

||u||2
.

until l = lmax.
return x̂l

Notations and procedure descriptions: In the algorithm,g
is an M-dimension column vector and Step 2 calculates its
elements one by one. The operator⊙ in Step 3 represents
the element-wise multiplication. The operator(·)|K keeps K
largest elements of a vector and sets the other elements to
zero.

The algorithm is originally designed for the case where
sparsityK is available. However, the algorithm can still work



when K is unavailable, given that we gradually force a sparse
solution. In other words, we can replace Step 5 with the
following

u← sign(b) ·max(|b| − τλ · 1,0). (18)

Then the modified algorithm tries to find the solution to an
optimization problem similar to (5)

min
x∈RN

M
∑

i=1

Ga(yiφix)
p + λ||x||1, (19)

s.t. ||x||2
2
= 1.

The steps of SCR algorithm resemble those of BIHT. The
key difference lies in the calculation of gradient in Step
3. Therefore, the SCR algorithm brings in no additional
complexity than BIHT.

Further analysis on Step 3 reveals the roles of the parameters
a andp in the algorithm. We put emphasis on the weighting
coefficientg(i)p(2 − g(i)) of Φ’s ith column, which reflects
the corrective effect on the previous estimate imposed by the
term yiφix. Fig. 3 shows howg(i)p(2 − g(i)) changes with
yiφix. The higher the amplitude, the greater the corrective
effect is imposed by the correspondingyiφix.
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Fig. 3: Corrective effect foryiφix under differenta andp

It can be observed from Fig. 3 that the parameterp selects
the region to be corrected. The part of each curve that is on
the left half of the figure forces negativeyiφix above zero and
the rest part pushes small positiveyiφix larger. The parameter
a controls the effective corrective range ofyiφix. A small
a will result in a large range ofyiφix. The value ofa can
be optimized according to the value ofp and the variance
of yiφix + ni. For example, although the positive parts of
the two curvesa=2, p=2 anda=1, p=4 are nearly identical,
the algorithm witha=1, p=4 is expected to generate a better
performance, as it corrects a larger range of negativeyiφix
thana=2, p=2.

IV. NUMERICAL RESULTS

We carry out several numerical experiments to explore the
performance of the SCRs. Here, SCRs are implemented in the
following three forms: SCR-1, SCR-2 and SCR-4. These three
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n = 0

algorithms, together with BIHT-l1 and BIHT-l2, are performed
and the comparison results are discussed.

Every curve is obtained through averaging the data over
10000 trials. Two kinds of error are calculated to measure
the recovery accuracy, the average angular error defined
as 1

π
acos〈x̂, x〉 and the average Hamming error defined as

1

M
||sign(Φx̂) − y||0. Angular error, the main metric, mea-

sures the difference between̂x andx, while Hamming error
represents the inconsistent part betweensign(Φx̂) andy and
serves as the auxiliary metric.

In all experiments, we setN = 128 and K = 16.
Measurement matrixΦ is assumed to be a Gaussian matrix
with independent and identically distributed (i.i.d.) elements.
K non-zero elements of signal x are also assumed to be
i.i.d. Gaussian. Specifically, we assumeΦ ∼ NM×N (0, 1),
x ∼ NN×1(0, 1) andn ∼ NM×1(0, σ2

n).

A. Accuracy versus Measurement Number

In the first experiment, we adjust the number of measure-
mentsM from 0 to 320 and compare the performance of the
five algorithms under noise levelσ2

n = 0 andσ2

n = 5, respec-
tively. The parametera in each SCR-p algorithm is optimized
empirically to achieve the approximately best performancein
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each scenario.
Fig. 4 and Fig. 5 present the algorithm comparison under

σ2

n = 0. In noiseless environment, SCR-2 and SCR-4 perform
slightly better than BIHT-l2, but all three SCRs are inferior
to BIHT-l1. Fortunately, this inferiority may be easily com-
pensated. As is shown in [11], the estimation accuracy of
the BIHTs will continue to improve as long as the number
of measurements increases, as the SCRs will do. Unlike
the noiseless case, there exists an error floor under noisy
environments, no matter how many measurements are used.
So the following noisy case bears more importance. As shown
in Fig. 6 and Fig. 7 with noise levelσ2

n = 5, SCR algorithms
are superior to BIHT algorithms in both Hamming error and
angular error.

B. The Effect of Noise

In this experiment, we fixM = 160 and adjust the variance
of noise in quantized measurements withinσ2

n ∈ [0, 5]. Fig. 8
and Fig. 9 show how the performances of SCRs and BIHTs
change with the increasing noise level. Their performance
are sorted in high SNR regime (smallσ2

n) and low SNR
regime (largeσ2

n), as concluded in Table II. Five algorithms
are numbered as: (1)BIHT-l1, (2)BIHT-l2, (3)SCR-1, (4)SCR-
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2 and (5)SCR-4. The symbol “>” indicates better accuracy
performance, i.e., the one on the left is more accurate than the
one on the right.

TABLE II: Reconstruction Accuracy of Five Algorithms

Noise level Rank according to Hamming error
high SNR (1)>(5)>(4)>(3)>(2)
low SNR (3)≈(4)≈(5)>(2)>(1)

Noise level Rank according to Angular error
high SNR (1)>(5)>(4)>(2)>(3)
low SNR (3)≈(4)≈(5)>(2)>(1)

As expected, the SCR family overwhelmingly surpasses
the BIHT family under noisy environments. In addition, each
SCR-p exhibits nearly the same performance in low SNR
regime. In high SNR regime, BIHT-l1 works best and its
performance curve is used as a benchmark. Surprisingly,
the performances of the SCRs are no worse than BIHT-l2
and moreover, the larger the orderp is used, the closer the
performance gap between the SCRs and the benchmark will
be, which re-confirms the previous claim that the SCRs are
suitable for both high and low SNR regimes.
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C. Hamming Error versus Angular Error

At last, we explore the relationship between Hamming error
and angular error. By fixingM = 160 and gathering all trial
results, we plot Fig. 10(a) forσ2

n = 0 and Fig. 10(b) forσ2

n =
5. Fig. 10(a) clearly shows the intermediate performances of
SCRs between BIHT-l1 and BIHT-l2. In Fig. 10(b), the points
of SCRs are closer to origin, indicating that SCRs are more
robust against noise than BIHTs in both Hamming error and
angular error.

V. CONCLUSION

In this paper, we propose a class of recovering algorithms
for 1-bit compressive sensing named Soft Consistency Recon-
structions (SCRs). Different from the other similar algorithms,
the SCR algorithm introduces a new metric to measure con-
sistency between the estimate and binary measurements. The
mechanism that makes the SCRs more resistive to noise than
the BIHTs is investigated. Experiments verify that the SCRs
are superior to the BIHT algorithms in low SNR regime and
have comparable performance in high SNR regime.
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APPENDIX

Step 3 in the SCR algorithmt = − 1

2
apΦT [y⊙(g)p⊙(2−g)]

for each iterationl is a gradient of
∑M

i=1
Ga(yiφix)

p.
Proof: First of all, we have to take the derivative of the

scalar functionGa(t)

G′
a(t) = (

2

eat + 1
)′

= −
2a · eat

(eat + 1)2

= −
a

2
Ga(t)(2 −Ga(t)). (20)

The gradient of
∑M

i=1
Ga(yiφix)

p can then be easily ob-
tained from (20)

(

M
∑

i=1

Ga(yiφix)
p)′

=

M
∑

i=1

p ·Ga(yiφix)
p−1 · (Ga(yiφix))

′

=

M
∑

i=1

p ·Ga(yiφix)
p−1 · (−

a

2
)Ga(yiφix)(2 −Ga(yiφix)) · yiφ

T
i

=−
1

2
ap

M
∑

i=1

φT
i · [yiGa(yiφix)

p(2−Ga(yiφix))].

(21)

By making weighted summation of M column vectorsφT
i s,

we conclude that

(

M
∑

i=1

Ga(yiφix)
p)′ = −

1

2
apΦT [y ⊙ gp ⊙ (2− g)] (22)

where ⊙ represents element-wise multiplication and g is
defined in Step 2 in Algorithm 1.
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