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ABSTRACT
Federated Learning (FL) is a decentralized machine learning frame-
work that enables collaborative model training while respecting data
privacy. In various applications, non-uniform availability or partici-
pation of users is unavoidable due to an adverse or stochastic envi-
ronment, the latter often being uncontrollable during learning. Here,
we posit a generic user selection mechanism implementing a possi-
bly randomized, stationary selection policy, suggestively termed as
a Random Access Model (RAM). We propose a new formulation
of the FL problem which effectively captures and mitigates limited
participation of data originating from infrequent, or restricted users,
at the presence of a RAM. By employing the Conditional Value-at-
Risk (CVaR) over the (unknown) RAM distribution, we extend the
expected loss FL objective to a risk-aware objective, enabling the
design of an efficient training algorithm that is completely oblivious
to the RAM, and with essentially identical complexity as FedAvg.
Our experiments on synthetic and benchmark datasets show that the
proposed approach achieves significantly improved performance as
compared with standard FL, under a variety of setups.

Index Terms— Federated Learning, Conditional Value-at-Risk,
Risk-Aware Learning, Stochastic Optimization, Random Access.

1. INTRODUCTION
Federated learning (FL) is a distributed learning framework allowing
multiple users to train a global model collaboratively without shar-
ing their local data [1]. In recent years, the classical Federated Av-
eraging approach (FedAvg) has developed into an essential learning
paradigm [2], following a certain basic workflow where each user lo-
cally updates its own model parameters and then periodically sends
its updated parameters to a central server. The server then appro-
priately aggregates the received updates of the users and broadcasts
to them the new global model parameters. This scheme is repeated
until the global model converges [3].

Vanilla FedAvg faces the problem of instability, caused either
due to non- indepedent and identically distributed (non-iid) data
among users (known as ”client-drift”) [4–6], or due to non-uniform
user availability, which happens as a result of several factors, such
as network outages [7], battery drain [8], or user inactivity [9]. For
instance, when a user device is unavailable, it cannot communicate
with the server for a certain time interval. This leads to incomplete
global model convergence, to a possible bias of the global model
towards the data from the most available users, and less accurate
performance of the global model to the data that the less available
user have, especially in a strongly heterogeneous regime.

In prior works, several methods address the challenge of non-
uniform client availability in FL. For the (server) aggregation step,
a set of techniques focuses on re-weighting the model parameters
of the users by adapting their weights dynamically. In particular,
some works focus on the adaptation of the aggregation coefficients
based on several criteria, such as completion of the local steps the
users have done [9], or the temporal correlation and their low avail-
ability [10], or their conformity level [11], or their performance on
previous steps [12]. Moreover, the non-uniform availability of users

Fig. 1: Users send their updates to the RAM, which relays the data
of only one user to the server. The server broadcasts the received
local model to all users, and the process repeats.

could be treated by dividing users into blocks based on their relative
frequency, and applying a pluralistic aggregation step at each block
has been proposed in [8]. Lastly, [13] suggests a different FL system
that adopts a multiple-channel approach, following specifically the
ALOHA protocol and adapting the access probability of users based
on their local updates.

A second group of techniques explores optimal user sampling
strategies. Selection of users based on local characteristics, such as
their local performance, level of importance, or irrelevance, is pro-
posed in [14–16], respectively. Optimal user selection has also been
explored by minimizing the variance of the numbers of times the
server samples a client [17], or by learning a selection strategy for
clients with intermittent availability [18]. Further, [19] uses strati-
fied user sampling based on their data statistics to address system-
induced bias under time-varying client availability. Lastly, a well-
defined communication protocol where the server periodically se-
lects user devices that meet appropriate criteria, is proposed in [20].

In this work, we deal with two key limitations, critical in practi-
cal scenarios. First, we consider a stochastic environment allowing
only one (for simplicity) user to transmit data each time, with differ-
ent and possibly highly biased selection probabilities (weights) for
each user (restricted random user selection). Secondly, the server is
completely agnostic to user selection probabilities, and cannot direct
user participation. Under these conditions, the server communicates
with the users through a noisy channel potentially adversarial to the
learning procedure. We posit an intermediate provider, e.g., a mul-
tiplexer or switch, which we call the Random Access Model (RAM),
between users and the server. The RAM is responsible for relaying
user model updates to the server by selecting a certain number of
users to relay at each update (and communication) round.

The user selection criteria of the RAM remain unknown to both
the server and users. Therefore, at least from the perspective of the
server and users, the simplest approach to describe RAM user se-
lection is by using a memoryless probabilistic model, i.e., the RAM
spits out each user with some fixed probability, independently across
communication rounds. In other words, the RAM acts as a station-
ary erasure channel, where at each round the updates of only one
user survive, while the updates of the rest of the users are discarded,
according to a fixed user selection distribution. That is, the RAM
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implements a possibly randomized user selection policy. Fig. 1 de-
picts this scheme, where the RAM allows only one user to relay its
local model to the server each time. The server cannot intervene and
works as a simple broadcaster.

Under this setting, we propose a FL approach which is agnostic
to user selection implemented by the RAM, by extending the ex-
pected empirical loss to a weighted risk-aware objective, using the
Conditional Value-at-Risk (CVaR) over the (unknown) distribution
dictating such selection of users. This approach is, to the best of
our knowledge, new and results in a robust training algorithm which
exploits the structure of FedAvg, with at most identical computa-
tional, iteration and communication complexity, at the expense of
tuning two additional hyper-parameters. Our approach demonstrates
notably superior performance compared with standard FL, which
struggles to achieve accurate data classification when operating un-
der limited access to user updates. Our experimental evaluations take
place on both synthetic and standard benchmark datasets.

As a motivating example we consider a toy logistic regression
problem on 2D synthetic data in Fig. 2. Each user trains on distinct
patterns; this setup may resemble, e.g., sensors at different locations,
each observing features corresponding to those patterns. Even for
an easily verifiable setting with three or four classes, we observe
that standard FL fails to classify data from less frequent users, while
the proposed approach succeeds at finding decision boundaries that
correctly classify the data from all users. All experiments were per-
formed under the same training conditions (number of global rounds,
step sizes, etc.). This example is elaborated in detail in Section 3.1.

1.1. Applicability of the RAM
The RAM provides an abstraction for capturing intricacies involved
in the communication among network nodes in numerous network-
ing applications. In the following, we discuss some relevant exam-
ples. More specifically, user participation with different relative fre-
quencies naturally appears in the context of routing or switching.
In this case, the RAM may embody a router or switch operating at
the network layer, implementing some possibly randomized (steady-
state) device selection policy, with the goal of routing numerous re-
quests intelligently. The RAM may also model the role of the MAC
sub-layer of a data-link network layer in managing access to a shared
communication medium and potentially optimizing traffic prioriti-
zation for multiple users by, e.g., performing informed bandwidth
allocation to different devices. Further, the RAM could describe po-
tential user unavailability as an impact of network infrastructure at
the physical layer. In this case, the RAM models the effects of vary-
ing traffic or interference patterns, resulting from allocating physical
resources, such as power or frequency (carrier) directly.

In all those setups, highly biased and non-uniform user selec-
tions may result naturally under common circumstances. These in-
clude, for instance, service provider imbalanced user priorities due
to certain contracts or monetary constraints, geographical constraints
(e.g., communication in rural areas or in underwater applications),
frequency band availability or scarcity in the physical layer, and op-
portunistic resource allocation policies. Additionally, user selection
bias may be induced as a result of network outages and disruptions
caused by environmental conditions, equipment failures, power out-
ages, or even natural disasters, affecting user network access dra-
matically and thus causing non-uniformity in the availability of user
data. Last but not least, user selection bias may result due to commu-
nication rate limitations caused by privacy concerns and censoring
related to data from certain sources or of certain types.

(a) 3 users with datasets from 3 different classes each.

(b) 3 users with datasets of 4 classes.

(c) 30 users with datasets of 3 classes.

Fig. 2: Efficacy of our approach on a synthetic logistic regression
example (Left: FL | Right: Proposed | Center: RAM Distribution).

The RAM provides a convenient abstraction for modeling such
non-uniform user selection schemes, which introduce unavoidable
data scarcity and result in rare user participation in a FL setup.
1.2. Comparison with previous works
Due to rare user participation enforced by the RAM, together with
its unknown structure, existing techniques (e.g., user re-weighting
[9–12] and optimal sampling policies [14–19]) are inapplicable, as
they require server-user interaction. In contrast, the proposed algo-
rithm allows the server to manage user selection bias by optimizing
efficiently under data scarcity. Our algorithm can in fact systemat-
ically manage non-uniform user participation, by adaptively focus-
ing more on less frequent users. This is possible by exploiting native
properties of the CVaR. The proposed technical approach also shares
some similarities with [21, 22]. However, our formulation is fully
interpretable (i.e., all hyperparameters admit a fully specified opera-
tional meaning), while the resulting algorithm operates fully within
the framework of FedAvg; no heuristics or customized algorithm
design is necessary. Lastly, our approach resembles online federated
learning [23] but differs in that users can only access the server when
permitted by the RAM, even after completing local updates.

2. PROBLEM SETUP
We consider a multi-class classification setup, with features x P

X Ď ℜd and labels y P Y “ t1, 2, ¨ ¨ ¨ , Cu, where C is the total
number of classes (patterns). We also consider a federated learning
setting, with users i P r1, . . . ,Ks selected by the RAM from a fixed
distribution D, with probabilities ρi, such that

řK
i“1 ρi “ 1. Fur-

ther, we assume that each user i, has a private dataset Dipx, yq :“
Dipξq, with Ni number of data. In the context of FL, the server up-
dates the users via an aggregation step. Let us also define the family
Θ̃ :“ tϕ : X ˆ Θ Ñ ℜC

u of parameterized predictors with param-
eter θ P Θ Ď ℜQ. Each user tries to minimize its local loss function
li : ℜC

ˆ Y Ñ ℜ`.
In standard FL (and under our setting), the goal of the server

would be to find optimal global parameters θ solving the problem

inf
θPΘ

EI„D

”

Eξ„DI

“

lIpϕpξ; θqq
‰

ı

, (1)

whose empirical version reads as

inf
θPΘ

"

GFLpθq :“
K
ÿ

i“1

ρi
1

Ni

Ni
ÿ

j“1

lipϕpξj ; θqq “

K
ÿ

i“1

ρifipθq

*

. (2)



Recall that the RAM applies some user selection policy which is
both unknown and untouchable from the side of the server. There-
fore, any training algorithm should be agnostic to the RAM distribu-
tion, and it should work for any RAM and dataset distributions. If
the RAM distribution is highly skewed, then problem (2) faces the
issue of non-uniform and rare user participation. In such a case the
data are distributed with strong heterogeneity among users, data star-
vation exists, and accurate classification by solving (2) is generally
hopeless, as we demonstrate in Fig. 2(left).

3. PROPOSED APPROACH
To guarantee efficient classification and simultaneously mitigate the
effect of data starvation, we propose a risk-aware objective that com-
bines the Conditional Value-at-Risk (CVaR) on the RAM distribution
with the empirical risk-neutral objective (2). The CVaR of a random
variable Z at confidence level a P p0, 1s is defined as [24]

CVaRα
“

Z
‰

:“ inf
tPℜ

!

t `
1

α
E

“

pZ ´ tq`

‰

)

, (3)

for which it is true that CVaRα
“

Z
‰

“ ErZs for α “ 1, rising up to
ess supZ, as α Ñ 0. Then, for γ P p0, 1q, our proposed optimization
problem is

inf
θPΘ

!

GR
FL

`

θq :“ p1 ´ γqCVaRα
I„D

“

fIpθq
‰

` γEI„D
“

fIpθq
‰

)

, (4)

and using definition (3) for Z “ fIpθq, we have

inf
θPΘ

p1 ´ γq inf
tPℜ

"

t `
1

α

K
ÿ

i“1

ρi
“

fipθq ´ t
‰

`

*

` γ
K
ÿ

i“1

ρifipθq. (5)

The objective in the preceding problem may be further simplified as

inf
pθ,tq

K
ÿ

i“1

ρi

"

Gipθ, tq:“p1´γq

”

t`
1

α

“

fipθq´ t
‰

`

ı

`γfipθq

*

. (6)

The CVaR measures expected losses restricted to the upper tail
of the distribution of the random variable Z [25]. Thus, by tuning
the parameters γ P r0, 1s and α P p0, 1s, we tune the objective in (4)
to boost the learning procedure on data points that come from rare
user participation events, and essentially enforce learning under data
starvation with a few shots only. Equivalently, a training algorithm
based on (4) learns how to reject samples from frequent users since
CVaRα

r¨s is robust to the uncertainty of the environment [24] .
Problem (6) leads us to devise Algorithm 1 for tackling (4). Al-

gorithm 1 is an extension of FedAvg, and essentially an instance of
FedAvg on the proposed risk-aware problem (6). In each round, the
server receives the parameters pθni , t

n
i q of a certain user i (chosen iid

by the RAM and not by the server) and broadcasts those as global pa-
rameters pθnglobal, t

n
globalq to all users. Then, each user locally applies

gradient descent steps on its private dataset, updating its parameters
θn`1
i and tn`1

i .
We again note that the server is agnostic to RAM user selection.

So, the proposed Algorithm 1 asks the users to tackle a more general
problem than in the standard risk-neutral case (cf. (1)), to solve lo-
cally. Indeed, Algorithm 1 asks the users to optimize the risk-aware
objective of (4) –through that of (6)–, given a desired CVaR con-
fidence level a and a trade-off parameter γ. When α “ 1, (4) is
reduced to the standard FL objective (1), and Algorithm 1 reduces to
standard FedAvg.

Algorithm 1 FED-CVaR-AVG

Initialize θ1i “ θ, t1i “ t, for all i. Set K, T , H , γ, α.
1: for each global round n “ 1, . . . , T do
2: Server broadcasts the user selected by the RAM:

pθnglobal, t
n
globalq Ð RAMptpθni , t

n
i qu

K
i“1q

3: for all users i P rKs in parallel do
4: B Ð split each Di into batches of size Bi

5: pθi, tiq Ð pθnglobal, t
n
globalq

6: for local epoch h “ 1, . . . , H do
7: for batch b P B do

8:

„

θi
ti

ȷ

Ð

„

θi ´ ηθ∇θGipb; θi, tiq
ti ´ ηt∇tGipb; θi, tiq

ȷ

9: end for
10: end for
11: Forward to RAM: pθn`1

i , tn`1
i q Ð pθi, tiq

12: end for
13: end for

3.1. A Motivating Example
We now present a simple example to illustrate the differences in
behavior of the standard (risk-neutral) FL objective in (1) and the
proposed risk-aware objective in (4). Suppose that a dataset is dis-
tributed among K “ 3 users, with each user training for 1 pattern.
Let us also assume that the RAM selects the users with probabilities
ρ1 ą ρ2 " ρ3, which means that the RAM allows users 1, and 2, to
communicate more often with the server than the user 3.

As usual, the classical FedAvg [2] approach will try to minimize
the objective function

GFLpθq “

K“3
ÿ

i“1

ρifipθq “ ρ1f1pθq ` ρ2f2pθq ` ρ3f3pθq, (7)

where the weights ρ1, ρ2 and ρ3 are unknown, but implicitly sup-
plied by the RAM.

On the other hand, for a sufficiently small and strictly positive
choice of the hyper-parameter (the CVaR level) α, it can be easily
shown (although not entirely trivially) that the positive part of the
risk-aware objective in (4) is activated only for the upper α-quantile
of the empirical losses f1pθq, f2pθq, f3pθq on the random variable I
(for each fixed θ). This yields the weighted user-robust loss

GR
FL

`

θq “ p1 ´ γqmaxtf1pθq, f2pθq, f3pθqu ` γGFLpθq, (8)

for every sufficiently small trade-off parameter γ P r0, 1s. We ob-
serve that the risk-aware objective (8) focuses on the worst user loss
regardless of the corresponding probability of it being selected by
the RAM, with relative proportion 1 ´ γ.

Therefore, in a region of the space where, e.g., f3 is larger, which
is expected to happen due to rare sampling by the RAM, the risk-
aware objective (8) will steer θ towards regions of Θ that equalize
(i.e., reduce) the values of the local training loss f3, relative to f1
and f2. In other words, the objective (8) induces user equity in FL,
which is initially hindered by the presence of the RAM.

It is worth-noting that while (8) is an operationally desirable ob-
jective, it is practically impossible for the server to infer which of
the three losses is largest, since the RAM prevents the server from
controlling user participation in learning. Additionally, (8) generally
results in not well-behaved and possibly nonsmooth FL problems. In
our approach, these challenges are effectively addressed by replac-
ing the risk-aware problem (4) by its equivalent version (6), which is
well-behaved and does not require access to unavailable information.



α “ 1.0 α “ 0.3 α “ 0.2 α “ 0.1

Overall. | pattern 1. | pattern 2. Overall. | pattern 1. | pattern 2. Overall. | pattern 1. | pattern 2. Overall. | pattern 1. | pattern 2.
γ “ 0.0 85.147 ˘0.546 | 85.473 ˘1.548 | 61.041 ˘3.554 86.157 ˘0.559 | 88.323 ˘1.140 | 67.164 ˘3.344 86.453 ˘0.592 | 88.736 ˘1.472| 68.926 ˘2.716 86.089 ˘0.923 | 87.536 ˘2.449 | 70.601 ˘3.523

γ “ 0.1 84.895 ˘0.605 | 84.583 ˘1.597 | 59.649 ˘3.795 86.276 ˘0.519 | 88.353 ˘1.058 | 66.676 ˘2.883 86.432 ˘0.653 | 88.619 ˘1.674 | 68.801 ˘2.835 86.546 ˘0.540 | 88.681 ˘1.454 | 71.681 ˘2.419

γ “ 0.2 84.783 ˘0.474 | 84.533 ˘1.294 | 59.223 ˘2.580 86.174 ˘0.552 | 88.029 ˘1.572 | 66.372 ˘3.116 86.110 ˘0.573 | 88.061 ˘1.663 | 67.659 ˘3.156 86.132 ˘0.860 | 88.093 ˘1.990 | 69.698 ˘4.351

γ “ 0.3 84.983 ˘0.419 | 84.969 ˘1.042 | 60.330 ˘2.104 86.036 ˘0.483 | 87.611 ˘1.316 | 65.958 ˘2.492 86.263 ˘0.517 | 88.300 ˘1.772 | 68.076 ˘3.054 86.197 ˘0.533 | 87.776 ˘2.026 | 69.883 ˘2.674

γ “ 1.0 84.915 ˘0.497 | 84.514 ˘1.620 | 60.252 ˘3.074 84.822 ˘0.630 | 84.481 ˘2.003 | 59.008 ˘3.138 84.916 ˘0.454 | 85.459 ˘2.870 | 60.805 ˘2.399 84.956 ˘0.462 | 85.561 ˘1.443 | 59.839 ˘3.168

Table 1: FashionMnist: The 10% of less available users (that means 3 out of 30 users with sampling probabilities 0.0107, 0.0078, 0.0053,
respectively) carry 2 patterns exclusively. The columns represent the overall testing accuracy, and the testing accuracy, of the global model,
at the patterns that belong to the less available users, respectively. The objective becomes risk-neutral when α “ 1.0, or γ “ 1.0.
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Fig. 3: MNIST: For K “ 30 users, with the 3 of less often users have exclusively 1 of the patterns.

The sharp distinction between (7) and (8) is demonstrated in Fig.
2, for a simple logistic regression setup on 2D synthetic data. Specif-
ically, in Fig. 2a, each of K “ 3 users receives one pattern, while
in 2b, an extra pattern is assigned to the least frequent user 3. User
selection probabilities are ρ1 “ 0.5, ρ2 “ 0.4, and, ρ3 “ 0.1. We
observe that the standard FL (α “ 1) fails to classify correctly the
pattern/s from the least frequent user 3. However, the proposed ap-
proach which solves (6) (for α “ 0.1) generates decision boundaries
that correctly classify all patterns in both cases. Similarly, in Fig. 2c,
we scale up to K “ 30 users, with the 6 least frequent users train-
ing on the yellow dataset. The user selection probabilities are shown
in 2c(center). Once again, the risk-aware approach (α “ 0.1) suc-
cessfully generates a decision boundary that classifies all patterns.
Across all examples shown in figure 2, the trade-off γ remains con-
stant at 0.1 and all experiments were performed fairly under exactly
the same choices regarding algorithm hyperparameters, number of
epochs (all models are “trained to plateau"), etc.

4. EXPERIMENTAL RESULTS
We now evaluate the proposed Algorithm 1 on the Mnist (Figs. 3
and 4) and FashionMnist (Table 1) benchmarks, each comprised
of 60,000 training samples with 10 distinct patterns. Data are dis-
tributed among K users in a heterogeneous way. We split the data,
reserving M% of the most frequent users for r% of available pat-
terns, while the remaining p100 ´ rq% of the data is uniformly dis-
tributed among the least frequent users, comprising the remaining
p100 ´ Mq%. The total number of global rounds is the same for
both FedAvg and the proposed algorithm, and set to 4000 and 6000
for the Mnist and FashionMnist datasets, respectively. Code for all
experiments is available at [26].

For the Mnist dataset, we present results for two experiments
with K “ 30 users. For the first experiment in Fig. 3, we set M “

90%, and r “ 90%, and for the second experiment in Fig. 4, we set
M “ 90%, and r “ 80%. We also choose α “ 0.3 and γ “ 0.3.
For both FedAvg and Algorithm 1 we use a neural network with two
fully-connected hidden layers, with number of neurons p128, 128q

[27]. Stepsizes are set constant as ηθ “ 10´3, ηt “ 10´4, and
each user conducts 10 local epochs. We report smoothed graphs for
clarity. In both Figs. 3 and 4, we readily observe that Algorithm 1
achieves both better overall performance and better performance at
the patterns that are locally trained by the least frequent users. We
can observe performance improvement to over 80%, from around
50% (Fig. 3c), 60% (Fig. 4c) and 30% (Fig. 4d), respectively.

For the FashionMnist dataset, Table 1 provides a more detailed
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Fig. 4: MNIST: For K “ 30 users, with 3 of less often users have
exclusively the 2 of the patterns.

range of experiments. We set K “ 30, M “ 90% and r “ 80%,
and use a CNN similar as in [2] with two 5 ˆ 5 convolutional layers
(with 6 and 16 channels, respectively, each followed with 2ˆ 2 max
pooling) and two fully connected layers with 120 and 84 neurons.
Stepsizes are set as ηθ “ 10´2 and ηt “ 5 ˆ 10´4. Each user runs
20 local epochs. The setting remains the same for all α and γ.

Table 1 shows the overall global performance as well as that for
the patterns belonging to the least frequent users, for a variety of
pairs pγ, αq. The blue area of Table 1 corresponds to cases where
problem (4) is essentially reduced to standard FL. On the other hand,
in the orange area the objective of (4) becomes most risk-sensitive.
We observe that the accuracy at pattern 2 has been improved from
approximately 60% for standard FL to more than 71%, for α “ 0.1
and γ “ 0.1. Moreover, performance on pattern 1 is also improved
as compared with FedAvg. Further, it is worth mentioning that pat-
tern 2 is most difficult to learn even for the standard FL, compared
with pattern 1. As expected, overall performance improves when
α Ñ 0, with the case pγ “ 0.1, α “ 0.1q performing the best.

5. CONCLUSION
In this work, we studied FL under an unknown random access model
(RAM) describing biased, non-uniform, skewed and/or restricted
random user participation. Departing from the standard expected
loss model, we proposed a new risk-aware objective constructed by
taking the CVaR over the RAM distribution, resulting in an efficient
training algorithm which is oblivious to the RAM, but at the same
time addresses limited participation of infrequent users. Through
experimental evaluation on 2D synthetic, Mnist, and FashionMnist
datasets, we have demonstrated that the proposed risk-aware ap-
proach brings substantial potential performance gains over standard
FL relying on FedAvg which, to the best of our knowledge, is cur-
rently a state-of-the-art method for handling FL problems with no
server intervention on user participation.
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