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ABSTRACT

Optimal rate allocation is among the most challenging tasks
to perform in the context of predictive video coding, be-
cause of the dependencies between frames induced by mo-
tion compensation. In this paper, we derive an analytical
rate-distortion model that explicitly takes into account the de-
pendencies between frames. The proposed approach allows
us to formulate the frame-level optimal rate allocation as a
convex optimization problem. Within this framework, we
are able to achieve the exact solution in limited time (even
for large-size problems), thanks to the flexibility offered by
recent convex optimization techniques. Experiments on stan-
dard sequences demonstrate the interest of considering the
proposed rate-distortion model and confirm that the optimal
rate allocation ensures a better distribution of the total bit
budget, with superior results (in the rate-distortion sense)
with respect to the standard H.264/AVC rate control.

Index Terms— Video coding, rate distortion, convex op-
timization, resource allocation.

1. INTRODUCTION

Predictive coding is one of the best tools at hand to exploit
temporal redundancies induced by motion. As a matter of
fact, motion-compensated prediction plays a key role to re-
duce significantly the bit rate in state-of-the-art video codecs
such as H.264/AVC [1] and H.265/HEVC [2]. Several tech-
niques have been proposed in the literature to select the cod-
ing parameters that achieve an optimal trade-off between rate
and distortion. Many conventional coding schemes tend to
make these choices frame by frame [3, 4, 5, 6, 7, 8]. However,
it is widely recognized that, from a rate-distortion standpoint,
the optimal choice for a single frame may be potentially sub-
optimal for encoding the remaining frames, because of the
chain of predictions created by motion compensation. Conse-
quently, an optimization that jointly takes into consideration
the dependencies between frames may yield a significant bit
reduction [9, 10, 11, 12, 13].

In the last decades, a substantial research effort has been
made to enlarge the optimization scope from single frames to
groups of frames. A first class of techniques amounts at either
considering long-term reference frames [14, 15] or segment-

ing video frames into objects to be coded separately [16, 17].
However, these approaches exploit only indirectly the tem-
poral dependencies between frames. A more theoretical ap-
proach consists in embedding temporal dependencies in a rate
allocation problem. In this context, one of the most rele-
vant work dates back to Uz, Shapiro and Czigler [18], who
provided an optimal strategy for performing frame-level bit
allocation in presence of quantizer feedback. The point is
that motion-compensated frames carry the quantization er-
rors affecting the previous frames and, consequently, these
errors propagate towards the prediction residuals of succes-
sive frames, resulting in multiple quantization errors when
such residuals are coded. The basic result shown in [18] is
that both easily-predicted frames and good predictors need to
be allocated a higher bit rate, in order to limit the propaga-
tion of quantization errors. Similar insights were provided
in [9] within an operational rate-distortion (R-D) framework,
but this method requires to evaluate a set of operational R-D
points for each frame, which makes the computational bur-
den prohibitive in many applications, because of the involved
multi-pass coding. Recent work [12] extended at pixel-level
the rate allocation model in [18] and used it to drive an heuris-
tic for selecting the optimal quantization parameters. Interest-
ingly, the authors observed that a motion estimation approach
which exploits temporal dependencies may lead to observable
gains in the rate-distortion sense.
Related work. The optimal rate allocation is, in general, a
non trivial problem. In the seminal work [18], to take into
account the temporal dependency between a frame In and
its predictor In−1, the rate-distortion function was decoupled
into two terms, the prediction error and the distortion of In−1,
leading to a recursive model that can be managed analytically.
The same decoupling idea was recently rediscovered in [13],
but instead of considering a recursive model, the allocation
problem was formulated in terms of rate as a function of dis-
tortion and solved by resorting to a series of convex relax-
ations based on a first-order Taylor approximation. A similar
error-splitting model was also employed in [19] within the
distributed video coding (DVC) framework, in order to anal-
yse the R-D performance of decoding strategies and propose
new schemes for multi-view DVC.
Contributions. In this paper, we propose an efficient solu-
tion to exactly solve the frame-level bit allocation problem.



We use the same theoretical foundations as in [18], but

1. we extend the R-D model by letting the exponential de-
cay vary at each frame, allowing us to better represent
the intrinsics non-stationarities in a group of frames (in
[18], it is explicitly required that the exponential decay
needs to be the same for all the frames);

2. we provide an efficient solution based on proximal
tools [20] in order to find the exact solution of the R-D
problem (within the limit of the accuracy of the model),
in limited time even for hundreds of frames.

The paper is organized as follows. Section 2 illustrates the
proposed R-D model and discusses the differences with [13].
Section 3 describes the bit allocation problem and the algo-
rithm to solve it. Section 4 provides model validation and
illustrates the performance of the proposed rate allocation
method. The conclusions are given in Section 5.

2. RATE-DISTORTION MODEL

Accurate Rate-Distortion (R-D) modelling plays a fundamen-
tal role in optimal bit allocation. Due to the different charac-
teristics of frames, as well as and the sophisticated compres-
sion techniques employed in coding algorithms, analytic R-D
modelling is still an open problem. According to the classi-
cal R-D theory [21], it is possible to express the relationship
between R and D for a frame compressed at high bit rate as

D = ασ22−2R (1)

where α and σ2 are, respectively, the p.d.f. shape factor
and the variance of the residual DCT coefficients, and D
is measured as the Mean Square Error between the origi-
nal frame and the reconstructed frame. As shown in [22],
such type of analytic formula does not work well for hybrid
video coders. We therefore present an alternative R-D model
based on the work [18]. To do so, we consider a group of
frames I = (I0, . . . , IN−1) of size N > 0 and we denote by
r = (r0, . . . , rN−1) the rates used to encode such frames. We
further assume that frame I0 is intra encoded (I-frame) and,
for n ≥ 1, frame In is predicted from frame In−1 and the
prediction residual is encoded spatially (P-frames).
I-frame. For frame I0, we follow the model proposed in [18]
and employ the following R-D function:

D0 = α0M0 2
−β0 r0 , (2)

where M0 = σ2
0 is the variance of I0 and (α0, β0) are model

parameters estimated as explained in Section 4. It is worth
noting the difference with the R-D function proposed in [13],
which reads (after a simple inversion):

D̂0 =
a0 ·G

r0 − c0 ·G
− b0. (3)

where (a0, b0, c0) are model parameters and G is the average
gradient of a frame.
P-frame. For frames In, with n ≥ 1, we choose a model that
is very close to [18, 19, 13], but with a different parametriza-
tion, which consists in expressing the R-D function as:

Dn = αn (Mn +Dn−1) 2
−βn rn , (4)

where Mn is the innovation of frame In, i.e. the residual that
would result if In was predicted (through a prediction func-
tion fn) from a non-quantized reference frame In−1

Mn = E
{[
In − fn(In−1)

]2}
, (5)

and (an, βn) are model parameters estimated in Section 4.
The distortion of In is hence decoupled in two terms: the
error due to the motion-compensated prediction of In and the
distortion due to the quantization of the reference frame In−1.

3. RATE ALLOCATION ALGORITHM

Optimal rate allocation consists in finding the vector of rates
that minimizes the global distortion while keeping the total
rate under a given budget η > 0,

minimize
r∈[0,∞[N

N−1∑
n=0

Dn(rn, . . . , r0) s. t.

N−1∑
n=0

rn ≤ η. (6)

The R-D function of frame I0 is given in Eq. (2), while the
one for the n-th P-frame is given in Eq. (4). Therefore, we can
demonstrate by the induction principle that the operational R-
D function Dn actually depends on all the frames involved in
the chain of predictions leading to In, yielding

Dn(rn, . . . , r0) =

n∑
`=0

α(n,`)M` 2
−

∑n
j=` βjrj , (7)

where α(n,`) =
∏n
j=` αj . Note that Eq. (7) reduces to Eq. (2)

when n = 0. To gain some insight into the solution of Prob-
lem (6), we introduce a vector u = (un`)0≤n≤N−1,0≤`≤n
defined as

un` =

n∑
j=`

βjrj , (8)

which allows us to express the global distortion as a separable
sum of exponentials

F (u) =

N−1∑
n=0

n∑
`=0

α(n,`)M` 2
−un` . (9)

Therefore, Problem (6) can be reformulated as follows

minimize
r∈RN

F (Lr) s. t. r ∈ C, (10)



where L : RN 7→ R
N(N+1)

2 is the linear operator that maps the
vector r ∈ RN into the vector u ∈ R

N(N+1)
2 defined in (8),

and C is the nonempty closed convex set defined as

C = {r ∈ ]0,+∞[
N ∣∣ N−1∑

n=0

rn ≤ η}. (11)

Among the many approaches proposed in the literature to
solve this class of problems, we do not transform the con-
strained problem in Eq. (6) to a Lagrangian formulation, but
rather manage the bit budget as a hard constraint. We re-
sort here to proximal algorithms [20, 23], which can han-
dle a wide class of convex optimization problems involving
non-smooth penalizations and hard constraints. In particular,
we employ the primal-dual M+LFBF algorithm recently pro-
posed in [24], which guarantees the convergence (under weak
conditions) in a reasonable time even for large-scale prob-
lems, offers robustness to numerical errors and its structure
makes it suitable for parallel implementations.

4. EXPERIMENTAL RESULTS

In order to evaluate the performance of the proposed al-
gorithm, we selected eight video sequences composed of
84 frames at resolution 352x288. We encoded all the se-
quences with a GOP structure IPP...P of size N = 12, a
frame rate of 30 pictures per second and CABAC as en-
tropy coder. For the motion estimation, we set the max-
imum search range to ±16. Moreover, we estimated the
model parameters (αn, βn,Mn)0≤n≤N−1 by encoding the
sequences in H.264/AVC with the rate control disabled, in
order to manually fix seven different quantization parameters:
10, 12, 14, . . . , 22. For each frame, we recorded the values of
D and R produced at the encoder output and, after a logarith-
mic transformation of D, we estimated the model parameters
by resorting to a linear regression. We then encoded all the
sequences with the rate control of H.264/AVC enabled, set-
ting seven different target bit-rates ranging from 2.2 to 4.0
Mb/s and reported the results in the following.
Model validation. We start our experimental analysis by
comparing the proposed R-D model with the one in [13]. The
validation was performed on the basis of the R2 metric [25],
which was designed to quantitatively measure the degree of
deviation from a given model (the closer the value of R2 is
to 1, the more accurate the model). Table 1 shows the R2

values associated to the R-D function of I-frames given in Eq.
(1)-(3). For all the sequences, the proposed model (2) shows
superior fitting performance, giving R2 values very close to 1
and higher than (1) and (3). We skip the comparison between
the R-D functions associated to P-frames, as we gotR2 values
very close to each other (the R-D models are very similar).
Comparison with H.264/AVC. To assess the validity of our
rate allocation method, we compared it with the standard
rate control algorithm of H.264/AVC [26]. For the sequences

Table 1: R2 values of the R-D functions for Intra-frames

Sequence R2 with (2) R2 with (3) R2 with (1)

hall 0.997 0.455 0.975
foreman 0.995 0.912 0.908
football 0.985 0.849 0.762
container 0.985 0.774 0.824
coastguard 0.984 0.596 0.395

Table 2: PSNR increase for several bitrates

Sequence 1.31 bpp 1.15 bpp 0.76 bpp

akiyo 3.38 6.78 3.23
football 2.28 0.95 2.26
coastguard 0.99 0.55 1.11
eric 0.10 0.12 0.19

“foreman” and “hall”, Figure 1 reports the rates, as a func-
tion of frame numbers, which are allocated by the proposed
method (red line) and by H.264/AVC (blue line), while Fig-
ure 2 displays the corresponding distortions. As we can see
from Figure 1, the allocation by the proposed method is quite
different than the reference, especially for I-frames. Also, our
distribution of rates is more uniform within the GOP. This is
an important result, because often the H.264/AVC encoder
shows a sub-optimal greedy behaviour: it allocates the largest
part of the bit budget to the first frames of the GOP and hence
it rapidly runs out of bits for the remaining GOP frames,
causing an increase of the global distortion. Moreover, we
collected in Figure 3 the average distortion as function of the
average rate, and in Table 3 the corresponding PSNR incre-
ments (due to space limitations, we can only report a small
subset of indicators). These results show that the distortion
achieved with the proposed method is always lower than the
one obtained by the standard rate-control algorithm.

5. CONCLUSIONS

We have proposed a new algorithm to exactly solve the frame-
level rate allocation problem arising in predictive video cod-
ing. The obtained results demonstrate that the analytical R-
D model presented in Section 2 allows us to accurately de-
scribe the temporal dependencies in a group of frames. Fur-
thermore, our experiments indicate that the optimal rate al-
location, when supported by an accurate R-D model, attains
better results (in the R-D sense) than the standard rate control
in H.264/AVC. The higher performance of our approach is re-
lated to its ability to see beyond the first frames of the GOP
and to keep the rate budget for the successive frames when
necessary. This is in contrast with the greedy behaviour of
H.264/AVC rate controller, which tends to allocate the largest
part of the bit budget to the first frames of the GOP.
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(b) Sequence hall.
Fig. 1: Rates vs frame numbers.
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(b) Sequence hall.
Fig. 2: Distortion vs frame numbers.

0.8 0.9 1 1.1 1.2 1.3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

average R [bpp]

a
v
e
r
a
g
e
 
D
i
s
t
o
r
t
i
o
n
 
[
M
S
E
]

H.264/AVC allocation
exact RD rate allocation

(a) Sequence akiyo.
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(b) Sequence coastguard.

Fig. 3: Comparison between actual and estimated distortion.
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