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ABSTRACT

In this paper, we propose a new regularized (penalized) co-
variance matrix estimator which encourages grouping of the
eigenvalues by penalizing large differences (gaps) between
successive eigenvalues. This is referred to as fusing eigenval-
ues (eFusion), The proposed penalty function utilizes Tukey’s
biweight function that is widely used in robust statistics. The
main advantage of the proposed method is that it has very
small bias for sufficiently large values of penalty parameter.
Hence, the method provides accurate grouping of eigenval-
ues. Such benefits of the proposed method are illustrated with
a numerical example, where the method is shown to perform
favorably compared to a state-of-art method.

Index Terms— eFusion, Penalized sample covariance
matrix, Tuckey’s biweight function, Iteratively reweighted
algorithm

1. INTRODUCTION

Most data mining, machine learning and statistical multi-
variate analysis techniques require either an estimate of the
covariance matrix (CM), Σ = E[(x − E[x])(x − E[x])>],
or some nonlinear function of it, e.g., the inverse CM or
its eigenvalues/eigenvectors. However, insufficient num-
ber of samples causes significant estimation error in many
conventional estimators of the CM including the sample co-
variance matrix (SCM). When the sample size n is not orders
of magnitude larger than the dimensionality, p, it has long
been recognized that larger eigenvalues of the SCM tend to
overestimate, whereas the smaller eigenvalues tend to under-
estimate the true eigenvalues. Consequently, regularized or
penalized estimators of CM have been introduced in a series
of papers [1–10].

A regularized estimator of CM may be an optimally
weighted average of the SCM and a well-structured target es-
timator, which determines what type of structure is imposed
on the estimator. The weight parameter controls how much
structure is required [2,9–11]. Another approach in regulariz-
ing the SCM is to shrink the eigenvalues towards each other,
and not towards a predefined target value. Such an approach,

called elasso, was developed in [12], where the authors de-
veloped a family of non-smooth penalty functions that not
only shrink the eigenvalues towards each other, but they may
result in partitioning the eigenvalues into sub-groups.

Given a sample x1, . . . ,xn of independent and identically
distributed (i.i.d.) p-variate observations, the sample covari-
ance matrix, Sn = 1

n

∑n
i=1(xi− x̄)(xi− x̄)>, uniquely min-

imizes the loss function

l(Σ; Sn) = Tr(Σ−1Sn) + log{det(Σ)} (1)

over Σ ∈ Sp×p++ given that p < n, where Sp×p++ denotes the set
of p× p positive definite symmetric matrices. The loss func-
tion (1) corresponds to two times the negative log-likelihood
function when sampling from p-variate normal distribution.
A regularized sample covariance matrix (RSCM) Σ̂ is then
defined as the minimizer of

L(Σ; Sn; η) = l(Σ; Sn) + ηΠ(Σ), (2)

where Π(Σ) denotes a nonnegative penalty function, with
η ≥ 0 being the regularization parameter.

In this paper, we exploit the assumption that Σ has a
structure with only a few distinct eigenvalues, i.e., there are
groups of identical eigenvalues. We propose a RSCM esti-
mator that groups the eigenvalues by penalizing large differ-
ences between successive eigenvalues. For this purpose, let
d1 ≥ · · · ≥ dp > 0 and λ1 ≥ · · · ≥ λp > 0 denote the
ordered eigenvalues of Sn and Σ, respectively. Furthermore,
let rj = log(λj)− log(λj+1) denote the differences, referred
to as gaps, between successive log-eigenvalues of Σ and let
r
[0]
j = log(dj) − log(dj+1) denote the gaps between log-

eigenvalues of Sn for j = 1, . . . , p − 1. We propose to find
Σ̂ as the minimizer of (2) based on the following non-convex
penalty

Π(Σ) =

p−1∑
j=1

ρc

(rj
s

)
, (3)

where ρc(·) : R→ R denotes Tukey’ s biweight function [13]:

ρc(r) =
1

6
·min

{
1, 1−

(
1− r2

c2

)3
}
, r ∈ R, (4)



where c is a user-defined tuning parameter and s is the sample
standard deviation (SD) of r[0]j for j = 1, . . . , p− 1.

In the minimization of (2), our penalty function (3) as-
signs relatively large weights to smaller gaps rj’s, whereas
very large gaps attain relatively smaller weights due to the
boundedness of Tukey’s loss function. The latter property is
required in oder to achieve the grouping effect of eigenvalues.
We refer to (3) as eFusion penalty and the corresponding esti-
mator Σ̂ as the eFusion RSCM estimator. We devise an itera-
tively reweighting (IR) algorithm for computing the proposed
RSCM estimator. The IR algorithms are commonly used in
finding approximate solutions to such non-convex optimiza-
tion problems [14, 15].

Despite numerical stability, most RSCM estimators in the
literature are severely biased, i.e., the penalized eigenvalues
significantly deviate from the true values [12, 16]. Except
in specific scenarios [10, 17, 18], optimum tuning parame-
ters η may not be analytically derived in general, without
making prior assumptions on the distribution of the data or
model parameters. Our numerical example illustrates that
the proposed eFusion estimator, has significantly smaller bias
than the benchmark method, the elasso estimator [12]. At the
same time, poor choice of η appears to be less detrimental
compared to elasso; namely, when Σ has groups of identical
eigenvalues, larger values of η tend to provide better separa-
tion of the groups as eigenvalues within each group are being
more shrunk towards each other.

2. ESTIMATING EQUATIONS AND THE ITERATIVE
REWEIGHTING ALGORITHM

According to [12, Lemma 2.2], for an orthogonally invariant
penaty Π(Σ), the RSCM estimator Σ̂ and the SCM Sn pos-
sess the same set of eigenvectors, with the associated eigen-
values following the same ordering. Note that the eFusion
penalty (3) is orthogonally invariant and hence we only need
to solve the eigenvalues λ̂1, . . . , λ̂p. Thus, due to [12], the
eigenvalues of the eFusion estimator Σ̂ can be found as min-
imizers of

L(λ;d, η) =

p∑
j=1

(
dj
λj

+ log(λj)

)
+ η

p−1∑
j=1

ρc

(rj
s

)

= d>λ−1 + log(λ)>1 + η

p−1∑
j=1

ρc

(rj
s

)
, (5)

over λ1 ≥ · · · ≥ λp > 0, i.e., over the ordered eigenvalues.
Above d = (d1, . . . , dp)

>, λ−1 = (1/λ1, . . . , 1/λp)
> and 1

is a vector of size p × 1 with all elements equal to one. By
setting the gradient of (5) w.r.t. λ to zero ∇λL = 0 we get

−diag(λ)−2d + diag(λ)−1
(
1 +

η

s

p−1∑
j=1

ρ′c

(rj
s

)
κj

)
= 0,

Algorithm 1: Iteratively reweighted eFusion algo-
rithm

Input : d: Eigenvalues of the SCM Sn;
η: Penalty parameter;
c: Tukey tuning constant.

Output : λ̂: Penalized eigenvalues verifying (9)

Initialize: k ← 0; λ[0] ← d
1 Compute s = SD(r[0]),

Repeat

2 Update the gaps:

r
[k]
j ← log(λ

[k]
j )− log(λ

[k]
j+1), j = 1, . . . , p− 1,

3 Update the weights:

w
[k]
j ← ρ′c(r

[k]
j /s)/(r

[k]
j /s), j = 1, . . . , p− 1 ,

4 Update the eigenvalue estimates:

log λ
[k+1]
j ← 1

w
[k]
j +w

[k]
j−1

(
s2

η (dj/λ
[k]
j − 1) +

w
[k]
j log λ

[k]
j+1 + w

[k]
j−1 log λ

[k+1]
j−1

)
,

for j = 1, . . . , p.

5 k ← k + 1

until convergence

6 λ̂←
(

exp(log λ
[k+1]
1 ), . . . , exp(log λ

[k+1]
p )

)>
where

κj =
[

0 · · · 0︸ ︷︷ ︸
j−1

1 − 1 0 · · · 0
]>
1×p.

After some straightforward math, we obtain the following es-
timating equation.

f(λ) = diag
(
1 +

η

s
v
)
λ− d = 0, (6)

where v = (v1, . . . , vp)
> with vj = ρ′c(rj/s) − ρ′c(rj−1/s)

for j ∈ {1, . . . , p}. Note that, v1 = ρ′c(r1/s) and vp =
−ρ′c(rp−1/s).

The solution to (6) can be obtained by solving the follow-
ing system of equations,

1 +
η

s

(
ρ′c

(rj
s

)
− ρ′c

(rj−1
s

))
− dj
λj

= 0, (7)

for j = 1, . . . , p. This can be reformulated as

1 + η
(
rjwj − rj−1wj−1

)
/s2 − dj/λj = 0, (8)

where wj = ρ′c(rj/s)/(rj/s) are referred to as weights.
By substituting rj = log(λj) − log(λj+1) and rj−1 =



log(λj−1) − log(λj) to (8), we obtain the following system
of fixed-point equations.

log(λj) =

s2

η (dj/λj − 1) + wj log λj+1 + wj−1 log λj−1

wj + wj−1
,

(9)
for j = 1, . . . , p. Not that for j = 1 and j = p, (9) reduces to

log(λ1) =
s2

w1η

(d1
λ1
− 1
)

+ log λ2,

log(λp) =
s2

wp−1η

(dp
λp
− 1
)

+ log λp−1.

In the spirit of Iteratively Reweighted Least Squares (IRLS),
we devise an IR-eFusion algorithm to find the solution
λ̂1, . . . , λ̂p that verify (9).

Using d as the initial value for λ, our approach, detailed
in Algorithm 1, iterates the following steps until convergence.
First, the gaps rj and the weights wj are computed for all the
eigenvalues. Then, (9) is used to update each eigenvalue es-
timate in a coordinate-wise fashion, i.e., in updating log(λj)
we use the already updated log(λj−1). Note that, In Step
4, we avoid updating log λ

[k+1]
j if w[k]

j + w
[k]
j−1 = 0, i.e.,

log λ
[k+1]
j ← log λ

[k]
j .

3. ON CHOOSING THE TUNING PARAMETER

In order to find an optimal value of the tuning parameter c for
Tukey’s biweight function we will analyze the distribution of
r
[0]
j = log(dj) − log(dj+1). To that end, let us consider the

following binary hypothesis test{
H0 : λj = λj+1,

H1 : λj > λj+1, j = 1, . . . , p− 1.

Our goal is to detect when two consecutive eigenvalues
are equal and thus, we want to derive the distribution of r[0]j =
log(dj) − log(dj+1) under the null hypothesis H0. Once the
distribution is derived, the tuning parameter can be obtained
as a threshold that assures a given probability of false alarm
(Pfa). The distribution of r[0]j can be derived using the re-
sult for the joint distribution of dj and dj+1 derived in [19].
More precisely, under the assumption that the data is uncor-
related (Σ = I), one has the following joint distribution of
two ordered consecutive eigenvalues of a Wishart-distributed
matrix

fdj ,dj+1(xj , xj+1) =
K

(j − 1)!

∑
n

∑
m

s(n,m)

|D(xj+1)|
j+1∏
k=j

ϕ(nk,mk, xk)

j−1∏
k=1

g(k)

where g(k) = Γ(n − p + nk + mk − 1, xj), the (s, t)th

element of D(y) is given by γ(n − p + ls,n + lt,m − 1, y),

Γ and γ are respectively upper and lower incomplete Gamma
functions, K is a normalizing constant, ϕ(nk,mk, xk) =
xn−p+nk+mk−2
k exp(−xk) and

∑
n

=

p∑
n1=1

p∑
n2=1,n2 6=n1

. . .

p∑
nj+1=1,nj+1 6={n1,...,nj}

(analogous for
∑

m). The definitions for s(n,m), ls,n and
lt,m can be found in [19]. In order to derive the distribu-
tion of rj we perform a change of variables by introducing
x = log(xj/xj+1) and y = xj+1. Then, computing the
Jacobian J(x, y) = 1

xj
= exp(−x)/y and using frj (x) =∫ +∞

0
fdj ,dj+1

(x, y) |J(x, y)|−1 dy one obtains the result

f
r
[0]
j

(x) =

∫ +∞

0

(
K

(j − 1)!

∑
n

∑
m

s(n,m) |D(y)|

ϕ(nj ,mj , exp(x)y)ϕ(nj+1,mj+1, y)
j−1∏
k=1

Γ(n− p+ nj +mj − 1, exp(x)y) exp(x)y

)
dy. (10)

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

rp−2

f
(r

p
−
2
)

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

rp−1
f
(r

p
−
1
)

Fig. 1. Empirical distribution of r
[0]
p−2 (left panel) and

resp. r[0]p−1 (right panel) with p = 100 compared to the cor-
responding theoretical distribution for p = 5 ; n = p.

One can note that the distribution of r[0]j depends on the
position j, on the data dimension p and on the number of ob-
servations n. Indeed, for a small sample size n the SCM’s
eigenvalues are very distinct, r[0]j ’s have high fluctuations, es-
pecially for large j (small eigenvalues). On the other hand,
for a sufficiently large n the eigenvalues of SCM are closer to
their true values and the gaps between them are smaller. This
implies that for larger n the interval of acceptable parame-
ter c is wider. For instance, with our settings and n = 700
(instead of 3000) the “optimal” parameter c is approximately
between 1.13 and 1.5. When n increases the gaps that cor-
respond to true identical eigenvalues decrease, while the gaps
corresponding to distinct eigenvalues rapidly increase. There-
fore the choice of c is much more flexible, e.g. for n = 3000
all values between 0.42 and 2.96 give good results. Small val-
ues of c can result in more groups than expected, while large
values have tendency to fuse even very different eigenvalues.
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For high dimensional p and for small eigenvalues (so
large j), Eq. (10) is computationally demanding, but we can
empirically show that some cases can be well approximated
with distributions obtained with significantly smaller param-
eters. Figure 1 illustrates this point. As it can be seen from
Figure 1, the variations of r[0]j are much higher for smaller
eigenvalues. The range becomes narrower when j decreases.
Here, we have plotted the limited case when n = p. Obvi-
ously, in order to better estimate the covariance matrix one
needs c that depends on the position j. In this paper, we
assume that n is big enough that the variation of r[0]j are
smaller under H0 and thus a unique c can be used for all j.
More general case will be analyzed in the extended version
of this paper. In order to compute that value, we propose then
to look, for instance, at the distribution of r[0]j for p = 4 ,
n = 16 and Pfa = 0.01. For j equal to 1, 2, 3 one obtains
c equal to 0.794, 0.86, 1.159, respectively. These are used in
Section 4 as candidate values.

4. NUMERICAL EXAMPLE

We compare the performance of the proposed estimator with
the elasso [12]. In elasso, Π(Σ) =

∑p
j=1 aj log(λj), is used

as the penalty function, where the weights aj are obtained by
centering decreasing quantiles from the Marc̆enko-Pastur law.
We generate a random sample of size n = 3000 from a p =
100 dimensional multivariate normal distribution. Similar to
[12], the covariance matrix Σ has 40 eigenvalues equal to 20,
30 equal to 10 and 30 equal to 2.

Figure 2 display the process of grouping eigenvalues with
elasso (top panel) and eFusion (bottom panel). The results
showcase a significant improvement that our estimator can of-
fer. First, it gives an unbiased estimation as the three groups
of eigenvalues are well separated and close to their true value.
Second, one does not need to search for optimal penalty pa-
rameter since for large enough η, the method provides good
results. The eFusion estimator offers similar results for differ-
ent choices of c and in order to compare these results we can
measure an affine-invariant (Riemannian) distance between
positive definite matrices Σ and Σ̂, defined as d(Σ, Σ̂) =

‖ log(Σ−1/2Σ̂Σ−1/2)‖F . Table below lists the values of the
distance for different values of c for the eFusion estimator:

c 0.794 0.86 1.159

d(Σ, Σ̂) 1.548 1.5066 1.5050

One can note that the values of the distance are very sim-
ilar for these choices of c. In general, to find a satisfactory
value of c one should adjust p/n to be larger than the one of
high dimensional data (given sample). Otherwise, we risk to
get too small value for c and finally a biased estimation. One
should note that we did not take into account the parameter s
(SD of r[0]j ) assuming that it is near 1 which can be a strong
approximation even for high n since the eigenvalues are cor-
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Fig. 2. An example of grouping of eigenvalues of elasso (top
panel) and eFusion (bottom panel) for c = 0.794.

related. From table above one could conclude that higher val-
ues of c give better estimation. This is still under study as well
as the distribution of gaps in the general case (Σ 6= I).

5. CONCLUSION

We introduced a new regularized covariance matrix estimator
based on a novel eFusion penalty (3) that promotes similarity
and grouping of eigenvalues. The grouping effect is achieved
as large gaps between successive eigenvalues are not penal-
ized excessively. This feature is obtained by utilizing Tukey’s
function as the penalty function for the gaps. The important
topic of how to choose the tuning parameter c of Tukey’s
function was addressed along with some simulation results.
Our numerical example revealed that the main benefits of the
eFusion are unbiasedness (accurate grouping) and robustness
to the choice of the penalty parameter.
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