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ABSTRACT

Deep neural networks (DNNs) have emerged as successful solutions
for variety of artificial intelligence applications, but their very large
and deep models impose high computational requirements during
training. Multi-GPU parallelization is a popular option to accelerate
demanding computations in DNN training, but most state-of-the-art
multi-GPU deep learning frameworks not only require users to have
an in-depth understanding of the implementation of the frameworks
themselves, but also apply parallelization in a straight-forward way
without optimizing GPU utilization. In this work, we propose a
workload-aware auto-parallelization framework (WAP) for DNN
training, where the work is automatically distributed to multiple
GPUs based on the workload characteristics. We evaluate WAP
using TensorFlow with popular DNN benchmarks (AlexNet and
VGG-16), and show competitive training throughput compared with
the state-of-the-art frameworks, and also demonstrate that WAP
automatically optimizes GPU assignment based on the workload’s
compute requirements, thereby improving energy efficiency.

Index Terms— Multi-GPU training, data parallelization, auto
parallelization, neural network training, deep learning framework

1. INTRODUCTION

In recent years, deep learning (DL) has emerged as the dominant
solution showing remarkable success in a wide spectrum of artificial
intelligence (AI) applications [1, 2, 3, 4, 5, 6, 7]. In each of these
domains, deep neural networks (DNNs) achieve superior accuracy
through the use of very large and deep models – necessitating up to
100s of ExaOps of computation during training.

To deal with the high computational demands and to achieve
high throughput, DNN training is often accelerated by paralleliz-
ing across multiple GPUs. Popular DL frameworks such as Ten-
sorFlow [8] and Pytorch [9] provide native GPU support. However,
adapting a single-GPU DNN model to work with multi-GPU envi-
ronments is not trivial for users, since they must consider not only
how computation will be distributed across multiple GPUs but also
what data will be exchanged via communication between GPUs. A
sub-optimal implementation decision can easily lead to poor GPU
utilization causing a significant drop from the expected speedup due
to parallelization.

This work was supported in part by the Brain Korea 21 Plus Project and
the National Research Foundation of Korea (NRF) grant funded by the Korea
government (MSIP) (No. 2018R1A2A1A05079504).

There have been several TensorFlow based parallelization
frameworks to ease the burden of multi-GPU implementation for
the users, such as Parallax [10]. Parallax provides a set of Python-
level APIs for the users to adapt their single GPU code for the
multi-GPU runs. These APIs help specify detailed information to
the DL framework about the DNN description as well as the list
of available GPUs. Using such information Parallax distributes the
computations across GPUs and executes them in parallel. These
frameworks also adopt the popular communication protocols such
as Open MPI [11] and NVIDIA collective communications library
(NCCL) [12] for efficient data communication. However, they do
not take into account GPU utilization during parallelization. In-
stead, these frameworks distribute the workload to all the available
GPUs oblivious to the users. It is well known that GPU suffers low
utilization when the workload is not sufficiently large, e.g., when
minibatch size is small in DNN training. Thus, it has been so far
the users’ responsibility to determine the optimal number of GPUs
based on the DNN workloads, and accordingly utilize the APIs.

In this work, we propose a novel workload-aware automatic par-
allelization framework (WAP). Different from the existing frame-
works, WAP applies parallelization under the hood of TensorFlow
source code. At this stage the computation workloads across the
DNN layers are fully specified into a dataflow graph and ready for
analysis. We devise the workload analysis unit in our paralleliza-
tion framework to estimate the expected utilization of the GPUs and
determine the best number of GPUs to be assigned. Based on this
analysis, we directly modify TensorFlow’s dataflow graph to seam-
lessly enable multi-GPU parallelization. We automate all of these
steps in WAP without requiring any additional inputs from the users.
In particular, the users do not need to manually find out the num-
ber of GPUs optimally suited for a given workload. We evaluate
WAP with the popular DNN benchmarks, and demonstrate that it
not only achieves competitive throughput and scalability compared
to the state-of-the-art multi-GPU framework [10], but also automati-
cally optimize the GPU assignment based on the workload analysis,
improving energy efficiency.

2. RELATED WORK

2.1. Parallelization Strategies for DNN Training

There have been extensive research on parallelization of DNN train-
ing [1, 13, 14]. Most efforts can be categorized into three strategies:
data, model, and hybrid parallelization. In data parallelization, each
GPU uses the same DNN model (i.e., “Replicated-Variables” in [15])
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(a) Single-GPU
(input for WAP)

(b) TF multi-GPUs (c) Parallax multi-GPUs

1 import tensorflow as tf

2 N = num_samples

3 x, y = get_input_data(N)

4 logits = build_vgg16_model()

5 loss = loss_function(logits, y)

6 opt = SGD_optimizer(lr)

7 train_op = opt.minimize(loss)

8 sess = tf.Session()

9 for i = 1 -> num_epochs do

10 return_val = sess.run(train_op)

1 import tensorflow as tf

2 N = num_samples

3 total_op = []

4 total_grads = []

5 for i = 1 -> num_gpus do

6 x,y = get_input_data(N/num_gpus)

7 logits = build_vgg16_model()

8 loss = loss_function(logits, y)

9 opt = SGD_optimizer(lr)

10 grads = opt.compute_gradients(loss)

11 total_grads.append(grads)

12 grads, vars = split_grads_and_vars(total_grads)

13 avg_grads = []

14 for grad in grads do

15 avg_grads.append(aggregate_grads(grad)/num_gpus)

16 total_grads = merge_grads_and_vars(avg_grads, vars)

17 for i = 1 -> num_gpus do

18 total_op.append(opt.apply_gradients(total_grads))

19 sess = tf.Session()

20 for i = 1 -> num_epochs do

21 return_val = sess.run(total_op)

1 import tensorflow as tf

2 import parallax 

3 import parallax_config

4 N = num_samples

5 sess_config = tf.ConfigProto()

6 config = parallax_config.build_config()

7 config.sess_config = sess_config

8 single_gpu_graph = tf.Graph()

9 with single_gpu_graph.as_default():

10 x,y = get_input_data(N/num_gpus)

11 logits = build_vgg16_model()

12 loss = loss_function(logits, y)

13 opt = SGD_optimizer(lr)

14 train_op = opt.minimize(loss)

# e.g. resource_info_file = IP_Address:0,1,2,3

15 parallax_sess, _, _, num_replicas_per_worker = \

parallax.parallel_run(single_gpu_graph, \

resource_info_file, config)

16 for i = 1 -> num_epochs do

17 return_val = parallax_sess.run(train_op)

Fig. 1: Example pseudocodes for a single or multi-GPU training.
(a), (b): single and multi-GPU implementation using default Tensor-
Flow [8], and (c) multi-GPU with Parallax [10]. The red boxes in-
dicate an additional user effort to execute multi-GPU training. Note
that WAP can execute multi-GPU training only using (a).

to train on a different subset of training data and compute gradients,
which need to be aggregated across the GPUs [1]. In model par-
allelization, a DNN model is split and distributed across multiple
GPUs and each GPU is responsible only for updating a portion of
the model [13]. Hybrid parallelization blends model and data par-
allelization; e.g., [14] employs data and model parallelization for
convolution and fully-connected layers, respectively. In this work,
we focus on data parallelization as it is one of the most popular
multi-GPU training schemes. However our under-the-hood paral-
lelization based on TensorFlow dataflow graph is not limited to data
parallelization; implementation of model and hybrid parallelization
strategies will be future work.

2.2. Multi-GPU Data-Parallel Training Frameworks

Many deep learning frameworks provide native GPU support to ex-
ploit its extensive parallel computing power in accelerating DNN
training [8, 9, 16]. However, most of them require non-trivial manual
efforts for converting a single-GPU code into a multi-GPU version.
As an example, Figure 1 shows how a single-GPU implementation
of VGG-16 is converted in TensorFlow and Parallax for multi-GPU
runs. As shown in Figure 1(b), TensorFlow requires users to han-
dle details of multi-GPU implementation, such as the replication of
DNN models (line 5-11) and the gradient aggregation (line 12-18).

To ease the users’ burden of multi-GPU implementation, several
frameworks provide Python-level APIs, and Parallax [10] is one of
the most recent development. Parallax provides a software API for
efficient distributed training (using Horovod [17] for efficient data
communication) that hides detailed parallelization settings from the
users, as shown in Figure 1(c). While Parallax alleviates user ef-
fort for multi-GPU DNN training, it does not take into account GPU
utilization during parallelization. As shown in Figure 1(c), Parallax
simply uses the list of GPUs available to the user, regardless of the
amount of work for each layer of the neural network (line 15). There-
fore, even if the GPU utilization is low due to a small workload size
for a given DNN layer (e.g., when minibatch size is small), Parallax
obliviously allocates all the GPUs, potentially wasting power and de-
grading performance due to unnecessary communication overheads.

In this work, we set out to realize auto-parallelization while be-
ing cognizant of the expected GPU utilization. Unlike other ex-
isting multi-GPU frameworks, our framework provides automatic
parallelization starting from a single-GPU code from the user, and
takes into consideration the workload’s compute requirements to op-
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Fig. 2: Overview of workload-aware auto parallelization (WAP).
The white boxes represent execution steps in TensorFlow core source
code, and the navy boxes are added steps for WAP.

timally choose the number of GPUs for parallelization so as to in-
crease both throughput and energy efficiency.

3. WORKLOAD-AWARE AUTOMATIC
PARALLELIZATION

3.1. Overview

In this section, we explain details of our workload-aware automatic
parallelization (WAP) framework. The key challenge in WAP is to
extract the total amount of computations for all the DNN layers, in-
cluding minibatch size, before applying parallelization. In Tensor-
Flow, a dataflow graph created inside the TensorFlow core source
code captures all the workload details of a given DNN. Therefore, we
decided to augment the TensorFlow core source code for workload-
aware parallelization.

Figure 2 shows the overall steps of WAP. The dataflow graph
constructed from the Python-level user description of a DNN is sent
to a Neural-Net Parser to extract workload information. This in-
formation is used by the Workload-aware Analysis Unit (WAU) to
determine the optimal number of GPUs for parallelization. Next,
the original dataflow graph is transformed via Graph Modifier to re-
flect the GPU parallelization choice from WAU, followed by Post
Processing of the graph to avoid any redundancy in data communi-
cation. The final modified graph is then registered as the new graph
object into TensorFlow, where each GPU is allocated a partial graph
for parallel execution.

There are two advantages from our approach: 1) we extract the
workload information at the same level as TensorFlow core does,
so that we can perform precise workload analysis for the best GPU
usage, and 2) by applying parallelization at the dataflow graph level
under the hood, we hide all the burden of multi-GPU parallelization
from the users. In the following subsection, we explain the important
modules of WAP shown in Figure 2.

3.2. Implementation Details

3.2.1. Workload Analysis Unit

Workload analysis unit (WAU) receives the device (i.e., available
GPUs) and the neural network information to determine how to per-
form data parallelization with the highest GPU utilization. The more
GPUs are used, the more fine-grain the workload is divided, at some
point making the amount of computation not enough to maintain
high GPU utilization. At the same time, using more GPUs increases
the communication overhead for the gradient aggregation. There-
fore, sometimes using more GPUs achieves slower training speed.
WAU analyzes the workload using the performance model to detect



(a) A dataflow graph from
Single-GPU code

(b) Step1 (node replication)

(c) Step2 (removing overhead) (d) Step3 (efficient gradient ag-
greation)

Fig. 3: Illustration of workload-aware parallelization (WAP). (a) A
dataflow graph for Single-GPU code. (b) The primary computation
nodes are replicated with “split” and “concatenate” nodes (red and
blue triangles, respectively). (c) Unnecessary data communication
between devices are removed. (d) Gradients aggregation is opti-
mized with NCCL AllReduce.

and use only the number of GPUs required to improve both through-
put and energy efficiency.

There are several choices available to estimate expected perfor-
mance. In this work, we adopt the GPU execution time model from
[18] to evaluate run-time performance as follows:

testimate =
∑
li

{tc(li, d) + ts(li, d)} (1)

where testimate is the estimated total execution time for the entire
layers of a DNN, li denotes i-th layer in the network, d is a fac-
tor for workload division, tc is the processing time for the forward
and backward propagation, and ts represents the data communica-
tion time for gradient aggregation. We change d from 1 to the total
available GPUs to find out how many GPUs are needed to minimize
testimate. In Section 4.3 we show that this performance analysis
successfully guides to find the right parallelization that maximizes
throughput and avoids unnecessary power consumption.

3.2.2. Neural-Net Parser and Graph Modifier

Neural-Net Parser identifies which computational workloads need to
be parallelized based on the parallelization strategies. In this work,
it finds the computationally challenging layers such as convolution,
and fully-connected layers from the dataflow graph and extract the
workload information for analysis in WAU.

Table 1: Training throughput (images/sec) of the WAP graph trans-
formation steps on AlexNet [1] with four GPUs and 2048 minibatch.
Note that “before” represents single GPU performance. Experiments
are conducted on “single machine” which is explained in Section 4.1.

Before Step1 Step2 Step3
AlexNet 2482 421 7264 7904

Graph Modifier transforms the original dataflow graph into
the multi-GPU version as shown in Figure 3. Based on the num-
ber of GPUs determined by WAU, it first replicates the primary
computation nodes (e.g., convolution and fully-connected), and
split/concatenate their input and output, respectively (Figure 3(b)).
Note that naive node replication in this step causes unnecessary
links for data communication across GPUs. In order to avoid such
communication overhead, Graph Modifier further replicates auxil-
iary computation nodes (e.g., activation functions, loss computation,
etc.) and removes unnecessary split/concatenation (Figure 3(c)).

3.2.3. Post Processing for Optimizing Gradient Reduction

As explained in Section 2.1, in data parallelization, gradients calcu-
lated within each GPU need to be aggregated for the weight update.
Naive implementation of this gradient aggregation can cause sig-
nificant overhead, since it requires all-to-all data communication as
shown in Figure 3(c). The complexity of this communication over-
head is O(WN2), where the size of weight is W and the number of
GPUs is N . This communication overhead can be reduced by ex-
ploiting AllReduce with the ring algorithm, which reduces the com-
plexity down to O(WN) [12]. As shown in Figure 3(d), in Post
Processing, we inserted NCCL AllReduce for efficient gradients ag-
gregation.

3.2.4. Evaluation

Each of the steps above in our graph-based data parallelization
method is critical for achieving the best parallelization performance.
To quantify the importance of each step, Table 1 reports the impact
of each step to the training throughput. Note that a naive replication
of primary computation nodes in Step1 significantly degrades the
throughput. Replicating auxiliary computation nodes accordingly
with the removal of redundant data communication in Step2 helps
recover the throughput. Optimization via NCCL AllReduce in Step3
further increases the throughput by 9%.

4. EXPERIMENTAL RESULTS

4.1. Experimental Setup

All experiments are performed on two environments: A single ma-
chine with 4 GPUs (SM) and NVIDIA DGX-1 (DGX) [19]. SM
is equipped one AMD Ryzen Threadripper 1900X 8-core CPUs,
96GB main memory, and four NVIDIA TitanXP GPUs (connected
via PCIe). DGX is equipped with dual 20-core Intel Xeon ES-
2698, 512GB main memory, and eight NVIDIA Tesla GP100 GPUs
(connected via NVLink). We evaluate our framework with the two
well-known convolutional neural networks (CNNs), AlexNet [1] and
VGG-16 [2]. We employ data-parallel training with 512 and 64 per-
GPU minibatch for AlexNet and VGG-16, respectively.

We compare the training throughput of WAP against two state-
of-the-art multi-GPU implementations: TensorFlow high perfor-
mance benchmark (TF-Bench) [20] and Parallax [10]. Note that
TF-Bench is manually coded with the parallelization details hand-
optimized, and Parallax is coded with the provided API. Whereas,



(a) AlexNet-SM (b) AlexNet-DGX

(c) VGG-16-SM (d) VGG-16-DGX

Fig. 4: Comparison of training throughput (images/sec) for AlexNet and VGG-16 on Single Machine (SM) and NVIDIA DGX-1 (DGX).
WAP demonstrates compelling performance and favorable scalability without asking user effort for multi-GPU runs

WAP does not need any change from the single-GPU code. For
fair comparison, all three implementations employ the same op-
timization schemes, such as Replicated-Variables and AllReduce
(TF-Bench and WAP use NCCL AllReduce, and Parallax uses
AllReduce from Horovod), for the gradient aggregation.

4.2. Training Performance

First, we evaluate the training performance of WAP in terms of
scalability in throughput. Figure 4(a) and Figure 4(b) show the
training throughput of AlexNet on SM and DGX, respectively.
Similarly, Figure 4(c) and Figure 4(d) are for VGG-16 on SM and
DGX, respectively. Throughout the experiments, WAP consistently
demonstrates competitive performance. In particular, its throughput
is in par with TF-Bench for the most cases, validating that the auto-
parallelized execution of WAP is as good as the hand-optimized
TF-Bench code. Note that Parallax shows slightly lower/higher per-
formance with smaller/larger number of GPUs, respectively. This is
in part due to the AllReduce implementation in Parallax; it employs
Horovod’s AllReduce, which reports better AllReduce performance
with large number of GPUs [17], but its MPI runs would suffer
higher overhead when the number of GPUs is small. The results
on DGX show better scalability than SM, since the communication
overhead of DGX is further reduced thanks to NVLink. Over-
all, WAP achieves compelling performance and scalability without
requiring manual user effort for multi-GPU runs.

4.3. Workload-Aware GPU Allocation

We now showcase a scenario when the workload-aware GPU allo-
cation ends up achieving higher speedup as well as saving power
consumption. Table 2 shows the measured throughput and power
consumption in the SM machine (with 4 GPUs) for training AlexNet
with minibatch of 128.

In case of Parallax, all four GPUs are obliviously used for data
parallelization. Since each GPU gets 32-minibatch amount of work-
load, which is not large enough to achieve high GPU utilization, the
speedup by parallelization is overshadowed by the increased data
communication overhead. Thus Parallax suffers lower throughput
using 4 GPUs than what it could achieve with 1 GPU. In case of

Table 2: Comparison of throughput (images/sec) and power con-
sumption (Watt) of Parallax and WAP on Alexnet with minibatch
size of 128 on Single Machine (SM) with four GPUs. The numbers
in parentheses mean “Used GPUs”. Parallax obliviously uses four
GPUs, while WAP chooses to use one GPU based on the workload
estimation by WAU.

Available
GPUs

Parallax WAP (Ours)
Measured

(used GPUs)
Estimated
by WAU

Measured
(used GPUs)

Throughput
(images/sec)

1 1986 (1) 2244 2560 (1)
4 1473 (4) 1491 2560 (1)

Power (Watt) 402.81 149.44

WAP, however, the workload is first analyzed by WAU, where the
estimated throughput from Equation (1) indicates that the 1-GPU
run would outperform the 4-GPU run. Based on this analysis, WAP
uses only 1 GPU and achieve higher throughput. This demonstrates
that WAU effectively hides the burden of optimizing GPU utilization
from the users.

The workload-aware GPU allocation also has significant impact
on energy efficiency. In case of Parallax, 4 GPUs are used (although
each of them are running with lower utilization), thus it suffers high
power consumption. In contrast, WAP only uses one GPU, reducing
power consumption by 63% compared to Parallax.

5. CONCLUDING REMARKS

In this work, we proposed a workload-aware automatic paralleliza-
tion (WAP) framework for DNN training, which automatically dis-
tributes work to multi-GPUs based on the workload characteristics.
The proposed tool is implemented on the TensorFlow core source
code for executing multi-GPU training without any end-user’s effort.
WAP automatically modifies the single-GPU to multi-GPU graph
with the significant consideration of communication cost and distri-
bution of computational nodes. We evaluate WAP with popular DNN
benchmarks (AlexNet and VGG-16), and show competitive training
throughput compared with the state-of-the-art hand-optimized par-
allelization frameworks, and also demonstrate that WAP automati-
cally optimizes GPU assignment based on the workload’s compute
requirements, thereby decreasing power consumption and improving
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