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Abstract—In this paper, we evaluate and analyze the impact
of different network loads and varying no. of nodes on dis-
tance vector and link state routing algorithms. We select three
well known proactive protocols; Destination Sequenced Distance
Vector (DSDV) operates on distance vector routing, while Fish-
eye State Routing (FSR) and Optimized Link State Routing
(OLSR) protocols are based on link state routing. Further, we
evaluate and compare the effects on the performance of protocols
by changing the routing strategies of routing algorithms. We
also enhance selected protocols to achieve high performance.
We take throughput, End-to-End Delay (E2ED) and Normalized
Routing Load (NRL) as performance metrics for evaluation and
comparison of chosen protocols both with default and enhanced
versions. Based upon extensive simulations in NS-2, we compare
and discuss performance trade-offs of the protocols, i.e.,how
a protocol achieves high packet delivery by paying some cost
in the form of increased E2ED and/or routing overhead. FSR
due to scope routing technique performs well in high data rates,
while, OLSR is more scalable in denser networks due to limited
retransmissions through Multi-Point Relays (MPRs).

Index Terms—Wireless, Multi-hop, DSDV, FSR, OLSR, Rout-
ing, trade-off

I. I NTRODUCTION

Routing is an essential but demanding objective in Wireless
Multi-hop Networks (WMhNs). Routing protocols are respon-
sible to calculate and tackle route (re)establishment during
routing process. These protocols are divided into two main
categories; reactive and proactive based upon their routing
behavior. Reactive protocols start route calculation whenre-
quest for data is arrived. While in proactive routing protocols,
all nodes periodically keep attempting to be aware of their
neighbors as well as of whole network topology.

Proactive protocols periodically compute information about
links and routes. Thus, in this way delay is reduced. Whereas,
these computations result in generation of higher routing load.
In case of high node densities and high traffic rates, smaller
bandwidth may cause drop rates. To optimize routing overhead
for achieving less drop rates, proactive protocols implement
some optimization mechanisms, which reduce routing over-
head of pre-computations. To examine these techniques in
proactive protocols, we select, Destination-Sequence Distance
Vector (DSDV) [1], Fish-eye State Routing (FSR) [2] and
Optimized Link State Routing (OLSR) [3]. Instead of giving
details, we have given some features of the chosen proactive

protocols in Table. 1. We further enhance efficiency of these
mechanisms by modifying their original versions and analyze
the performance of these protocols. For this analysis, we
consider different scalabilities from10 to 100 nodes and
varying network loads;2, 4, 8, 16 and32 packs/s.

TABLE I
PROACTIVE ROUTING PROTOCOL IN BRIEF

Protocol Distinct Feature
Calculation of
Path

Forwarding
of Packets

Flooding Control
Mechanism

Overhead
Reduction

DSDV
Trigger and Peri-
odic Updates

Distributed Bell-
man Ford (DBF)
Algorithm

Hop-
by-Hop
Routing

Exchange the
Topological Info.
with Neighbors
Only

Incremental
Updates

FSR

Multi-Scope Rout-
ing with Graded
Frequency Mecha-
nism

DBF Algorithm
Hop-
by-Hop
Routing

Graded Frequency
mechanism

Fish-eye
Technique

OLSR MPR
Dijkstra
Algorithm

Hop-
by-Hop
Routing

Re-transmission of
TC messages via
MPRs

MPRs

II. RELATED WORK AND MOTIVATION

Layuan, L. et al. [4], consider different perspectives of
simulation models for MANETs. Furthermore, based on the
performance parameters; delay, jitter, throughput, loss ratio,
routing load and connectivity of Ad-hoc On-demand Distance
Vector (AODV), DSDV, Dynamic Source Routing (DSR) and
Temporally-Ordered Routing Algorithm (TORA) protocols are
simulated in their work for900s with variable scalability from
10 to 100 nodes.

In [5], AODV and DSR are compared for Ad-hoc Networks
using NS-2. Authors deduce that AODV and DSR better
perform under high mobility situations than DSDV. DSR
outperforms comparitive to AODV in less stress situations;
smaller number of nodes and lower routing load and/or mo-
bility. However, they simulate AODV and DSR with only10
number of sources and low pause times, whereas, our study
takes up to40 sources and with different traffic rates.

Behavior of three on-demand routing protocols; AODV,
DSR and DYnamic MANET On-demand (DYMO), is com-
pared in different network demands in MANETs in [6].
Authors select performance measuring metrics; throughput,
packet delivery ratio and average end-to-end delay.

In [7], simulations are carried-out to evaluate the perfor-
mance of three reactive protocols; AODV, DSR and DYMO
and three proactive protocols; DSDV, FSR and OLSR.
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In this paper, we enhance efficiency of the selected proto-
cols and evaluate three original versions with three enhanced
ones in varying densities of nodes and increasing flows of
traffic. DSDV triggers route updates for every change in
active routes, and also periodically disseminates these updates
through flooding. To minimize routing overhead of flooding,
we have changed route settling value from6 to 7, while
trigger update time from15s to 30s. In FSR, two periodic
updates are used to calculate routes. The periodic intervals
for these scopes are too high to compute recent topological
information. Moreover, routes are only updated through pe-
riodic updates due to absence of trigger updates. Therefor,
to achieve frequent updates, we modify inner-scope interval
value from 5s to 1s, and outer-scope interval from20s to
5s. OLSR uses HELLO messages on routing layer to get
information about links. Trigger updates are generated in case
of expiration of HELLO LOSS value. This value is too
much high as compared to link layer feed-back mechanism,
and is not suitable to provide quick convergence. Therefore, for
convergence purpose, we enhanced HELLO and TC intervals
from 2s and5s to 1s and3s, respectively.

III. ROUTING OPERATIONS INDSDV, FSR,AND OLSR

These protocols necessarily implement some operations to
maintain end-to-end paths. Subsections discuss the protocols
with their maintenance operations.

A. Maintenance operations
i. Monitoring of Link Status operation is used to maintain

recent information about link status with their neighbors in
the network. If a node does not receive any link state message
from a neighbor for a certain number of successive link state
intervals, the link is assumed to be broken.

ii. Triggered Route Updates are generated for every change
in the link status to update the routing information across the
network.

iii. Periodic Route Updates are used by proactive protocols
to calculate routes periodically. Unlike trigger route updates,
periodic route updates accumulate all information regarding
link changes after a specific period of time.

B. Route Maintenance Operations in DSDV, FSR and OLSR
All of the aforementioned three operations are performed in
DSDV. Although, trigger route updates may appear redundant
because of employment of periodic maintenance of links via
link state updates. Updating the status of links with trigger
updates may lead to routing loops in DSDV. So, periodic route
updates with transmission of destination sequence numbers
monitor and maintain freshness of the routes. A moderate
approach is used in FSR, where trigger updates are not
performed at all. Drawback of using both link state monitoring
and trigger updates cause large amount of control traffic
generation. As, trigger updates are exchanged on every change
in link status, they generate large number of routing messages,
especially during the high rates of mobility. One of the
challenges of using periodic route updates (with periodic link
state monitoring) is to address the trade-off between amount
of control traffic and the consistency in route information.
OLSR performs only trigger updates to maintain fresh routes

by using Topology Control (TC) messages along with link
status monitoring through HELLO messages.

A protocol (pro) has to pay some costC in the form of
consumed energyCE and routing delayCT [8].

Cpro(µ) = CE(µ)×CT (µ) (1)

Where,µ is task oriented input data, i.e., either number of
nodes, or number of broken links, or number of sent packets, or
limit of number of packets in buffer queue, etc. Different costs
(price to pay) make suitable a protocol for different situations.
We use the termCp alternative toCE for measuring energy
cost in terms of routing packets.

Total routing overhead costCDSDV
p presented in eq.2 and

eq.3 depend onCper
p and Ctrig

p . τper is periodic exchange
interval,τNL is total network life time andChangeActiveRoute

i

shows change in link,i, among active route.

C
DSDV
p = C

per
p + C

trig
p (2)

C
DSDV
p =

τNL

τper

∑

∀i∈N

i+

∫ τNL

|Sgn(Change
AtiveRoute
i )|

∑

∀n∈N

n

(3)
If i in an ActiveRoute changes then

|Sgn(ChangeAtiveRoute
i ) = 1, otherwise it is0.

Eq.4 and eq.5 describe total routing cost of FSR;CFSR
p ,

which is sum of the packet cost for dissemination in inner-
scope,Cper−in

p , and in outer-scopeCper−out
p .

C
FSR
p = C

per−in
p +C

per−out
p (4)

C
FSR
p = τNL





1

τin

∑

∀i∈Nin

i+
1

τout

∑

∀j∈Nout

j



 (5)

In eq.5, τin and τout parameters are used for inner-scope
and outer-scope intervals for periodic route updates, while,
Nin andNout are the nodes in inner-scope and outer-scope.

The packet cost of OLSR;Colsr
p is measured in eq.6, which

is the sum of periodic HELLO messages’ cost;Chello
p , trigger

cost of TC messages due to MPR redundancyCTC−trig
p and

default cost of TC messages due to the stable MPRsCTC−def
p .

Whereas,τhello specifies HELLO interval. Moreover, we have
defined three sets of nodes;(i) connected neighbor nodes;Nbr,
(ii) selected MPRs,MPRs, and(iii) all nodes in the network
N .

C
OLSR
p = C

hello
p + C

TC−trig
p +C

TC−def
p (6)

where,

C
hello
p =

τNL

τhello

∑

∀i∈N

∑

∀j∈Nbr

j (7)

C
TC−trig
p =

∫ τNL ∑

∀i∈N

∑

∀j∈MPRs

|Sgn(Change
MPR
j )|j (8)

C
TC−def
p =

∫ τNL ∑

∀i∈N

∑

∀j∈Nbr

|Sgn(Change
MPR
j )|j (9)

The trigger updates of OLSR depend uponChangeMPR
j .
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IV. M ODELING ROUTING OVERHEAD OF PROACTIVE

PROTOCOLS

For DSDV, expected energy cost to be paid in the form of
number of generated routing packets in [9] is:

U
DSDV = N × τNL × α (10)

Where, U is utilization metric,N is number of nodes,
and τNL is network life time andα is rate of route table
advertisement including trigger and periodic updates, as shown
in Fig.1.
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Fig. 1. Flooding, Source Routing and MPR Routing

In FSR, instead of flooding (as in DSDV), route updates
are broadcasted in InterScope and IntraScope.αin

per andαout
per

are rates of periodic updates in inner and outer-scopes, respec-
tively. Nin denotes number of nodes in inner-scope andNout

are number of nodes in outer scope.

U
FSR = U

in
per + U

out
per (11)

U
FSR = Nin × τNL × α

in
per +Nout × τNL × α

out
per (12)

In OLSR, flooding takes place through MPRs. Each two-
hop path is evaluated in terms ofU for MPR mechanism [10],
UMPR
η2

. It is calculated for a path from source node,ηs towards
its two-hop neighborsη2 through a relay nodeη1 as follows:

U
OLSR−MPR
η2 =

Bf ×EU

D
(13)

Where,Bf = BA

Ba
is a bandwidth factor between nodesηs

andη1(MPR), BA is a available (free) bandwidth atη1, Ba is
an expected/requested outgoing bandwidth at the source node
ηs. EU =

E
η1
A

E
η1→η2
Tx

is the cost metric betweenηs and its two-

hop neighborη2, Eη1

A is an available energy atη1 in joules,
Eη1→η2

Tx
is an energy used to transmit messages fromη1 to

η2, andD is an end-to-end delay fromηs to η1 in seconds.
In the next section, practical evaluation of selected protocols

is discussed in detail.

V. SIMULATION SETUP

In high traffic rates and densities, delay results in drop
rates. Proactive protocols minimize routing delay due to pre-
computation of routes. For assessment of these protocols, we
select different traffic rates and scalabilities using NS-2. For
scalability analysis, number of nodes are varied from10 to
100 with packet size of512bytes. For different traffic rates,
2, 4, 8, 16, and32packs/s are selected for50 nodes, whereas,
size of the packet is set to64bytes. To examine the behavior
of protocols for both selected scenarios, simulations are run
for 900s for packet with speed of20m/s with pause time of
2s. The sources transmit Continuous Bit Rate (CBR) traffic.
Bandwidth provided to all the wireless links is2 Mbps. The
nodes taking part simulation are randomly dispersed in an area
of 1000m× 1000m using Random Way-point Model.

VI. EVALUATING PROACTIVE ROUTING PROTOCOLS

Performance of the protocols has been evaluated and com-
pared with three performance parameters; throughput, E2ED,
and NRL.

A. Throughput is amount of data successfully transferred
from sources to destination during the specified simulation
time. Our enhancements increase throughput of all selected
protocols due to reduction in routing overhead. As, overall
behavior of the chosen protocols remains same, thus, we
use DSDV, FSR and OLSR as general term for presenting
both original and enhanced versions. FSR shows appreciable
performance for varying traffic rates and OLSR is well scalable
among proactive protocols (Fig.2). In medium and high traffic
loads, FSR’s efficiency is depicted in Fig.2.a. This is due to
introduction of new technique of multi-level Fish-eye Scope
(FS), that reduces routing overhead and works better when
available bandwidth is low, thus increasing throughput in case
of increased data traffic loads and reduces routing update
overhead. Although, DSDV uses Network Protocol Data Units
(NPDUs) to reduce routing transparency but trigger updates
cause routing overhead and degrade performance. OLSR uses
MPRs for reduction of overhead but computation of these
MPRs takes more bandwidth. Therefore, its throughput is less
than FSR. Moreover, through updating link state information
with different frequencies depending on FS distance, FSR
well scales to large sized networks. FS technique allows for
exchanging link state messages at different intervals in a
network within different FS distances that reduce the link
state message size. Further optimization helps FSR to only
broadcast topology messages to neighbors in order to reduce
flood overhead. If FSR would have taken MAC layer feedback
in case of link brakes then there might be increased exchange
of messages to update neighbors, consuming bandwidth and
lowering throughput. This faster discovery results in a better
performance during high traffic loads (Fig.2.a,b).

Simulation results of OLSR in Fig.2.a,b,c,d show that it is
scalable but less converged protocol for high traffic rates.This
protocol is well suited for large and dense mobile networks,
as it selects optimal routes (in terms of number of hops) using
MPRs. MPR computation is used to reduce dissemination
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Fig. 2. Simulations Carried-out for this Study

overhead which produces typical flooding process, thus occu-
pies precious bandwidth and drops the data packets. In a dense
network, more optimizations can be achieved as compared to
the classic link state algorithm. MPRs better achieve scalability
in the distribution of topology information.

In higher network flows (scalabilities as well as mobilities),
DSDV’s throughput is decreased, as shown in Fig.2.a,b,c,d,
which is increasing throughput ratio New route entry is
advertised in DSDV when a subsequent forwarding data packet
is requesting for new destination. This advertisement leads to
increase in routing overhead, thus decreases throughput. In
high scalabilities, DSDV produces lower throughput, as route
settling time increases average E2ED and multiple NPDUs,
increase routing load in large population. Moreover, NRL
increases due to occurrence of more full dumps (changing the
entire routing table) that consequently affects packet deliveries.

Interesting Facts Regarding Throughput: While considering
throughput, routing load is more important issue to be tackled
in high data traffic; freer bandwidth is demanded by the data

requests. As,(1) Proactive protocols periodically compute
routes to reduce routing latency but it augments routing load.
(2) In DSDV, trigger updates along with periodic updates cause
more routing overhead. In high scalabilities, active routes
are also increased. Any change in an active routes produces
routing overhead due to trigger updates.

FSR reduces routing load via scope routing (no flooding)
while updating the routes periodically. Thus in high data traffic
rates, more bandwidth is available for data which increases
throughput. In high scalabilities, network is more congested
and demands for low latency. To reduce (re)transmissions
caused by longer routes, instead of using simple flooding
OLSR introduces MPR mechanism.

B. E2ED is the time a packet takes to reach the destination
from the source. Increase in traffic rates and node density result
more delay for all of three proactive protocols. FSR overall
suffers higher delay in both situations, (Fig.2.e,f,g,h).To retain
route entries for each destination, this protocol maintains low
single packet latency when traffic load or population is small.
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The graded frequency (GF) mechanism is used to find desti-
nation to keep routing overhead low. FSR exchanges updates
more frequently to the near destinations. Thus, in higher data
rates or more scalabilities this protocol attains more E2ED.
The reason for delay in DSDV is that it waits to transmit a
data packet for an interval between arrival of first route andthe
best route. Thus, this selection introduces delay in advertising
routes which are about to change. A node uses new entry
for subsequent forwarding decisions and route settling time is
used to decide how long to wait before advertising it. This
strategy helps to compute accurate route but produces more
delay. A proactive protocol first calculates routing tables, so,
for larger networks, it takes more time resulting in more E2ED.
Small values of AE2ED for OLSR are seen among proactive
protocols in all scalabilities, as shown in Fig.2.e,f,g,h,because,
MPRs provides efficient flooding control mechanism, i.e.,
instead of broadcasting, control packets are exchanged with
neighbors only.

Interesting Facts Regarding E2ED: In high scalabilities,
(re)transmissions through relay nodes due to longer paths
in a network need delay reduction. Flooding mechanism in
DSDV along with route settling time introduce more delay,
as processing of routing information of intermediate nodesin-
crease latency as compared to OLSR which excellently reduces
(re)transmission latency. Scope-routing is one of efficient
algorithms to reduce routing overhead, but scope period for
refreshing route updates of FSR have more interval between
successive scopes updates; inner-scope period= 5s and outer-
scope period= 15s. Thus its routing latency is much more
than OLSR and DSDV in high data loads along with all
scalabilities. OLSR achieves the lowest E2ED because of three
distinguished features;(1) It implements lowest update routing
interval as compared to remaining two protocols;2s in original
and1s for enhanced versions for link state monitoring through
HELLO messages and5s in original and 3s for enhanced
versions for TC messages to update routes. Whereas, DSDV
has interval of 15s for route updates, and in FSR, interval for
inner-scope is of5s and for outer-scope is15s, (2) reduces
(re)transmission latency through MPRs, and(3) OLSR updates
routes by trigger updates through TC redundancy in case of
high dynamicity.

C. NRL is the number of routing packets transmitted by
a routing protocol for a single data packet to be delivered
successfully at destination. As depicted in Fig.2.i,j,k,l, in all
scalabilities and traffic loads, OLSR is generating the highest
NRL. It happens due to MPR mechanism that controls the
dissemination of control packets in the whole network. But
calculation of these MPRs through TC and HELLO messages
increase routing load. Moreover, OLSR link state messages are
used to calculate MPRs that generate routing overhead. DSDV
and FSR sustain low overhead in all network loads and in low
and medium scalabilities. As, DSDV upholds routing table
with separate route entry for new destination, while a node
does not use the new entry for the same destination in mak-
ing subsequent forwarding decisions. Moreover, NPDUs are
arranged to disseminate incremental updates for maintaining
low routing overhead.

Interesting Facts Regarding NRL: Routing load depends
upon interval between routing updates; shorter the interval
more routing load. As, OLSR generates routing updates in
shorter interval as compared to rest of the protocols, it pro-
duces the highest NRL in both OLSR-Orig and OLSR-Mod.
Trigger updates generate more routing load as compared to
periodic routing updates. Both DSDV and OLSR generate
trigger updates, but DSDV triggers routing updates only for
link breakage among active routes as compared to OLSR that
generate trigger updates for every change in the links. FSR
uses only periodic updates, moreover, scope routing avoids
flooding and lessens transmission overhead. Shortening the
scope-interval results more NRL in FSR-Mod than FSR-Orig.

VII. C ONCLUSION AND FUTURE WORK

In this paper, we have evaluated and compared the perfor-
mance of three widely used proactive protocols; DSDV, FSR
and OLSR. Total routing load attained by a protocol is based
upon two factors; control traffic generated by control packets
and data traffic forwarded through routes of non-optimal path
lengths. Therefore, for evaluating the routing efficiency of
these protocols in dense networks and with different data
traffic rates, we have taken different scalabilities and varying
data loads. For the analysis, three performance parameters;
E2ED, NRL and throughput are computed by using NS-2.
Finally, we observed that OLSR is more scalable because of
reduction of routing overhead due to MPRs, as OLSR allows
retransmission through MPRs. On the other hand, FSR is more
suitable for high network loads due to scope routing through
GF (no flooding), which reduces broadcasting storm, thus
saves, more bandwidth and achieves high throughput when
data traffic increase.

In future, we are interested to minimize energy consumed
during routing by optimize these routing techniques both at
MAC and network layer, like in, [11], [12], and [13].
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