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ABSTRACT

Sequence expansion between encoder and decoder is a criti-
cal challenge in sequence-to-sequence TTS. Attention-based
methods achieve great naturalness but suffer from unstable is-
sues like missing and repeating phonemes, not to mention ac-
curate duration control. Duration-informed methods, on the
contrary, seem to easily adjust phoneme duration but show
obvious degradation in speech naturalness. This paper pro-
poses PAMA-TTS to address the problem. It takes the advan-
tage of both flexible attention and explicit duration models.
Based on the monotonic attention mechanism, PAMA-TTS
also leverages token duration and relative position of a frame,
especially countdown information, i.e. in how many future
frames the present phoneme will end. They help the atten-
tion to move forward along the token sequence in a soft but
reliable control. Experimental results prove that PAMA-TTS
achieves the highest naturalness, while has on-par or even bet-
ter duration controllability than the duration-informed model.

Index Terms— Alignment guidance, duration control, at-
tention mechanism, seq2seq TTS, speech synthesis

1. INTRODUCTION

Text-To-Speech is a typical sequence-to-sequence modeling
task. In general, its input is a grapheme or phoneme sequence
while the output is a much longer sequence of acoustic param-
eters at the frame level. In recent popular encoder-decoder
architectures, the attention mechanism demonstrated strong
capability in mapping two sequences with different lengths
[1] and achieved high naturalness in TTS tasks [2, 3, 4]. How-
ever, for unseen texts, it may also bring errors like missing and
repeating phonemes, unexpected long silence, and even fail-
ure to produce speech completely [5, 6, 7]. Many efforts have
been made to enhance the attention robustness by constrain-
ing the attention to meet locality, monotonicity, and complete-
ness, such as Forward attention [5], Stepwise monotonic at-
tention [6], and Location-Relative attentions [7]. However,
none of them constrained how many frames one token should
occupy. Without it, phonemes in an unseen text may still be
articulated extremely short or too long in synthesized speech.

Other than attention-based methods, many studies uti-
lize a separate duration model to implement the sequence

upsampling. Fastspeech [8], Fastspeech2 [9], and DurIAN
[10] duplicate encoder outputs according to the phoneme du-
ration. Non-Attentive Tacotron [11] implements upsampling
with Gaussian weights. The ground-truth duration is obtained
from external forced-alignment tools [9, 10, 11, 12, 13] or by
internal joint training [14, 15]. Regardless of how the align-
ment is obtained and how the duplicated tokens are smoothed,
duration-informed methods always show naturalness degra-
dation due to hard duration control.

Differentiable duration models [16, 17] are also designed.
They need no phoneme alignment guidance but to optimize
duration model parameters by minimizing the final spectro-
gram reconstruction loss directly. For the duration loss, only
the total duration of phonemes in a sequence is taken into
account. It improved the naturalness of duration-informed
methods. However, in such networks, the output of the du-
ration model may not physically stand for phoneme duration.
Particularly, when the predicted duration of one word is ad-
justed when inference, the durations of other words in the syn-
thesized speech are often affected unexpectedly.

This paper proposes a Proceeding-Aware Monotonic At-
tention (PAMA1 ) for sequence-to-sequence TTS to realize
accurate phoneme duration control without naturalness degra-
dation. The neural network is based on Tacotron2 but the
Location Sensitive Attention (LSA) is replaced by stepwise
monotonic attention [6]. Besides, a soft guidance attention
matrix is generated from ground-truth alignment to benefit
both the efficiency of attention training and the correctness
of learned alignment. At the same time, an auxiliary duration
model is trained with the same alignment label. From the du-
ration model, latent duration representation and backward po-
sition embedding are offered to attention memory and query
respectively. The main contributions of this paper include:

• Design an innovative guidance attention matrix for
alignment constraint. The guidance is soft at phoneme
boundaries since there are no solid ground-truth breaks;

• Introduce latent duration representation into encoder
output as attention memory. With this information,
alignment loss converges faster and more stably;

• Introduce backward frame position within phoneme
1Audio examples: https://pama-tts.github.io/
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into prenet output as an attention query. In this way,
the generation of current spectrum conditions on not
only the preceding spectrogram but also how many
future frames the present phoneme should end within.
The former ensures the spectrum smoothness while
the latter helps the phoneme duration control. Their
impacts are balanced by the network dynamically.

2. RELATED WORKS

Although PAMA-TTS calculates attention alignment vector
recursively in the same way as stepwise monotonic attention
in [6], both attention query and memory of them are differ-
ent. For query, PAMA-TTS adds backward position informa-
tion for token proceeding awareness. For memory, PAMA-
TTS adds latent duration representation for efficient and sta-
ble training convergence.

VAENAR-TTS [18] introduces a latent variable Z to help
soft attention alignment, in which Z implicitly stands for
phoneme duration. However, there are no phoneme level
duration labels to guide Z explicitly. Besides, VAENAR-TTS
leverages both annealing reduction factor and causality mask
to help attention-based alignment learning other than applies
monotonic constraint.

Moreover, the attention alignment loss in PAMA-TTS is
quite similar to PAG in [19]. However, PAMA-TTS gener-
ates guidance matrices in a softer way for better flexibility,
since the results of a forced alignment tool may have slight
distortion, especially on found data.

3. ARCHITECTURE

The architecture of PAMA-TTS is shown in Fig. 1. Tacotron2
[3] with stepwise monotonic attention [6] is employed as the
backbone. Modified modules are highlighted and will be
illustrated below one by one.

3.1. Text Encoder & Phoneme Classifier

The text encoder takes a sequence of token IDs as inputs and
outputs the latent representation of them, which consist of
regular phonemes, tones, prosodic boundaries, and silence.
The tokens are placed in a carefully designed order to build
up input sequences as demonstrated in Fig. 2.

Since tones and most prosodic boundaries (except intona-
tion phrase boundary #3, which can be regarded as silence or
short pause as well) do not correspond to any acoustic frames
in speech, a filter is applied to skip the hidden states of them
as shown in Fig. 2. A similar strategy is used in DurIAN
[10], but they remove only prosodic boundaries. Moreover,
the trimmed encoder output is fed into a phoneme classifier
to ensure the token location information remains. Both above
designs aim at making the subsequent alignment learned by
the attention mechanism more meaningful.

Concatenation

Addition

Training Only

Inference Only

Loss

Loss

Loss

Loss

Text Encoder

Duration 

Predictor

Predicted 

Duration

Target 

Duration

Input Tokens

Pre-net

Guided 

Attention

Decoder 

LSTMs

Mel Linear

Shifted 

Target Mel

Mel 

Spectrogram

Phoneme 

Classifier

Relative Position 

Encoding

Timestep

Positional

Embedding

Fig. 1. Architecture diagram of PAMA-TTS. The yellow and
green dotted lines are turned on only for the training and in-
ference stage respectively.

The encoder structure is the same as that of Tacotron2,
i.e. three convolutional layers followed by a BLSTM layer.
For the phoneme classifier, a single feed-forward layer with
softmax cross-entropy loss is employed.

3.2. Guided Attention Matrix

Guided attention is used to help the attention module learn
a correct mapping between phoneme sequence and acous-
tic frames efficiently. Previous work [19] used time-aligned
phoneme sequences obtained by forced alignment to generate
hard guidance matrices. Considering the existence of align-
ment errors, this paper improves the guidance matrix to have
fuzzy weights at phoneme boundaries as shown in Fig. 3.

According to statistics on large data, most alignment er-
rors of phonemes are within 3 frames. Therefore, the weights
at boundaries in the guidance matrix are linearly transitioned
from 0 to 1 in six frames with a step size of 0.2. Then, a mean
square error is computed as alignment loss as

Lalign =
1

T

T∑
i=1

N∑
j=1

(Wij − αij)
2 (1)

where T , N denote the number of spectrogram frames and
filtered tokens, W,α ∈ RN×T are the guidance matrix and
attention weight matrix, respectively.
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Fig. 2. An illustration of how to skip some hidden states
(highlighted in yellow) of encoder output. The symbols #0,
#1, #2, and #3 denote the boundaries of syllables, prosodic
words, intermediate phrases, and intonational phrases respec-
tively. The numbers 1-5 denote tones of the previous syllable.

(a) Hard guidance matrix (b) Fuzzy guidance matrix

Fig. 3. An example of hard and fuzzy alignment guidance.
Weights in (b) change smoothly at phoneme boundaries.

3.3. Progression-Aware Monotonic Attention

The proposed PAMA is based on stepwise monotonic atten-
tion. To make the monotonic attention aware of the mapping
progression between phonemes and spectrogram, two addi-
tional pieces of information is leveraged: one is a latent du-
ration code for attention memory, and the other is a relative
position embedding for attention query.

The latent duration code is from the last hidden layer of a
duration predictor and transformed by a linear layer. For each
phoneme, its duration code is added with its encoder output
to generate key and value for the attention mechanism. In
this way, the attention’s key and value vectors carry duration
information more explicitly.

The relative position embedding is a concatenation of two
vectors from learnable look-up tables. One is for the forward
position within a phoneme, which implies the distance to the
beginning of the token. The other is for the backward posi-
tion, which denotes the distance to the end of the token. Both
of the two distances are ceilinged with a constant C. For each
acoustic frame, its relative positional embedding is concate-
nated with the output of prenet to generate an attention query.

Generally speaking, prenet output only carries informa-
tion of the preceding spectrogram. The injection of relative
position embedding, especially bringing the knowledge that

how many future frames the current phoneme should end
within, helps the attention be more premeditated.

At the training stage, the forward and backward positions
are both derived from forced alignment labels. At the infer-
ence stage, the forward position is calculated according to the
attention weights of preceding steps and the backward posi-
tion is estimated from the predicted duration. To convert the
forward /backward distance into a learnable vector, an em-
bedding lookup layer is used in which two lookup tables are
learned for forward and backward distances separately.

3.4. Training Loss

The overall loss is a weighted sum of four parts as

L = Lmel + α1Lpc + α2Ldur + α3Lalign (2)

where Lmel, Lpc, Ldur, and Lalign denote MSE loss of Mel-
spectrogram reconstruction, Cross-Entropy (CE) loss for the
phoneme classifier, L1 loss for duration predictor, and MSE
loss for guided attention, respectively. Their weights are set
as α1 = 0.005, α2 = 0.025, α3 = 0.25 empirically.

Here, the stop token predictor [3] is not used. Instead, the
decoder is assumed to stop when attention has stayed at the
last token for the predicted duration time.

4. EXPERIMENTS

4.1. Training Setup

We evaluated the proposed model on an internal corpus,
which was from a non-professional female speaker, contain-
ing about 10 hours of speech data (about 12,000 utterances).
The audios were collected in native mandarin Chinese and
resampled into 16 kHz, 16-bit mono wave format.

A proprietary front-end engine was used to convert input
texts into token sequences, which contain phonemes, tones,
prosodic boundaries, and silence marks. Besides, a Kaldi-
based forced alignment tool [20] was used to obtain phoneme
duration labels from recordings.

Two variants of Tacotron2 are used as baselines. One re-
places the attention mechanism in Tacotron2 with a duration
informed length regulator (called TLR), and the other em-
ploys stepwise monotonic attention (called TSW). The post-
net module is removed due to limited effectiveness. The re-
duction factor is set to 1 for a better quality of speech.

The same pre-trained LPCNet [21] is used as a vocoder to
generate audio signals from the predicted Mel-spectrogram.

63.89%17.77%18.34%

Without Neutral With

Fig. 4. Preference test between PAMA-TTS with and without
relative position embedding, which is at a p <0.01 level.



Table 1. The MOS with 95% confidence intervals for the
proposed method (PAMA), ground-truth samples (GT), and
two baselines (TLR and TSW). The ground truth is obtained
via analysis-synthesis.

Models MOS

GT 4.54 ± 0.12

TLR 4.22 ± 0.14
TSW 4.38 ± 0.18

PAMA 4.41 ± 0.14

Table 2. The mean absolute errors (ms) of phoneme duration
between the predicted by duration model and the segmented
from the synthetic speech by forced alignment. The duration
factor is used to scale the predicted duration to control the
speech rate of synthetic speech.

Model Duration Factor

0.75 1.0 1.5

TLR 9.72 7.53 14.67
TSW - 65.92 -

PAMA 8.48 6.68 13.54

4.2. Evaluation Setup

Two objective evaluations were conducted using 1,000 sen-
tences. Firstly, the duration consistency was measured to
show the duration controllability of models, which was
calculated as the mean absolute errors (MAE) between
the phoneme duration predicted by the duration predictor
and that from a forced aligner. For TSW, phoneme du-
ration was estimated from the attention results as di =∑T

t=1[argmaxnαn,t = i], where di was the duration of
the ith phoneme, and α ∈ RN×T was the final attention
matrix. Secondly, the phoneme error rate (PER) given by
an automatic speech recognition (ASR) model was adopted
as the metric to measure the robustness of different models.
The ASR model was based on a TDNN-LSTM structure and
trained on nearly 100,000 hours of recordings collected from
various Xiaomi mobile phones.

Subjective evaluations were conducted using 30 sen-
tences. They were not included in the training data. The
naturalness of the synthetic speech was evaluated through
the mean opinion score (MOS) test and AB preference test.
16 native listeners participated in the test, and the speech
samples were shuffled in each test.

4.3. Results & Discussion

As shown in Table 1, the proposed model (PAMA) gets the
highest mean opinion score. TLR shows slightly mechanical
rhythm while TSW has clarity issues in some cases.

Table 3. The phoneme error rates (PER) of different models
on 1,000 test sentences using a reduction factor (DF) of 1.0,
0.75 and 1.5. For TSW, speed modulation is almost infeasible.

DF Error TLR TSW PAMA

1.0

Sub 1.92 1.68 1.69
Del 0.27 1.13 0.23
Ins 0.20 0.21 0.20

PER 2.39 3.02 2.12

0.75

Sub 4.23 - 3.16
Del 1.84 - 0.93
Ins 0.37 - 0.42

PER 6.44 - 4.51

1.5

Sub 1.60 - 1.43
Del 0.16 - 0.15
Ins 0.27 - 0.28

PER 2.03 - 1.86

Results of the AB preference test shown in Fig. 4 confirm
the importance of procession-awareness for attention. If the
relative position embedding is not leveraged, the naturalness
of synthetic speech has remarkable degradation.

To check the duration controllability of different systems,
MAE and PER are calculated for three duration factors (DF).
We find stepwise monotonic attention is very weak at speech
rate control. When attention score bias is shifted within a
small range [-3, 3], the speech rate has a very slight change.
However, if a greater shifting is applied, serious word skip-
ping /repeating issues occur frequently. Therefore, only TLR
and PAMA are evaluated for duration modification. Table 2
compares the capability of duration control. It shows PAMA
has on-par or even fewer duration errors than TLR, and an
overwhelming advantage over TSW. Table 3 compares the ro-
bustness with an ASR tool, in which PAMA has much fewer
deletion errors than TSW and even better than TLR on overall
performance.

5. CONCLUSION

This paper introduced progression-aware monotonic atten-
tion for robust sequence-to-sequence speech synthesis. The
proposed model (PAMA-TTS) demonstrates that injecting
the duration and relative position information into attention
can achieve a better balance between the robustness and
naturalness of synthetic speech. Besides, it enables accu-
rate control of phoneme duration. Subjective and objective
evaluation results show that PAMA-TTS outperforms the
attention-based model on robustness and duration control-
lability while outperforms the duration-informed model on
naturalness. Progression-aware monotonic attention is proved
to be feasible for token length control and may be extended
to other similar applications easily.
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