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Abstract—A class of recovering algorithms for 1-bit compres-
sive sensing (CS) named Soft Consistency Reconstructior®&JRs)
are proposed. Recognizing that CS recovery is essentiallyna
optimization problem, we endeavor to improve the characteistics
of the objective function under noisy environments. With a aimily
of re-designed consistency criteria, SCRs achieve remarkée
counter-noise performance gain over the existing countemuts,
thus acquiring the desired robustness in many real-world aplica-
tions. The benefits of soft decisions are exemplified througstruc-
tural analysis of the objective function, with intuition described
for better understanding. As expected, through comparisos with
existing methods in simulations, SCRs demonstrate prefelde
robustness against noise in low signal-to-noise ratio (SNRegime,
while maintaining comparable performance in high SNR regine.

|I. INTRODUCTION

Compressive sensing (CS), as an emerging signal proc
ing technique, has drawn considerable research interast

recent years, due to its potential to revolutionize futuiggtall

communication, wireless networking and even broader are
Its applications can be found in many fields, such as ima

recovery [1], radar detection [2], spectrum sensing[3]fflan-

nel estimation [5] and random access [6]. Even though, fu
damental works on the algorithm design still bear subsaant

significance and await further breakthroughs.

CS reconstructs sparse signal by specific non-linear alq\?ﬁfort n
rithms with its sampling rate significantly lower than tht?(nowlgd
Nyquist rate [7][8]. An N-dimension signal x is defined as

K-sparse if it satisfie$|z||o = |supp(x)| < K. The signal

is sampled intoM measurements by measurement matrix

P c fﬁ]WXN,

y =Pz +n, 1)

wheren is the N-dimension noise vector. It has been demon-
strated in [9] that® obeying restricted isometry property (RIP)

guarantees accurate recovery of the sparse sigmath high

After the introduction of 1-bit compressive sensing, saler
recovery algorithms have been developed. The goal is talsear
for the best sparse estimate from the candidate space.yBinar
Iterative Hard Thresholding (BIHT) algorithms [11] outper
form the other similar algorithms, such as Matching Sign
Pursuit (MSP) [12] and Restricted Step Shrinkage (RSS). [13]
It is shown that the one-sidefi-norm (BIHT-3) objective
penalizes on the overall error, and thus excels in the adfent
frequently switching measurements caused by noise. Adtern
tively, the one-sided;-norm (BIHT-;) objective stringently
forces measurement consistency between the original and th
estimated signal, thus is suitable for less noisy scenaviths
fewer sign flips in measurements..

On the one hand, high level of noise at the quantizer will
efgg_the near-zero positive measurements to negative (azel vi
SV(iersa), which is the main ar!d the most common cause of
performance deterioration during reconstruction. On ttineio
hand, noisy measurements are very common in all types of
%% applications. Hence, the counter-noise issue deseares t
ggdressed as a supplement to the existing literature. Toetste
of our knowledge, [14] provides a method to deal with the sign
ﬁllps of noisy measurements. It picks out positions whera sig
*Iip may occur and recovers the sparse signal from “seemingly
correct” measurements, outperforming BIHTs significantly
ately, the best performance is achieved usingrprio
ge, i.e., the exact number of distorted measuresnent
Therefore, the method has some limitations.

In this paper, we propose a class of CS recovery algorithms

named Soft Consistency Reconstructions (SCR). The contri-

butions of this paper are twofold.

1) We re-design the objective function in the CS recovery
algorithm using soft-decision-based consistency crite-
rion, and provide structural analysis to justify its su-
periority over the conventional counterparts.

probability. 2)
In practice, we can never acquire infinitely precige

Real-valued measurements are quantized to discrete tiés. T

extreme 1-bit quantization puts forward the notion of 1-bit

We develop a class of SCR algorithms which, in the
absence of prior knowledge on noise distortion, work
well in both noisy and noiseless scenarios, and compare
their performances with the existing algorithms, i.e.,

compressive sensing [10]. The value of each measurement is BIHTSs.
confined to a binary output. Three aspects are taken into consideration while comparing
@) SCRs with BIHTs, as summarized in Table I.

The remainder of this paper is organized as follows. Section
wheresign(-) is the sign function, equaling for positive and | reviews the problem formulation of BIHT algorithms. In
—1 for negative. Section Ill, the notion of SCR is introduced and the algani¢h

y = sign(®x + n),
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TABLE I: Comparison between SCRs and BIHTs A. A Novel Consistency Metric

Prior knowledge SCRs=BIHTs . . . .
Complexity SCRS=BIATS First of all, let us examine the following functiof, (-)
high SNR | SCRs<BIHTs at _q
Accuracy " Tow SNR | SCRsS>BIHTs e” —
Fa( ) = (8)

eat + 1’
[ - - . where the parameterreflects the steepness Bf (¢) near the
are described with their advantages analyzed. Section IV V8rigin g pa:5 in Fig. 1) p B ()
idates the proposed algorithms through extensive sinoulsti e T

Finally, conclusions are drawn in section V.
sign(t)

II. AREVISIT OF THEBIHT ALGORITHMS

al
Consistency is crucial for CS reconstruction algorithnms. | of

BIHTSs, the purpose is to find the sparse candidate vector (or 1

estimate), which, after left multiplied by the measurement » ‘ ‘ ‘ ‘

matrix ®, has the most elements being consistent with the e S

measured vectay. Let ¢; be the i-th row of the measurement Fy0=(-1)/e"+1)

matrix ®, and the above description of consistency requires

yi = sign(¢i®) (3) OJ—_

©yi- (¢it) 2 0. (4) a5 1 os 0 05 1 15 2
t
Therefore, the BIHT algorithms in [11] (BIHT: or BIHT- _
l,) are designed based on the following optimization problem Fig. 1: sign(t) v.s. Fu(t)
M

. o Designed to imitate the binary output of the 1-bit quantizer
LERN Pt D(yidiz) + Alllls, ®) in the encoder, the functiof, (¢) is used by the decoder to
st |22 =1 pro_duce a soft output, also ranging from -1 to 1,_from the
’ estimated real-valued measuremeds. In soft consistency
reconstructions, we measure consistency through caileglat
the difference betweett,(¢;#) and its corresponding 1-bit

{ 0 if >0 measurement, namely, (¢;z) —y;|. As in Fig. 1,|F,(¢; &) —
D(t) = '

whereD(-) is the one-sided, (or l2)-norm:

. 6 1 wi ; =

—t(or 2), if t<0 (6) :yz| will approach zero only if the abs_olute vf';llu_e @_fl:c
is larger thanl/a and has the same sign gs, indicating

consistency. A¢;z with the same sign ag; but having a

Different choices of the parametarwill result in different I . .
small absolute value will still result in a noticeable valine

sparsity of the estimate. When the sparsityX’ of z is 3
unavailable, we can sex according to how many Iargest'Fa(qSiw) = Yil- L . . .
coefficients in: we are interested in. There exist some proper | nerefore, to minimize the overall inconsistency of M items
As that can achieve the exact spardityln this case, it is most the general optimization problem is expressed using a novel
likely to find a very accurate estimate. So the reconstracti@Piective

problem of (5) evolves to M
M i 2; lyi — Fa(dix)[”, 9)
min D(yip;x), 7 =
venti (itie) ) st |zl =1, |z[lo < K,

2
t. = < K. . .
st leflz =1 [lzllo < K where the parametes denotes power of the inconsistency

term. Differentps produce different forms of SCR algorithms,
such as SCR-1, SCR-2, SCR-3 and so on, collectively called
In this section, we introduce the novel idea of Soft Consighe SCR family.
tent Reconstruction (SCR). We first describe the inspinatio Remarks. An intuitive explanation of adopting the current
behind the new consistency metric, and then provide sorfeem of F,(¢) is that, as will be elaborated lateF;, (¢) is
performance analysis in comparison with the conventionable to mitigate the flipping effect of noise on near-zero
methods. Finally, we formalize the SCR algorithms and exaeasurements, compared with the conventional consistency
plain the roles of its two key parameters. metric of sign(t).

IIl. SOFT CONSISTENCYRECONSTRUCTIONALGORITHMS



B. Sructural Analysis In Fig. 2, we put BIHT}; and SCR-1 together. In a structural

To provide some insights into the differences betwed1alysis of the two functiond(-) andG(-), one similarity and

BIHTs and SCRs, we convert (9) into a similar form of (7)_one difference should be paid attention. to. Thel similar;iiy i
that they are both monotonically decreasing functions haeit t

) M » values approach zero whemp;x — oo. In this case, gradient
ey Ga(yidiz)’, (10)  descent method will promote a larggk; z until the gradient
i=1 ) approximates zero.
st [lzllz =1, [[z]lo < K, The difference lies in the right part of curves. For @lk
where functionG,(-) is a variant ofF,(-) yigix < yj¢jz, we have
Galt) = 1 Fu(t). (1) BIHTh Dlyidie) = Dly;ggz) =0, (16)
SCR-lG(yZ(bl,T) > G(y7¢3$) > 0. a7

The equivalence is demonstrated as follows.

Proof: To demonstrate that (9) and (10) are equivalent, it Remerks: (1(_3)_ means that SCR-1 St'l.l has a s!gnn‘lc_ant
suffices to prove that impact on positivey;¢;x near zero. It believes that in noisy

environment, a small positivg;¢;x is likely to be flipped
lyi — Fu(¢ir)| = Go(yigir) (12) from a negativey;¢;x due to positive noise, and thus has low
credibility to guarantee the correctness of the corresipond
The functionF,(-) is a centrally symmetric function, that,. By contrast, according to (17), BIHF-only aims to push

is, ot i yi¢;x above zero and does not think so much.
Fo(—t) = e” -1 _1-€&"_ —F,(t) (13) Simply put, the SCR algorithms try to seek consistency
e~ +1  1+e* between the estimaté and the original signak, while the

If y; = 1, considering F,(¢z)| < 1 and (11), there exists BIHT algorithms aim at forcing consistency between the
estimatez and the binary quantization output

lyi — Fa(diz)| = 1 — Fo(yipir) = Ga(yidiz). (14)  Note that it is easy to take the derivative of (10), therefore
the optimization problem can be solved by gradient descent

If y; = —1, considering F,(¢z)| < 1, (11) and (13), there methods, as is shown below.

exists
C. Soft Consistency Reconstruction Algorithm

i — Fo(@iz)| =1+ Fu(oi 15 . . .
lv (¢s)] + Fa(gim) (15) The proposed algorithm searches for the optimal solution
=1 = Fu(yidiz) = Ga(yidiz)- to the optimization problem of (10). The steps are straihtf

Therefore, combining (14) and (15), we have (12). = ward, as shown in Algorithm 1. In the interest of space, the

After the transformation, the term,;¢;x should be paid derivation process of Step 3 is given in Appendix.
attention to, which is used to calculate consistency in both— - -
(7) (BIHTs) and (10) (SCRs). A negativg,¢;z indicates Algorithm 1 Soft Consistency Reconstruction
inconsistency. The larger the absolute value of the negativ Inputs: y € {£1}M, &.
yi¢ix has, the lower the level of consistency is. Because (7)Initialization: [ =0, l,,4z, a, p, K, T,
and (10) are both functions ef¢;z, the essential difference 70 = I;;yll‘
between BIHTs and SCRs lies clearly in the distinct striegur Repeat Y
of D(-) andG(-), as presented in the Fig. 2. l«—1+1
g(i) < Ga(yipizt=1), i =1,2,..., M.

t —%apCPT[y OgP e (2-9)]
beal-t—1.t

U < blK

= T

until I =l4z-

e return '

BIHT-I,

w
ouarwWNE

Notations and procedure descriptions: In the algoritlym,
is an M-dimension column vector and Step 2 calculates its

2 ]
o elements one by one. The operatorin Step 3 represents
b ' ] the element-wise multiplication. The operaipy|x keeps K
] ] ] largest elements of a vector and sets the other elements to

yox zero.
. _ ] ] The algorithm is originally designed for the case where
Fig. 2: D(yidix) in BIHT-I; vs. G(yi¢ix) in SCRA sparsityK is available. However, the algorithm can still work




when K is unavailable, given that we gradually force a spar 45 Angular error

solution. In other words, we can replace Step 5 with tt 0l
following ' 9\\
0.35f \
u + sign(b) - max(|b| — A - 1,0). (18) 0l \\.
Then the modified algorithm tries to find the solutionto a  o.2sf \_‘
optimization problem similar to (5) 02l Vo
. N
M 0.15| = ¢ = BIHT-I,
IIQQI%I}V . Go(yidiz)? + Al|z]|1, (29) o]~ B = BIHT, .
=1 SCR-1 with a=2
2 __ 0.05| =—©— SCR-2 with a=1.6 :
st |fzf[; =1. . SCR-4witha=12| ‘ ‘ ‘ T
The steps of SCR algorithm resemble those of BIHT. Tt 0 50 100 150M 200 250 300
key difference lies in the calculation of gradient in Step
3. Therefore, the SCR algorithm brings in no additional Fig. 4: Angular error undes2 = 0
complexity than BIHT.
Further analysis on Step 3 reveals the roles of the parame! Hamming error
. . . . . 0.4 T T T
a andp in the algorithm. We put emphasis on the weightin - ¢ - BIHT-,
coefficientg(i)?(2 — g(i)) of ®’s ith column, which reflects 0351 - B - BIHT-,
the corrective effect on the previous estimate imposed by t o0al SCR-1 with a=2
. : . . : ~B - —©— SCR-2 with a=1.6
term y;¢;x. Fig. 3 shows howy(i)?(2 — g(i)) changes with ossl 882 B--ass SORAwith o1 2
yi¢;x. The higher the amplitude, the greater the correcti : 0.04
effect is imposed by the correspondingp;x. 02F 0020 ST HI L
0.151
3
—*—a=1,p=1 0.1
VW‘? —O—a=1,p=2
25¢ v @ —v—a=1,p=4 0.05F Z % —
—k—a=2,p=1 L9 w
WW / %7 +:=2,z=2 0 i i it T S S - G S
2r v ¥ a=2,p=4 0 50 100 150 200 250 300

M

Fig. 5: Hamming error undef? = 0

algorithms, together with BIHT; and BIHT4,, are performed
and the comparison results are discussed.

Every curve is obtained through averaging the data over
10000 trials. Two kinds of error are calculated to measure
Fig. 3: Corrective effect fog; ¢,z under differents andp ~ the recovery accuracy, the average angular error defined

as Lacos(#,z) and the average Hamming error defined as
It can be observed from Fig. 3 that the parametselects ﬁ”“’g”(q’@ — yllo- Angular error, the main metric, mea-

the region to be corrected. The part of each curve that is €S the difference betweenand z, while Hamming error
the left half of the figure forces negatiyes;z above zero and "€Presents the inconsistent part betwegm(®:) andy and

the rest part pushes small positiye,« larger. The parameter S€Tves as the auxiliary metric.

a controls the effective corrective range 9f;z. A small N all experiments, we sefV = 128 and K = 16.
a will result in a large range of;¢;z. The value ofa can Measurement matrixP is assumed to be a Gaussian matrix

be optimized according to the value pfand the variance with independent and identically distributed (i.i.d.) relents.

of yi¢iz + n;. For example, although the positive parts o NoNn-zero elements of signal x are also a?i‘ffme‘j to be
the two curvesu=2, p=2 anda=1, p=4 are nearly identical, I--d- Gaussian. Specifically, we assune~ N (0,1),

. . . Nx1 Mx1 2
the algorithm witha=1, p=4 is expected to generate a bettef ~ N (0,1) andn ~ N**7(0, ).
performance, as it corrects a larger range of negajivex
thana=2, p=2.

A. Accuracy versus Measurement Number

In the first experiment, we adjust the number of measure-
IV. NUMERICAL RESULTS mentsM from 0 to 320 and compare the performance of the
We carry out several numerical experiments to explore tfige algorithms under noise levef = 0 ando2 = 5, respec-
performance of the SCRs. Here, SCRs are implemented in thely. The parametes in each SCRp algorithm is optimized
following three forms: SCR-1, SCR-2 and SCR-4. These threenpirically to achieve the approximately best performaince
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each scenario. -
Fig. 4 and Fig. 5 present the algorithm comparison undéra2nd (5)SCR-4. The symbob=" indicates better accuracy

o2 — 0. In noiseless environment. SCR-2 and SCR-4 pencorﬂgrformance, i.e., the one on the left is more accurate than t
slightly better than BIHTs, but all three SCRs are inferior ©1€ on the right.

to BIHT-l;. Fortunately, this inferiority may be easily com- _ _ _
pensated. As is shown in [11], the estimation accuracy of TABLE II: Reconstruction Accuracy of Five Algorithms

the BIHTs will continue to improve as long as the number

. . . Noise level || Rank according to Hamming error
of measurements increases, as the SCRs will do. UnI|I_<e high SNR (1)>(5)>%4)>(3)>(2) 2
the noiseless case, there exists an error floor under noisy low SNR R=@=(B)>2)>1)
environments, no matter how many measurements are used. N(_)ise level Rank according to Angular error
So the following noisy case bears more importance. As shown high SNR (1)>(5)>(4)>(2)>(3)
low SNR R)=@)=E)>2)>(1)

in Fig. 6 and Fig. 7 with noise levet? = 5, SCR algorithms
are superior to BIHT algorithms in both Hamming error and

angular error. As expected, the SCR family overwhelmingly surpasses
_ the BIHT family under noisy environments. In addition, each
B. The Effect of Noise SCR-p exhibits nearly the same performance in low SNR

In this experiment, we fiXx\/ = 160 and adjust the varianceregime. In high SNR regime, BIHT- works best and its
of noise in quantized measurements withih € [0, 5]. Fig. 8 performance curve is used as a benchmark. Surprisingly,
and Fig. 9 show how the performances of SCRs and BIHTise performances of the SCRs are no worse than BIHT-
change with the increasing noise level. Their performane@d moreover, the larger the orderis used, the closer the
are sorted in high SNR regime (smatf) and low SNR performance gap between the SCRs and the benchmark will
regime (larges2), as concluded in Table Il. Five algorithmsbe, which re-confirms the previous claim that the SCRs are
are numbered as: (1)BIH; (2)BIHT-l5, (3)SCR-1, (4)SCR- suitable for both high and low SNR regimes.
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The gradient onf‘il G.(y:¢;x)P can then be easily ob-
tained from (20)

& BIHT,
o BHT-,
05 SCR-1 with a-2 05
©  SCR-2witha=16

SOR-4 with a=1.2]

M
(Z Ga(yigiz)?)

o BIHT,
o BIHT-,

SOR-1 with a=2
O SCR-2with a=1.6|

M
T e =Y p Ga(yidiw)’ - (Ga(yidiz))
=1

Hamriogarr Hammgarer
(@02 =0 (b) o2 =5

M
_ . ooap—1 @ e _ b s bT
Fig. 10: Hamming v.s. angular error _;p Galyidiz) ( Q)G“(yzqslx)@ Galyidir)) - vidi

M
1 T
=—5ap ) ¢ [YiGa(yidix)’ (2 — Ga(yigiv))]-
C. Hamming Error versus Angular Error 2 ;

At last, we explore the relationship between Hamming error (21)
and angular error. By fixing/ = 160 and gathering all trial By making weighted summation of M column vectefSs,
results, we plot Fig. 10(a) far? = 0 and Fig. 10(b) fow2 = e conclude that

5. Fig. 10(a) clearly shows the intermediate performances of ,,

SCRs between BIHT; and BIHTH,. In Fig. 10(b), the points G (v b )P — _}a TP o (2 — 22
of SCRs are closer to origin, indicating that SCRs are more (; ayidiz)’) 2P vogo-gl (22

robust against noise than BIHTs in both Hamming error andh . L .
angular error. where © represents element-wise multiplication and g is

defined in Step 2 in Algorithm 1. ]

V. CONCLUSION REFERENCES
In this paper, we propose a class of recovering algorithmg; k. giazarian, A. Foi, and V. Katkovnik, “Compressed siexy image

for 1-bit compressive sensing named Soft Consistency Recon reconstruction via recursive spatially adaptive filteririg IEEE ICIP,
structions (SCRs). Different from the other similar algjomis, vol. 1, 2007, pp. |-549.

. . . 2] R. Baraniuk and P. Steeghs, “Compressive radar imdging,| EEE
the SCR algorithm introduces a new metric to measure COYE-] Radar Conference, 2007, pg, 128_133? 9

sistency between the estimate and binary measurements. TBleH. Zhang, Z. Zhang, and Y. Chau, “Distributed compressédeband
mechanism that makes the SCRs more resistive to noise than Sensing in cognitive radio sensor networks,"1EEE INFOCOM Work-

.. . . . shop, 2011, pp. 13-17.
the BIHTs is investigated. Experiments verify that the SCR§] L. sun and W. Wang, “A connectivity-agile sensing algom for

are superior to the BIHT algorithms in low SNR regime and  cognitive radio networks,” irProceedings of ICC, May 2010.

; ; ; [5] W. U. Bajwa, J. Haupt, A. M. Sayeed, and R. Nowak, “Compess
have comparable performance n hlgh SNR regime. channel sensing: A new approach to estimating sparse mithtichan-
nels,” Proceedings of the IEEE, vol. 98, no. 6, pp. 1058-1076, 2010.
ACKNOWLEDGMENT [6] F. Fazel, M. Fazel, and M. Stojanovic, “Compressed sensi random
This work was supported in part by the National Key %Eessn?wzm;k; Vﬁg_""fggcggif {0 underwater moniggriHYCOM,
Basic Research Program of China (2012CB316104), the Ng@f E. J. Candes, “Compressive sampling,’ Bnoc. ICM, invited lectures,

tional Natural Science Foundation of China(61371094), the 2006, pp. 1433-1452.

National Hi-Tech R&D Program of China (2012AA121605 ! E(-).L;lng';gg;fg;g%ﬁeggg‘;_Se”Si”QEEE Trans. Inf. Theory, vol. 52,

and 2014AA01A702), the Zhejiang Provincial Natural Sceenc [9] E. J. Candgs, “The restricted isometry property andniglications for
Foundation of China (LR12F01002, LR12F01001) and the compressed sensingC.R. Math., vol. 346, no. 9, pp. 589-592, 2008.

- [10] P. T. Boufounos and R. G. Baraniuk, “1-bit compressieasing,” in
Supporting Program for New Century Excellent Talents il IEEE CISS, 2008, pp. 16-21.

University (NCET-09-0701). [11] L.Jacques, J. N. Laska, P. T. Boufounos, and R. G. BakafiRobust 1-
bit compressive sensing via binary stable embeddings ofspectors,”
APPENDIX |IEEE Trans. Inf. Theory, to appear.
[12] P. T. Boufounos, “Greedy sparse signal reconstrucfiom sign mea-
Step 3 in the SCR algorithin= —%apch[y@(g)P@(Q—g)] surements,” inlEEE Asilomar Conference on Sgnals, Systems, and
for each iteration is a dient MG (yidiz)P Computers, 2009, pp. 1305-1309.
© gradient of} ;_ a(quslx.) - [13] J.N. Laska, Z. Wen, W. Yin, and R. G. Baraniuk, “Trustt karify: Fast
Proof: First of all, we have to take the derivative of the = and accurate signal recovery from 1-bit compressive measemts,”
scalar functionG,, (t) IEEE Trans. Sgnal Processing, vol. 59, no. 11, pp. 5289-5301, 2011.
[14] M. Yan, Y. Yang, and S. Osher, “Robust 1-bit compressigasing using
, 2 , adaptive outlier pursuit,TEEE Trans. Sgnal Processing, vol. 60, no. 7,
G, (t) = (eat n 1) pp. 3868-3875, 2012.
2a - e
(eat + 1)2

- —gGa(t)(Z — Ga(1)). (20)



