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ABSTRACT

Languages usually switch within a multilingual speech sig-
nal, especially in a bilingual society. This phenomenon is
referred to as code-switching (CS), making automatic speech
recognition (ASR) challenging under a multilingual sce-
nario. We propose to improve CS-ASR by biasing the hybrid
CTC/attention ASR model with multi-level language infor-
mation comprising frame- and token-level language posteri-
ors. The interaction between various resolutions of language
biases is subsequently explored in this work. We conducted
experiments on datasets from the ASRU 2019 code-switching
challenge. Compared to the baseline, the proposed interactive
language biases (ILB) method achieves higher performance
and ablation studies highlight the effects of different language
biases and their interactions. In addition, the results presented
indicate that language bias implicitly enhances internal lan-
guage modeling, leading to performance degradation after
employing an external language model.

Index Terms— code-switching, automatic speech recog-
nition, interaction, language bias

1. INTRODUCTION

Code-switching (CS) refers to the switching of languages
within a spontaneous multilingual recording. Automatic
speech recognition (ASR) faces challenges in a code-switching
scenario due to the inter- and intra-sentence language varieties
compared to its monolingual counterparts [1, 2]. Although
conventional ASR approaches can operate on code-switching
speech similar to monolingual data, early works identify lan-
guages before speech recognition or performs these processes
jointly [3, 4, 5]. In contrast, recent CS-ASR techniques tackle
language confusion by incorporating language information in
modules within the ASR model.

One such approach involves the use of a bi-encoder model
that is built on the transformer architecture [6, 7], where
modeling of English and Mandarin languages is decoupled
by two encoders pre-trained independently on each language.
Since the dual-encoder approach has shown to be language
discriminative, CS-ASR approaches that adopted similar ar-

chitectures were subsequently proposed [8, 9, 10]. Apart
from dual encoders, a language-specific attention mecha-
nism has also been proposed to reduce confusion caused by
code-switching contexts [11, 12]. This attention mechanism
is employed within the transformer decoders and processes
monolingual token embeddings which are separated from
code-switching token sequences. In addition, a conditional
factorization method factorizes CS-ASR into two monolin-
gual recognitions before composing recognized monolingual
segments into a single bilingual sequence which may or may
not be code-switched [13].

Although existing approaches mitigate the language con-
fusion for CS-ASR, they are generally stuck in only one mod-
ule within a CS-ASR model. Since language-aware modules
have shown to be effective, it is natural to consider incorpo-
rating language information in all modules to further enhance
the performance of existing approaches. In addition, these
approaches utilize language information either at frame-level
(dual-encoder methods) or token-level (transformer-decoder-
based approaches) [12, 14]. Since the ASR process aims to
align acoustic frames to texts (e.g., characters, words), it is
desirable to associate frame- and token-level language infor-
mation and utilize them jointly for CS-ASR.

Inspired by the success of incorporating language infor-
mation [14], we propose to enhance language-aware CS-ASR
using interactive language biases (ILB). In particular, the pro-
posed method comprises two contributions. Firstly, we bias
the connectionist temporal classification (CTC), encoder, and
decoder modules jointly within a hybrid CTC/attention CS-
ASR model with language posteriors. It is useful to note that
the language information transits from frames to tokens (i.e.,
from the encoder to CTC and decoder) intrinsically. As op-
posed to existing models, our method utilizes the interaction
between frame- and token-level language information result-
ing in an integrated and language-discriminative model. In
addition, the proposed architecture allows the research com-
munity to gain insight into how language biases influence a
CS-ASR model beyond improving performance. Experiment
results suggest that the CS-ASR model is capable of devel-
oping a robust internal language model after learning from
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language information.

2. METHODOLOGY

2.1. Language posterior bias

The language posterior bias approach [14] has been devel-
oped on the hybrid CTC/attention ASR model, which com-
prises an encoder module, a decoder module, and a CTC mod-
ule [15, 16]. These encoder and decoder modules consist
of conformer encoder layers and transformer decoder layers
[2, 6], respectively.

Consider a speech signal with its acoustic features X =
(xt ∈ RF |t = 1, . . . , T ) and token sequence W = (wn ∈
V|n = 1, . . . , N), where V is a vocabulary of size V , T and
N are the lengths of acoustic features and token sequence, re-
spectively. The encoder generates output H = (ht ∈ RD|t =
1, . . . , T1) from X, which are subsequently fed into the de-
coder and CTC modules. On the other hand, tokens are first
embedded into W = (wn ∈ RD|n = 1, . . . , N) before being
fed into the decoder module along with H. The ASR model
is optimized with a language diarization (LD) decoder jointly,
where the LD decoder computes a V ld-dimensional token-
level language posterior bias p(ln−1|w1:n−1,X). Here, V ld

is the language vocabulary size and ln−1 is the language in-
dex for the n-th token. The token embedding wn−1 is then
biased by its language posterior. The ASR decoder output is
subsequently computed via

H = Encoder (X) , (1)
w′

n−1 = Concat
(
wn−1,p (ln−1|w1:n−1,X)

)
, (2)

p (wn|w1:n−1,X) = Decoder
(
w′

1:n−1,H
)
, (3)

where Concat(·) denotes the concatenation operation. The
matrix W′ = (w′

n ∈ RD+V ld |n = 1, . . . , N) consists of
input token embeddings of the ASR decoder which are sub-
sequently projected back to D dimensions by a linear layer.
The model is optimized via

Ljoint = αLctc + (1− α)Latt + βLld (4)

and that the decoding process is similar to (3) but with in-
put token embeddings W of the ASR decoder being replaced
by W′. The integrated model is optimized via a multi-task
objective function. Here, β is a multi-task learning param-
eter and Lld is a label-smoothed cross-entropy loss between
the predicted and ground-truth language labels for the LD de-
coder.

2.2. Interactive language biases

We propose to extend the language posterior bias method to
frame-level language information. We note that frame-level
language identification (LID) is undesirable since the LID
performance generally degrades with shorter speech [17, 18,
19]. However, since acoustic frames are tightly associated

Fig. 1. The hybrid CTC/attention model with interactive lan-
guage biases.

with tokens in ASR, frame-level language identification over
H may benefit from token-level language diarization in (2).
The frame-level language posteriors, therefore, enhance the
hidden output H to achieve high language discrimination
before being fed into the ASR and LD decoders. Conse-
quently, frame- and token-level language posteriors interact
and jointly improve the model performance in CS-ASR.

With reference to Fig. 1, the frame-level language bias is
achieved through a LID layer before being concatenated with
the hidden output. In particular, the biased hidden output H′

is computed via

h′
t = Concat

(
ht,p (lt|ht)

)
, (5)

which subsequently replaces H in (3) to facilitate the interac-
tion between language information among frames and tokens.
In addition, H′ is also employed to develop a language-aware
CTC module. The ASR decoder output is next achieved via

p (wn|w1:n−1,X) = Decoder
(
w′

1:n−1,H
′) . (6)

During training, the frame-level LID is optimized in an
unsupervised manner similar to [7] (i.e., frame-level language
annotations are not provided during training). However,
frames in H′ are trained to be aligned with their correspond-
ing token-level language labels within the language diariza-
tion decoder. An assumption made here is that an accurate
frame-to-token alignment enriches the unsupervised LID pro-
cess with supervised information through backpropagation.
Optimization of the model is achieved similarly to that of (4).



During inference, the frame- and token-level language
posterior are computed before biasing the hidden output and
the ASR decoding, respectively. The decoding process is sim-
ilar to that presented in [15], which is defined to maximize
the linear combination of the logarithmic CTC and attention
objectives, i.e.,

Ŵ = argmax
W

{
αlogpctc (W |X)+(1− α) logpatt (W |X)

}
. (7)

3. DATASET, EXPERIMENTS, AND RESULTS

3.1. Dataset and experiment setup

All experiments are conducted on datasets from the ASRU
2019 Mandarin-English code-switching speech recognition
challenge [20]. This challenge comprises four datasets, in-
cluding a 500-hour Mandarin-only training set, a 200-hour
intra-sentence English-Mandarin code-switching training set,
a 40-hour intra-sentence English-Mandarin code-switching
development set, and a 20-hour intra-sentence English-
Mandarin code-switching test set. We employed ESPnet 1

to train all models on the 200-hour CS training set, which are
validated on the development set and evaluated on the test
set [21].

SpecAugment is applied to augment the training data [22].
Words are transformed into a total of V = 6, 923 tokens
that include 3,000 English byte-pair encoding (BPE) tokens,
3,920 Mandarin characters, and three special tokens for unk,
blank, and sos/eos. All tokens are transformed to language
labels building V ld, which comprises e for English BPEs, m
for Mandarin characters, and sos/eos. Language labels in
V ld are used as LD outputs. We extracted F = 83 dimen-
sional features comprising 80-dimensional log-fbanks and 3-
dimensional pitch for each speech sample before applying
global mean and variance normalization.

We chose a hybrid CTC/Attention ASR model compris-
ing twelve conformer encoder layers and six transformer de-
coder layers as the baseline model [2, 6, 23]. In addition, we
adopted the multi-task learning model and the language pos-
terior bias approach as our benchmark [14]. All self-attention
encoder and decoder layers have four attention heads with in-
put and output dimensions being D = 256, and the inner
layer of the position-wise feed-forward network is of 2048
dimensions. During training, we set parameters α = 0.3 and
β = 0.8 in (4), while a label smoothing factor of 0.1 is used
for all cross-entropy losses. The ten best models during val-
idation are averaged for inference. All models are trained
on two GeForce RTX 3090 GPUs, where the baseline was
trained for seventy epochs, while other models were trained
for eighty epochs due to their higher number of parameters.

During inference, we set parameters α = 0.4 in (7). Ten-
best beam search is used before selecting the best hypothesis.
The language model (LM) used in this paper is a sixteen-layer
transformer model with each attention layer comprising eight

1Source code: https://github.com/Lhx94As/interactive language biases

Table 1. Performance comparison of models utilizing
various-level language information without using external
language model by employing MER (%)
Index Method MER

1.0 Baseline Hybrid CTC/attention 12.8
1.1 Multi-task Multi-task with LD 12.4
1.2 Token-level Decoder LPB 12.4
1.3 Frame-level Encoder LPB 12.8
1.4

Interactive
Encoder + CTC LPB 12.4

1.5 Encoder + Decoder LPB 12.1
1.6 Encoder+ Decoder + CTC LPB 11.8

heads. The proposed systems are evaluated by employing mix
error rate (MER) comprising word error rate (WER) for En-
glish and character error rate (CER) for Mandarin.

3.2. Baseline and single language-biased models

The results of the benchmark models are shown in Table 1
as systems 1.0, 1.1, and 1.2. Compared to the vanilla hy-
brid CTC-attention CS-ASR model, incorporating an auxil-
iary language diarization task and employing token-level LPB
proposed in [14] lead to higher performance. These indicate
that incorporating language information benefits the CS-ASR
process, which is consistent with the observation presented
in [14]. However, the token-level LPB approach shows no
performance improvement over the multi-task optimization
since Mandarin is the primary language in this dataset and
languages do not switch frequently.

The above data characteristics also result in performance
degradation for model configuration 1.3 when frame-level
LID is not sufficiently accurate. To prevent the CTC outputs
from interacting with the unsupervised frame-level LID, the
input of CTC is set to H while the input of the ASR decoder
is set to H′ in model configuration 1.3. As mentioned in
Section 2.2, frame-level LID is generally less accurate than
token-level LID. Those incorrect language posteriors may
increase language confusion when being transmitted into the
ASR decoder module.

3.3. Results of models with interactive language biases

We next investigate how the interaction between frame- and
token-level language information improves the model perfor-
mance using systems 1.4, 1.5, and 1.6. In model configuration
1.4, as opposed to model configuration 1.3, the input of CTC
is set to H′ so as to bias the CTC module with language in-
formation. The CTC performs frame-level classification be-
fore computing the optimal alignment, where the language
biases are infused with acoustic features and combined intrin-
sically when generating tokens. Therefore, the performance
improvement shown in Table 1 when comparing model con-
figuration 1.4 with 1.3 indicates that language-biased frames
can also perform better than vanilla frames. This underpins



Table 2. Performance comparison of models using external
language model during inference by employing MER (%),
where ”Reduction” denotes the absolute MER reduction com-
pared to their no-LM counterparts
Index Method MER Reduction

2.0 Hybrid CTC/attention 12.6 0.2
2.1 Multi-task with LD 12.5 -0.1
2.2 Decoder LPB 12.6 -0.2
2.4 Encoder LPB 12.9 -0.1
2.5 Encoder + CTC LPB 12.5 -0.1
2.6 Encoder + Decoder LPB 12.3 -0.2
2.7 Encoder + Decoder + CTC LPB 11.9 -0.1

the efficacy of the frame-level language bias when being used
for CTC.

Model configuration 1.5 employs frame- and token-level
language biases jointly but excludes the CTC module from
being biased. Model configuration 1.5 shows significantly
higher performance than single-language-biased models 1.2
and 1.3. This implies that the use of token-level language bias
compensates for the inaccurate frame-level LID especially
when model configuration 1.3 degrades the performance of
model 1.1, which demonstrates that the interactive language
biases are effective for CS-ASR.

Model configuration 1.6 further combines two language
biases with the CTC module and achieves the highest per-
formance among all model considerations, with a 7.8% rel-
ative improvement compared to the baseline model. It is not
surprising that this configuration achieves higher performance
than model configurations 1.4 and 1.5 since biasing CTC with
language information improves the performance over the en-
coder LPB approach. In addition, the above implies that en-
riching all modules within a CS-ASR model with language
information obtains higher gain compared to a single module,
which is consistent with our proposition in Section 1.

3.4. Results of external language modeling

Since the end-to-end ASR approaches internally perform
language modeling, we explore whether the internal LM is
stronger than the external LM when being trained on the same
corpora.

We present the results with respect to external language
models in Table 2. The vanilla hybrid CTC/attention model
shows higher performance after being integrated with exter-
nal LM during inference. However, the results show that
all language-aware CS-ASR models suffer from performance
degradation compared to the baseline model. This implies
that the CS-ASR model biased by language information could
develop a more robust internal language model compared to
an external model trained on the same text data. Since training
an external language model can be time-consuming, robust
internal language modeling can thus be concluded as an ad-
vantage of the proposed interactive language biases approach.

Fig. 2. Comparison between attention matrices with respect
to the frame-to-token alignment within language diarization
decoder after employing token-level LPB (above) and inter-
active language biases (below).

4. DISCUSSION

Although the language diarization decoder adopted in this
work does not generate timestamps for language changes, the
frame-to-language alignment can be obtained from the atten-
tion matrices within the LD decoder as shown in Fig. 2.

The token-level LPB and interactive language biases
(model configurations 1.2 and 1.6) are selected to compare
single language bias with interactive language biases. As
illustrated in Fig. 2, the attention mechanism identifies lan-
guage changes in the first and second heads, and captures
sequential information in the third and fourth heads. Com-
pared to the token-level LPB, the attention matrices of our
proposed interactive language biases approach exhibit clearer
vertical language boundaries and smoother diagonal frame-
to-token alignment. This indicates that the proposed approach
improves not only ASR but also language diarization perfor-
mance being consistent with our assumption in Section 2.2.

5. CONCLUSION

We proposed an interactive language biases approach to im-
prove CS-ASR through the interaction between frame- and
token-level language information. Experiment results pre-
sented indicate that the proposed approach outperforms the
benchmark in CS-ASR. We next visualized the attention
matrices within the LD decoder. The proposed interactive
language biases achieve higher language diarization per-
formance compared with single token-level language bias,
highlighting the efficacy of the proposed interactive lan-
guage biases approach. In addition, the results show that a
language-aware CS-ASR model can develop a robust inter-
nal LM, resulting in performance degradation when using an
external language model during inference.
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