
DISTRIBUTED SPARSE SIGNAL RECOVERY FOR SENSOR NETWORKS

Stacy Patterson, Yonina C. Eldar, and Idit Keidar

Department of Electrical Engineering
Technion - Israel Institute of Technology, Haifa, Israel

{stacyp,yonina,idish}@ee.technion.ac.il

ABSTRACT

We propose a distributed algorithm for sparse signal recov-
ery in sensor networks based on Iterative Hard Thresholding
(IHT). Every agent has a set of measurements of a signal x,
and the objective is for the agents to recover x from their col-
lective measurements at a minimal communication cost and
with low computational complexity. A naı̈ve distributed im-
plementation of IHT would require global communication of
every agent’s full state in each iteration. We find that we can
dramatically reduce this communication cost by leveraging
solutions to the distributed top-K problem in the database lit-
erature. Evaluations show that our algorithm requires up to
three orders of magnitude less total bandwidth than the best-
known distributed basis pursuit method.

Index Terms— compressed sensing, distributed algo-
rithm, iterative hard thresholding, top-K

1. INTRODUCTION

In compressed sensing, a sparse signal x ∈ RN is sampled
and compressed into a set of M measurements, where M is
typically much smaller than N . If these measurements are
taken appropriately, then it is possible to recover x from this
small set of measurements [1].

Compressed sensing is an appealing approach for sen-
sor networks, where measurement capabilities may be limited
due to both coverage and energy constraints. Recent works
have demonstrated that compressed sensing is applicable to
a variety of sensor networks problems including event detec-
tion [2], urban environment monitoring [3] and traffic estima-
tion [4]. In these applications, measurements of the signal
are taken by sensors that are distributed throughout a region.
The measurements are then collected at a single fusion center
where signal recovery is performed. Due to limits in band-
width, storage, and computation capabilities, it may be more
efficient, and sometimes even necessary, to perform signal re-
covery in the network in a distributed fashion.

The work of Y. Eldar is supported in part by the Israel Science Founda-
tion under Grant no. 170/10, and in part by the Ollendorf Foundation. The
work of S. Patterson is funded in part by the Arlene & Arnold Goldstein Cen-
ter at the Technion Autonomous Systems Program, a Technion fellowship,
and an Andrew and Erna Finci Viterbi Fellowship.

Distributed solutions for compressed sensing have begun
to receive attention lately. For example, one work proposes a
distributed subspace pursuit recovery algorithm for a mixed-
support set model [5]. This work assumes that every agent
knows the sensing matrix of every other agent. The need for
global knowledge of these matrices presents a scalability bot-
tleneck as individual sensors do not have the capacity to store
and process a large number of these matrices. Several works
have proposed distributed basis pursuit algorithms for sparse
signal recovery in sensor networks where the measurement
matrices are not globally known [6, 7, 8]. In these algorithms,
agents collaborate to solve a convex relaxation of the original
recovery problem. Each agent stores its own estimate of the
signal x, and, in each iteration, it updates this estimate based
on communication with its neighbors in the network. This
approach requires that every agent solve a local convex op-
timization problem in each iteration. While these algorithms
use only local communication, each agent must send its entire
estimate vector to every neighbor in every iteration. This vec-
tor is not necessarily sparse until the algorithm converges, and
therefore, the messages can be quite large. As a result, these
algorithms have a large total bandwidth cost. Furthermore,
simulations show that this bandwidth cost increases dramati-
cally as the network connectivity increases.

We propose an alternative approach to distributed sparse
signal recovery in sensor networks that is based on Iterative
Hard Thresholding (IHT) [9]. In our distributed implementa-
tion of IHT, which we call D-IHT, all agents store identical
copies of the estimate of x. In each iteration, every agent first
performs a local computation to derive an intermediate vector.
The agents then perform a global computation on their inter-
mediate vectors to derive the next iterate. A naı̈ve distributed
implementation of IHT would require global communication
of the intermediate vector of each agent in every iteration. We
find that we can dramatically reduced the communication cost
of this global computation by leveraging solutions to the dis-
tributed top-K problem in the database literature [10, 11, 12].
Our evaluations show that D-IHT requires up to three orders
of magnitude less total bandwidth than the best-known dis-
tributed basis pursuit method. D-IHT is also computationally
simpler since it does not require that agents solve local con-
vex optimization problems. While, in this work, we present

ar
X

iv
:1

21
2.

60
09

v2
 [

cs
.I

T
]

 2
1

Fe
b

20
13

our distributed recovery algorithm for compressed sensing,
we note that our solution easily generalizes to sparse signal
recovery from nonlinear measurements [13].

The remainder of the paper is organized as follows. In
Section 2, we detail our problem setting and formulation and
provide a brief description of IHT. The D-IHT algorithm is
presented in Section 3. Section 4 gives numerical results on
the performance of D-IHT.

2. PRELIMINARIES

2.1. Problem Formulation
We consider a set of P agents that form a connected, undi-
rected static network topology with E edges. The agents
may be the sensors themselves or they may be fusion nodes
that collect measurements from several nearby sensors. Every
agent knows the number of agents P , and we assume there is
a unique agent identified as agent 1. If the uniquely identified
agent is not defined a priori, one can be chosen using a variety
of well-known distributed algorithms (see [14]). Agents com-
municate with their neighbors in the network using fixed size
messages. Messaging is reliable but asynchronous, meaning
that every message that is sent is eventually delivered, but the
delay between sending and delivery may be arbitrarily long.

There is a K-sparse signal x ∈ RN that the agents seek
to estimate. Each agent p = 1 . . . P has Mp > 0 (pos-
sibly noisy) measurements of x that have been taken using
the agent’s sensing matrix Ap ∈ RMp×N . There are M =
M1+. . .+MP measurements in total. The measurement vec-
tor of agent p, denoted bp, is given by bp = Apx+ εp, where
εp ∈ RMp is the measurement error for agent p. Agents
do not know the sensing matrices or measurement vectors of
other agents.

Our goal is for every agent to recover the same signal x
from their collective measurements at a minimal communica-
tion cost. Let b be the vector of all measurements, and let A
be the sensing matrix for the entire system:

b :=

b1

...
bP

 , A :=

A1

...
AP

 .
To recover x from A and b, the agents must solve the follow-
ing optimization problem,

x̂ = arg min
x∈RN

‖Ax− b‖22 subject to ‖x‖0 ≤ K, (1)

where ‖ · ‖0 denotes the l0 norm, i.e, the number of non-zero
components.

This problem is known to be NP-Hard in general [15].
However, for suitable A matrices, efficient centralized algo-
rithms to recover x̂ exist. Our distributed solution is based on
IHT [16, 9], which we describe next.

2.2. Iterative Hard Thresholding Algorithm

IHT is a gradient-like, iterative algorithm for finding a K-
sparse vector x̂ in a centralized setting where A and b are
known. Let T

K
(v) be the thresholding operator which re-

turns a vector where all but the K entries of v with the largest
magnitude are set to 0 (with ties broken arbitrarily). The IHT
algorithm begins with an initial, arbitraryK-sparse vector x0.
In each iteration, a gradient-step is performed, followed by
application of the thresholding operator:

xt+1 = T
K

(
xt − αAT (b−Axt)

)
. (2)

It has been shown that, for α < 1/
(
2λmax(A

TA)
)
, IHT con-

verges to a local minimum of (1) [9, 13].
We note that, even if A satisfies the properties necessary

to enable recovery using IHT, it is not necessary and, in fact,
not likely that each Ap satisfies these properties. Therefore it
is not possible for any single agent to recover x̂ on its own;
agents must exchange information with one another to per-
form the recovery. In the next section, we present D-IHT, our
distributed implementation of IHT.

3. DISTRIBUTED ITERATIVE HARD
THRESHOLDING

In D-IHT, every agent stores an identical copy of xt, which
is initially 0. In each iteration t, each agent first performs
a local computation to derive an intermediate vector zpt ∈
RN . The agents then perform a global computation on their
intermediate vectors to derive the next iterate xt+1, which is,
again, identical at every agent. We now define these local and
global computations.
Local computation. Each agent p computes a local residual
vector, ypt := bp−Apxt. The intermediate vector for agent p,
denoted zpt , is then computed as follows,

zpt =

{
xt − α (Ap)

T
ypt if p = 1,

−α (Ap)
T
ypt otherwise.

(3)

Note that each agent can compute zpt using its local informa-
tion.
Global computation. In the global computation step, all
agents must compute a function G that depends on all of their
intermediate vectors. This function is defined as follows,

xt+1 = G
(
z1t , . . . , z

P
t

)
:= T

K

(
P∑

p=1

zpt

)
. (4)

We note that the combination of the local computation step
(3) and the global computation step (4) are equivalent to (2).

A naı̈ve implementation of G is for all agents to collabo-
rate to compute allN sums, one for each component of the in-
termediate vectors. Then, each agent can independently deter-
mine the values with theK largest magnitudes. This approach

Agent 1 Agent 2 Agent 3
z1t L1 z2t L2 z3t L3

21

14

11

13

2

4

10

6

12

1

(1, 21)

28

3

26

45

20

10

1

13

18

22

(4, 45)

2

5

30

14

6

15

27

1

29

7

(3, 30)

(2, 14) (1, 28) (9, 29)

(4, 13) (3, 26) (7, 27)

(9, 12) (10, 22) (6, 15)

(3, 11) (5, 20) (4, 14)

(7, 10) (9, 18) (10, 7)

(8, 6) (8, 13) (5, 6)

(6, 4) (6, 10) (2, 5)

(5, 2) (2, 3) (1, 2)

(10, 1) (7, 1) (8, 1)

(a) The vector zpt and the resulting sorted list Lp, at three agents.

step agent object sum τ1 τ2 τ3 τ top-2 set
1 1 1 51 21 ? ? ? {(1, 51)}
2 2 4 72 - 45 ? ? {(4, 72), (1, 51)}
3 3 3 67 - - 30 96 {(4, 72), (3, 67)}
4 1 2 22 14 - - 89 {(4, 72), (3, 67)}
5 2 10 30 - 22 - 66 {(4, 72), (3, 67)}

(b) Steps of TA to find top two objects. After five steps, the threshold τ
is 65, and objects 3 and 4 both have sums greater than τ . No remaining
objects can have a sum greater than τ . Therefore, the top two objects
have been found, and the algorithm terminates.

Fig. 1: Example execution of the TA algorithm for K = 2.

requires communication of all components of all intermediate
vectors and is thus very costly with respect to bandwidth. We
derive a more communication efficient approach by leverag-
ing work in the database literature on the distributed top-K
problem. We describe this problem and a popular solution
in Section 3.1. We then present our distributed algorithm for
computing G in Section 3.2.

3.1. The Distributed Top-K Problem

In the distributed top-K problem, each agent p has a list Lp of
pairs (o, valp(o)), where o is an object ID and valp(o) is the
value of object o at agent p. In our recovery problem, this list
is generated from the vector zpt ; o is the index into the vector
zpt and valp(o) is the value of zpt at index o. Each object
has a score; in our case, the score is the magnitude of the
sum of object’s values at all agents. The objective is to find
the objects with the K largest scores. Clearly, it is possible to
solve this problem by computing the sum for every object and
then selecting the objects with the K largest magnitude sums,
but it is often not necessary to compute all sums in order to
find the top-K objects.

The Threshold Algorithm (TA) is a solution for the dis-
tributed top-K problem that is instance optimal, i.e., TA
makes the minimum number of sum computations necessary
for a given input of lists [10, 11, 12]. As it was originally
proposed, TA requires that all values be non-negative1. Here,
we present the algorithm, assuming that this is the case. In
Section 3.2, we explain how we modify TA to support both
negative and non-negative values.

In TA, each agent first sorts its list by object value, in
descending order. One agent acts as the leader, requesting in-
formation from the other agents, computing sums for objects,
and distributing the final top-K list to all agents. The algo-
rithm proceeds as follows. The leader requests an object/score
pair from each agent’s list in sorted order, one pair from one
agent in any given step. When the leader receives a pair con-
taining an object it has not yet seen, it requests the value for

1More precisely, TA requires that that an object’s score is given by a func-
tion that is monotonic in the values.

Algorithm 1: Pseudocode for D-IHT algorithm.
1 initialize
2 xp0 ← 0
3 t← 0

4 while TRUE do
5 zpt ← value from equation (3) Local computation.
6 Lp ← Sort(zpt) Create sorted list from zpt .
7 xpt+1 ← DATA(Lp) Global computation.
8 t← t+ 1

that object from all other agents and computes the object’s
sum. The leader always stores the objects with the K largest
sums it has seen so far. In addition, the leader stores the value
of the last object seen from each agent p under the sorted ac-
cess. This value is denoted τp. It computes the threshold
value τ = τ1 + ...τP in each step. As soon as the leader has
seen K objects that each have a score of at least τ , the al-
gorithm terminates. The leader then disseminates the list of
top-K objects and their scores.

An example execution of TA is given in Figure 1. Note
that, while each list has 10 objects, the algorithm only re-
quires five sum computations to find the top two objects.

3.2. Distributed Computation of G
The computation of G is equivalent to solving a top-K prob-
lem over the vectors zpt , p = 1 . . . P . In D-IHT, we solve
this top-K problem using a modified version of TA that is
not leader-based and that accommodates both negative and
non-negative values. We describe our modifications and the
resulting algorithm below.

Support for non-negative values. As it was originally pro-
posed, TA is applicable only to score functions like sum that
are monotonic in the object values. To computeG, we need to
find the top-K magnitude sums, which means that the score
function is not monotonic unless all values are non-negative.
A simple way to address this limitation is to run two instances
of TA to find the top-K largest sums and the top-K smallest
sums (since a sum with a negative value may have a large

magnitude). The top-K magnitude objects can then be found
from this set of 2K objects. We implement a more efficient
algorithm in which the agents find the top-K magnitude sums
in a single algorithm instance by processing the sorted lists
from both the top and the bottom.

Decentralized list processing. We speed up the execution
of TA by having each agent independently processes its own
list in sorted order. Each agent initiates a group sum com-
putation for each new object it encounters, so that P group
sum computations are executed in parallel for each iteration
of the algorithm. In a group sum computation, every agent
learns the sum of the values for the specified object. There
are many distributed algorithms for group sum computation
(e.g. [17, 18]). We use an algorithm based on the well-known
broadcast-convergecast paradigm (see [19]). A request mes-
sage is propagated down a broadcast tree that is rooted at the
initiating agent. Each agent collects values from its children
(if it has any), sums up these values with its own, and sends
the result to its parent. For a network with E edges, the al-
gorithm requires a preprocessing phase of less than 2E mes-
sages to create a broadcast tree. Each group sum computation
requires 3(P − 1) messages, and each agent p sends at most
3Dp messages, where Dp is the node degree.

The algorithm. We call our modified version of TA the Dis-
tributed Absolute Threshold Algorithm (DATA). We briefly
summarize the algorithm below. The pseudocode is given in
the appendix.

In DATA, Each agent stores two variables for global
thresholds, one for sorted access from the top of the lists,
denoted τp, and one for sorted access from the bottom of the
lists, denoted τp. Both values are initially ∞. Each agent
also stores a top-K list that is initially empty. The agents
each execute the following steps.

1. If τp > τp, select next object from top of list for which
p has not received a sum in a previous iteration. Else, select
next object from bottom of list for which p has not received a
sum in a previous iteration
2. Initiate group sum computation for selected object. Agent
1 also initiates a group sum computation for the global thresh-
old, either τp or τp, depending on whether it accessed its ob-
ject from the top or bottom of its list. When participating in
the group sum computation for τp, an agent uses the most re-
cent value seen in sorted access from the top of its list, and for
τp, it uses the most recent value seen in sorted access from the
bottom.
3. On receipt of sums (from group computation) from all
agents, update top-K list with objects that have sums with the
K largest magnitudes seen so far.
4. On receipt of threshold (from group computation), up-
date appropriate global threshold variable, τp or τp. If
the top-K list contains K objects with magnitudes at least
max(|τp|, |τp|), return the list. Else, go to Step 1.

Table 1: Recovery problem parameters.

Problem N M P K α

Random 1000 250 50 20 1

Sparco 7 2560 600 40 20 0.99

Sparco 11 1024 256 64 32 0.0025

Sparco 902 1000 200 50 3 0.99

We note that in a single iteration, multiple agents may initiate
group sum computations for the same object. While, in the-
ory, this introduces unnecessary message overhead, in prac-
tice the redundant sums do not add significantly to the total
message cost.

3.3. The D-IHT Algorithm and Analysis

We combine the local computation step with DATA to arrive
at the full D-IHT algorithm. The pseudocode is given in Al-
gorithm 1. We note that while agent 1 plays a unique role in
the local and global computations, it performs the same num-
ber and types of computations and sends the same number of
messages as any other agent.

Storage complexity. Both D-IHT and distributed basis pur-
suit [6, 7, 8] require O(N) storage per agent.

Message complexity. Let T1 be the number of iterations of
D-IHT required to achieve a certain accuracy. Let Sj be the
number of group sum computations for iteration j (includ-
ing the group threshold computations). Each sum computa-
tion requires 3(P − 1) messages. Therefore, the total num-
ber of messages is 3(P − 1)

∑T1

j=1 Sj . We compare this to
distributed basis pursuit where, in every iteration, each agent
sends its estimate of x to all of its neighbors. Assuming that
the message size is limited to a single value, N messages are
required to send a single estimate. Let T2 be the number of
iterations of distributed basis pursuit required to achieve the
same accuracy as T1 iterations of D-IHT. The total number
of messages sent in distributed basis pursuit is 2NET2. For
a connected network, E ≥ P − 1, and therefore, the total
number of messages is at least 2NT2(P − 1).

The preprocessing phase of D-IHT requires at most 2EP
messages, which is less than the number of messages re-
quired for one iteration of distributed basis pursuit. There-
fore, if T1 < T2, then D-IHT requires fewer messages than
distributed basis pursuit so long as less than 2

3N sums are
computed per iteration of D-IHT, on average. In our evalu-
ations, T1 is always at least one order of magnitude smaller
than T2, and in most cases, the average number of sums
computed per iteration of D-IHT is far fewer than 2

3N .

4. NUMERICAL RESULTS

In this section, we present an experimental comparison of
D-IHT and distributed basis pursuit. As a representative ex-

Table 2: Evaluation results for D-IHT and D-ADMM.
(a) ER graph with connection probability of 0.25.

Problem Total Messages Clock Ticks
D-IHT D-ADMM D-IHT D-ADMM

Random 1.06× 106 1.43× 108 5.13× 103 1.60× 106

Sparco 7 2.23× 106 1.11× 108 2.59× 104 2.02× 106

Sparco 11 3.28× 106 5.25× 108 1.24× 104 4.29× 106

Sparco 902 1.48× 106 5.58× 107 9.09× 103 7.20× 105

(b) ER graph with connection probability of 0.75.

Problem
Total Messages Clock Ticks

D-IHT D-ADMM D-IHT D-ADMM
Random 1.13× 106 1.21× 109 3.75× 103 1.18× 107

Sparco 7 2.27× 106 7.33× 108 9.66× 103 9.33× 106

Sparco 11 3.41× 106 4.88× 109 8.06× 103 3.41× 107

Sparco 902 1.54× 106 2.67× 108 5.78× 103 2.65× 106

(c) Geometric graph with d=0.5.

Problem
Total Messages Clock Ticks

D-IHT D-ADMM D-IHT D-ADMM
Random 1.05× 106 7.22× 107 2.46× 104 1.68× 106

Sparco 7 2.23× 106 6.06× 107 7.60× 104 1.99× 106

Sparco 11 3.26× 106 2.37× 108 6.24× 104 3.66× 106

Sparco 902 1.46× 106 2.94× 107 5.17× 104 6.88× 105

ample, we select D-ADMM, a distributed implementation of
the alternating direction method of multipliers that has been
shown to outperform other distributed basis pursuit algo-
rithms in terms of the number of communications in similar
experiments [8]. In each iteration of D-ADMM, each agent
exchanges its estimate with its neighbors and generates a new
estimate by solving a local optimization problem involving its
estimate and the estimates of some of its neighbors. We have
implemented D-IHT and D-ADMM in Matlab, using CVX
[20] to solve the local optimization problems in D-ADMM.
D-ADMM requires a graph coloring, which we generate us-
ing the heuristic from the Matgraph toolbox [21], as is done
in [8]. We include the preprocessing phase in our results for
D-IHT, but we do not include graph coloring pre-processing
in our results for D-ADMM.

Recovery problems. We evaluate the performance of D-IHT
and D-ADMM on four reconstruction problems, similar to
those in [8]. For the first problem, we generate the A ma-
trix with i.i.d Gaussian entries with zero mean and variance
of 1/m. The remaining three problems are from the Sparco
toolbox [22]. The parameters for each problem are given in
Table 1. For each problem, we divide the A matrix evenly
among the agents so that each agent has M/P rows. For the
randomly generated problem, we find the optimal sparse so-
lution x̂ using CVX. For the Sparco problems, we use the
provided optimal sparse solution.

Performance measures. For each algorithm, we measure the
total number of messages sent in order for ‖xpt − x̂‖/‖x̂‖ ≤
10−2 for all agents. To standardize the bandwidth comparison

0 2 4 6 8 10 12 14 16 18 20 22
0

1000

2000

3000

Iteration

N
um

be
r o

f s
um

s

Student Version of MATLAB

Fig. 2: Number of sums computed per iteration by D-IHT to
solve Sparco problem 7 (with N = 2560) in a 40 node ER
graph with connection probability of 0.25.

between the algorithms, we assume that only one value is sent
per message. Therefore, in D-ADMM, when an agent sends
itsN -vector to its neighbor, this requiresN messages. D-IHT
is designed so that only one value is sent per message. We also
measure the time required for convergence in a synchronous
network where each message is delivered in one clock tick.
For both algorithms, we only allow one message to be sent on
a link in each direction per clock tick.

Results. Table 2 shows the results of our evaluations in three
different network topologies. The first is an Erdös-Rényi (ER)
graph [23] where each pair of vertices is connected with prob-
ability 0.25 (Figure 2a), and the second is an ER graph where
each pair of vertices is connected with probability 0.75 (Fig-
ure 2b). The third network topology is a geometric graph [24]
with vertices placed uniformly at random in a unit square, and
two vertices are connected if they are within a distance of 0.5
of each other (Figure 2c).

These results show that, for every recovery problem, D-
IHT requires far fewer total messages than D-ADMM to
achieve the same recovery accuracy, between one and two
orders of magnitude in most cases. D-IHT also requires less
total time to perform the recovery than does D-ADMM. We
note that, as network connectivity increases, in D-ADMM
the total message count and total time increase (Table 2a vs.
Table 2b). In D-IHT, sums can be computed more quickly in
networks that are more connected. Therefore, in D-IHT, the
recovery time decreases as network connectivity increases.

A key to the good performance of D-IHT is that, after just
a few iterations, the algorithm finds the correct support set
(the non-sparse components of the signal). The magnitudes of
the values in the support set quickly dominate the other values
in the intermediate vectors. As a result, in DATA, the sums
for these objects are computed first, and the top-K objects
are identified after a minimal number of sum computations
(on the order of PK). This behavior is illustrated in Figure 2,
where we show the total number of sums computed for each
iteration of D-IHT for a single experiment. This figure shows
a dramatic drop in the number of sum computations after just
four iterations.

5. REFERENCES

[1] M.F. Duarte and Y.C. Eldar, “Structured compressed
sensing: From theory to applications,” IEEE Trans. Sig.
Proc., vol. 59, no. 9, pp. 4053–4085, Sep 2011.

[2] J. Meng, H. Li, , and Z. Han, “Sparse event detection in
wireless sensor networks using compressive sensing,” in
Proc 43rd Ann. Conf. Information Sciences and Systems,
2009.

[3] Z. Li, Y. Zhu, H. Zhu, and M. Li, “Compressive sensing
approach to urban traffic sensing,” in Proc. 31st Int.
Conf. Distributed Computing Systems, 2011, pp. 889–
898.

[4] X. Yu, H. Zhao, L. Zhang, S. Wu, B. Krishnamachari,
and V. O. K. Li, “Cooperative sensing and compression
in vehicular sensor networks for urban monitoring,” in
2010 IEEE Int. Conf. on Communications, 2010, pp. 1–
5.

[5] D. Sundman, S. Chatterjee, and M. Skoglund, “A greedy
pursuit algorithm for distributed compressed sensing,”
in Proc. IEEE Int. Conf. on Acoust., Speech, and Sig.
Proc. (ICASSP), 2012, pp. 2729–2732.

[6] J. A. Bazerque and G. B. Giannakis, “Distributed spec-
trum sensing for cognitive radio networks by exploiting
sparsity,” IEEE Trans. Sig. Proc., vol. 58, no. 3, pp.
1847–1862, 2010.

[7] J. Mota, J. Xavier, P. Aguiar, and M. Püschel, “Basis
pursuit in sensor networks,” in Proc. IEEE Int. Conf.
on Acoust., Speech, and Sig. Proc. (ICASSP), 2011, pp.
2916–2919.

[8] J. Mota, J. Xavier, P. Aguiar, and M. Püschel, “Dis-
tributed basis pursuit,” IEEE Trans. Sig. Proc., vol. 60,
no. 4, pp. 1942–1956, Apr 2012.

[9] T. Blumensath and M. E. Davies, “Iterative hard thresh-
olding for compressed sensing,” Applied and Computa-
tional Harmonic Analysis, vol. 27, no. 3, pp. 265–274,
2009.

[10] S. Nepal and M.V. Ramakrishna, “Query processing is-
sues in image (multimedia) databases,” in Proc. 15th
Int. Conf. Data Engineering, 1999, pp. 22–29.

[11] R. Fagin, A. Lotem, and M. Naor, “Optimal aggregation
algorithms for middleware,” J. Computer and System
Sciences, vol. 66, no. 4, pp. 614–656, 2003.

[12] I. F. Ilyas, W. G. Aref, and A. K. Elmagarmid, “Sup-
porting top-k join queries in relational databases,” The
VLDB Journal, vol. 13, no. 3, pp. 207–221, Sep 2004.

[13] A. Beck and Y.C. Eldar, “Sparsity constrained nonlinear
optimization: Optimality conditions and algorithms,”
CoRR, vol. abs/1203.4580, 2012.

[14] N. Lynch, Distributed Algorithms, Morgan Kaufmann
Publishers, Inc., USA, 1996.

[15] B. K. Natarajan, “Sparse approximate solutions to linear
systems,” SIAM J. Comput., vol. 24, no. 2, pp. 227–234,
Apr 1995.

[16] T. Blumensath and M. E. Davies, “Iterative threshold-
ing for sparse approximations,” J. Fourier Analysis and
Applications, vol. 14, no. 5, pp. 629–654, Dec 2008.

[17] S. Madden, M.J. Franklin, J.M. Hellerstein, and
W. Hong, “Tag: A tiny aggregation service for ad-hoc
sensor networks,” ACM SIGOPS Operating Systems Re-
view, vol. 36, no. SI, pp. 131–146, 2002.

[18] D. Kempe, A. Dobra, and J. Gehrke, “Gossip-based
computation of aggregate information,” in Proc. 44th
Ann. IEEE Sym. Foundations of Computer Science.
IEEE, 2003, pp. 482–491.

[19] A. Segall, “Distributed network protocols,” IEEE Trans.
Inf. Theory, vol. 29, no. 1, pp. 23–35, 1983.

[20] M. Grant and S. Boyd, “CVX: Matlab software for
disciplined convex programming, version 1.21,” http:
//cvxr.com/cvx, Apr 2011.

[21] E. R. Scheinerman, “Matgraph: A matlab toolbox
for graph theory,” Online: http://www.ams.jhu.
edu/˜ers/matgraph/matgraph.pdf, 2012.

[22] E. van den Berg, M. P. Friedlander, G. Hennenfent,
F. Herrmann, R. Saab, and Ö. Yılmaz, “Sparco: A test-
ing framework for sparse reconstruction,” Tech. Rep.
TR-2007-20, Dept. Computer Science, University of
British Columbia, Vancouver, October 2007.

[23] P. Erdös and A. Rényi, “On random graphs I.,” Publi-
cationes Mathematicae, vol. 6, pp. 290–297, 1959.

[24] M. Penrose, Random Geometric Graphs, Oxford Uni-
versity Press, Oxford, U.K., 2004.

http://cvxr.com/cvx
http://cvxr.com/cvx
http://www.ams.jhu.edu/~ers/matgraph/matgraph.pdf
http://www.ams.jhu.edu/~ers/matgraph/matgraph.pdf

A. PSEUDOCODE FOR DATA

Algorithm 2: Distributed Absolute Threshold Algo-
rithm, as it is executed by each node p.
9 function DATA(Lp = {(ndx, val)}Ni=1)

10 topKList← ∅, top← 1, bottom← N
11 τp ←∞, τp ←∞
12 done← FALSE

13 while done = FALSE do
14 if τp > τp then
15 oid← new object id from top of list
16 else
17 oid← new object id from bottom of list
18 GroupComputeSum(oid)
19 if p = 1 then
20 GroupComputeThreshold(oid)

21 Receive (ndxq, sumq) for q = 1 . . . P and receive
threshold

22 if τp > τp then
23 τp ← threshold
24 else
25 τp ← threshold

26 for q = 1 to P do
27 if |topKList| < K then
28 Add (ndxq, sumq) to topKList
29 else if sumq > min abs. sum in topKList then
30 Replace smallest magnitude element with

(ndxq, sumq)

31 if min. abs. sum in topKList ≥ max(τp, τp) then
32 done← TRUE

33 x← GenerateVectorFromList(topKList)
34 return x

	1 Introduction
	2 Preliminaries
	2.1 Problem Formulation
	2.2 Iterative Hard Thresholding Algorithm

	3 Distributed Iterative Hard Thresholding
	3.1 The Distributed Top-K Problem
	3.2 Distributed Computation of G
	3.3 The D-IHT Algorithm and Analysis

	4 Numerical Results
	5 References
	A Pseudocode for DATA

