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ABSTRACT

This study assesses the recently proposed data-driven back-
ground dataset refinement technique for speaker verification using
alternate SVM feature sets to the GMM supervector features for
which it was originally designed. The performance improvements
brought about in each trialled SVM configuration demonstrate the
versatility of background dataset refinement. This work also ex-
tends on the originally proposed technique to exploit support vec-
tor coefficients as an impostor suitability metric in the data-driven
selection process. Using support vector coefficients improved the
performance of the refined datasets in the evaluation of unseen data.
Further, attempts are made to exploit the differences in impostor ex-
ample suitability measures from varying features spaces to provide
added robustness.

Index Terms— speaker recognition, data selection, impostors,
support vector machine

1. INTRODUCTION

Recent studies have highlighted the importance of selecting suit-
able impostor examples to form the background dataset in SVM-
based speaker verification [1, 2, 3]. The selection of impostor
datasets is often performed based on heuristics followed by a num-
ber of development evaluations. However, the major shortcoming
of heuristic-based approach is that selection is not performed on a
per-observation basis resulting in the sub-optimal dataset.

The proposal of data-driven impostor dataset refinement [2] ad-
dressed the shortcoming of the heuristic-based approach through the
automated selection of individual impostor examples for the SVM
background. This technique selects as a refined dataset the most
appropriate subset of examples from a large and diverse candidate
dataset. The suitability of impostor examples is measured using a
metric based on the frequency of selection as a support vector for a
set of development models.

While background dataset refinement has successfully been ap-
plied to the selection of the SVM background [2], SVM T-norm co-
hort [3] and both T- and Z-norm cohorts for GMM-based speaker
verification [4], the refinement process has focussed solely on the use
of GMM mean supervectors as features. The versatility of dataset
refinement brings into question how effective the technique can be
when applied to alternate SVM-based feature sets.

This study applies dataset refinement to a range of SVM-based
feature sets in order to observe whether refinement can bring about
benefits to kernels other than the GMM mean supervector kernel [5].
These feature sets include generalised linear discriminate sequences
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(GLDS) [6], phonetic N-grams [7] and maximum-likelihood linear
regression (MLLR) transforms [8]. Further, the differences in candi-
date impostor ranking between several SVM configurations are ex-
ploited in an attempt to form a robust impostor suitability metric for
the refinement of the candidate dataset in an unseen classifier.

This work also proposes a robust impostor suitability metric
based on cumulative support vector coefficients. In contrast to the
existing metric, support vector frequency [2], the new metric exploits
the information contained in the weights or coefficients assigned to
support vectors so as to provide increased resolution and robustness
in the ranking of the candidate examples.

Section 2 describes the data-driven dataset refinement technique
for impostor dataset selection. Section 3 defines each of the SVM
configurations used in this work. Section 4 details the experimental
protocol with results and discussions presented in Section 5.

2. DATA-DRIVEN IMPOSTOR DATASET SELECTION

This section describes the data-driven approach to impostor dataset
selection recently proposed in [2]. An extension to the originally
developed impostor suitability metric is also detailed in this section.

2.1. Support Vector Derived Impostor Suitability Metrics

The support vector machine is a discriminative classifier trained to
separate classes in a high-dimensional kernel space by positioning
a separating hyperplane in this space such that the maximum mar-
gin between classes is found [9]. The position of this hyperplane
for a client SVM is defined by a set of informative training exam-
ples termed support vectors which are determined through the op-
timisation of the SVM objective function. The data-driven selec-
tion technique [2] is based on the assertion that the most informative
background examples are regularly selected as support vectors dur-
ing SVM training.

2.1.1. Support Vector Frequency

The support vector frequency [2] was originally proposed as a mea-
sure of a candidate example’s relative importance in the background
dataset. The support vector frequency of an example was defined
as the number of times that it is selected as a support vector while
training a set of SVMs on a development dataset. While this metric
was found to be reliable in a number of scenarios [2, 3, 4], it does
not fully exploit the information available from the support vector
selection process, and instead, compresses the information given by
the support vector coefficients.



2.1.2. Cumulative Support Vector Coefficients

Further information can be exploited from the support vectors of a
trained SVM than the fact that they were selected. Such information
is held by the weight or coefficient assigned to each support vec-
tor. The support vector coefficient indicates how much influence
a given support vector had on the positioning of the hyperplane.
For example, the hyperplane normal of a trained SVM is given by
ω =

P
i αiyixi where xi is the ith training example with class la-

bel yi ∈ {−1, 1} and αi is the coefficient assigned to the example.
Those examples with a coefficient αi > 0 are defined as support
vectors, while examples with αi = 0 had no impact on the final po-
sition of the hyperplane. An example that is allocated a relatively
large coefficient has a corresponding impact on the hyperplane.

Information from support vector coefficients can be exploited to
form an impostor suitability metric — cumulative support vector co-
efficients. This metric defines the suitability of a candidate impostor
example as the sum of it’s allocated coefficients during the training
of a development set of client SVMs. Specifically, the cumulative
support vector coefficients of background example j can be formu-
lated as,

SVCoefj =

KX
k=1

αk
j (1)

from a total of K client hyperplanes trained using a candidate back-
ground dataset of J impostor examples (ie., j ∈ yi = −1).

In contrast to (1), the support vector frequency implies a ceiling
function on αk

j to achieve a ‘count’ statistic. The cumulative support
vector frequency, therefore, has the advantage of increased resolu-
tion over the support vector frequency for the ranking of candidate
impostor examples.

2.2. Background Dataset Refinement

The process of data-driven dataset refinement was previously de-
tailed in [2]. This technique refines a diverse set of vectors B, com-
piled from a number of available resources into a suitable impostor
dataset using a set of development client vectors S. Ranking of the
candidate dataset B involves, firstly, training a set client SVMs for
each observation in S using B as background examples. The impos-
tor suitability of each example in B is then be calculated using (1) af-
ter which the entire dataset can be ranked. From this ranked dataset,
a refined dataset RN is formed as the N highest-ranking examples
of B.

3. SVM CONFIGURATIONS

The SVM configurations used in this study employ both cepstral-
based and high-level feature sets. The application of dataset refine-
ment to these different feature sets is expected to demonstrate the
versatility of the technique.

3.1. GMM Mean Supervector SVM

The GMM mean supervector SVM system used in this study was
previously described in [2] and has been the system utilised in all
previous studies on dataset refinement [2, 3, 4].

GMM supervectors were produced through mean-only MAP
adaptation using 24-dimensional, feature-warped MFCC features
with appended delta coefficients. An adaptation relevance factor of
τ = 8 and 512-component models were used throughout. SVM

training and classification was performed using the GMM mean su-
pervector kernel [5] with GMM supervectors of 12288 dimensions.
This system is denoted GMM-Svec in this work.

3.2. Generalised Linear Discriminant Sequence Features

A derivative of the generalised linear discriminate sequence (GLDS)
system proposed by Campbell, et al. [6] is adopted in the following
experiments to observe whether dataset refinement is able to pro-
vide benefits to an alternate sequence kernel to the GMM mean su-
pervector SVM. The GLDS features are derived from a generalised
discriminant function to represent a speech segments as a vector of
scalar functions.

The GLDS implementation in the following study produces a
vector, b(x), as a set of polynomial basis terms for each input feature
vector. An example of a 2nd degree polynomial function for an input
feature vector of two dimensions, x = [x1 x2]

t, is given by,

b(x) =
ˆ
1 x1 x2 x2

1 x1x2 x2
2

˜t
. (2)

In this work, MFCC feature vectors of 24 dimensions are utilised to
produce the 4th degree (N = 4) polynomial basis terms. This re-
sults in SVM input vectors of 20475 dimensions. Given (2), a set of
MFCC feature vectors X = {x0, x1, · · · , xn} extracted from an
utterance can then be conveniently represented as a finite vector for
SVM-based training and classification using b̂(X) = 1

n

Pn
i b(xi).

Features of the form b̂ are utilised in this study along with the non-
parametric rank normalisation kernel [10] as opposed to the GLDS
kernel structure originally implemented in [6].

3.3. English Phonetic Lattice N-Gram Features

The phonetic lattice ‘bag-of-N-grams’ classifier [7] aims to capture
speaker idiosyncrasies from a speech signal by modelling the prob-
abilities of a N-phone sequences from the phonetic transcripts of
speakers utterances. The system implemented in the following ex-
periments used phonetic transcripts produced by gender-dependent,
English phone recogniser developed within the QUT SAIVT labo-
ratory and described in [11]. The system is capable of recognising
a total of 43 phonetic labels. Similar to the work in [7], phonetic
lattices were used to represent the transcriptions rather than 1-best
transcriptions to allow for increased information regarding phonetic
probabilities at the cost of additional computation.

Feature extraction involved concatenating the expected frequen-
cies of unigrams, bigrams and trigrams in each utterance into a fea-
ture vector of 11893 dimensions. Only the 10,000 most frequently
occurring trigrams (determined on a held-out dataset) were included.
The N-gram frequencies were weighted according to their posterior
probability of occurrence in the recognition lattice.

3.4. MLLR Transforms as Features

Maximum-likelihood linear regression (MLLR) transforms [12] are
trained using cepstral-based features, however, they also normalise
the underlying statistics for the choice of phones and word used in
a speech signal. The training of MLLR transforms is integrated into
many phone recogniser systems to model the differences between
the world language model and the characteristics exhibited by the
speaker. Consequently, the use of these transforms as features is
able to provide a high degree of speaker-discriminative information
when applied to SVM-based classification [8].



SRE’06 SRE’08
Background DCF EER DCF EER
Complete .0152 3.20% .0185 4.07%
Refined (SVFreq) .0120 2.49% .0168 4.17%
Refined (SVCoef) .0124 2.55% .0166 3.83%

Table 1. Comparison of support vector frequency and cumulative
support vector coefficients as the impostor suitability metrics for
dataset refinement on the GMM-Svec configuration.

The MLLR system implemented in this study uses the same
Fisher trained English phone recogniser as used in the N-gram con-
figuration detailed in Section 3.3. The male and female English
phone recogniser HMM models served as reference models for com-
puting speaker-dependent MLLR transforms. Using the alignments
produced by the phonetic decoder, a five class regression tree was
used (4 data driven classes + silence) to obtain a set of MLLR trans-
forms for each training segment. The transform components for
each class (excluding the silence class) were concatenated to form
a single feature vector for each conversation side. Utterances were
represented by 12480 dimensions by concatenating the affine trans-
forms from both male and female trained models to form a gender-
independent feature set.

4. EXPERIMENTAL CONFIGURATION

Training and classification of the GLDS, N-Gram and MLLR fea-
tures sets was performed using a linear, non-parametric rank normal-
isation kernel [10]. This technique replaces each element of an input
vector with its corresponding element rank value in a large set of
held out vectors, after which rank values are normalised to the range
[0, 1]. Nuisance attribute projection (NAP) [13] was incorporated
in all systems and was performed subsequent to rank normalisation
(where applicable) with 50 session dimensions being removed.

Large gender-dependent impostor datasets B were collected
from NIST 2004 and NIST 2005 databases and a random selection
of 2000 utterances from each of Fisher and Switchboard 2 corpora
giving a total of 6430 male and 7739 female observations. The num-
ber of examples from each of these data sources was similar to those
used in [2]. For this study, these datasets consisted only of telephony
data. Conversations were spoken in a range of languages with the
majority in English.

The gender-dependent development client datasets S used to
calculate the impostor suitability metrics were compiled from the
English training and testing utterances in the 1conv4w condition of
the NIST 2006 SRE. Performance was evaluated on both SRE’06
and SRE’08. All NIST 2008 results were derived from condition 7
as specified in the official evaluation protocol which restricts trials
to English spoken telephony data.

5. RESULTS

5.1. Comparing Impostor Suitability Metrics

A comparison of the support vector frequency (SVFreq) and cumu-
lative support vector coefficient (SVCoef) metrics for impostor suit-
ability, as defined in Section 2.1, was initially performed in this study
using the GMM-Svec system. The candidate dataset B was ranked
using each metric from which refined datasets were selected to min-
imise EER on the SRE’06. Results obtained on both the SRE’06
and SRE’08 when evaluated using the refined datasets are detailed

SRE’06 SRE’08
System Background DCF EER DCF EER
GMM-
Svec

Complete .0152 3.20% .0185 4.07%
Refined .0124 2.55% .0166 3.83%

GLDS Complete .0253 5.30% .0303 6.51%
Refined .0223 4.66% .0289 6.76%

N-Gram Complete .0330 7.10% .0414 9.78%
Refined .0290 6.39% .0394 9.18%

MLLR Complete .0311 6.99% .0389 9.28%
Refined .0300 6.72% .0380 9.04%

Table 2. T-normalised minimum DCF and EER obtained from 1-
sided, English-only SRE’06 and SRE’08 when using the complete
and refined background datasets in different SVM configurations.

in Table 1. Results indicate that, although the frequency metric pro-
duced a superior refined dataset for the development conditions, the
metric based on cumulative coefficients allowed the refined dataset
to generalise better to the evaluation of unseen data.

These results demonstrate that cumulative support vector coeffi-
cients allow dataset refinement to better achieve it’s intended objec-
tive — to select a suitable dataset that generalises well to the evalua-
tion of unseen data. This impostor suitability metric will, therefore,
be utilised for the remaining experiments in this study.

5.2. NIST Corpora Evaluations

Experiments in this section investigate the benefits that dataset re-
finement offers to each of the SVM-based configurations detailed in
Section 3. The candidate dataset B was individually refined for each
SVM configuration with the SRE’06 corpus serving as development
data. The cumulative support vector coefficient (SVCoef) was used
as the impostor suitability metric. In all cases, the size of the refined
dataset was selected to minimise the SRE’06 EER.

Table 2 details the performance statistics obtained when eval-
uating the NIST SRE’06 and SRE’08 copora with the refined and
full candidate datasets in each SVM system. The refinement of the
candidate dataset consistently brought about superior performance
statistics from each SVM system in the development evaluations.
The most significant improvements from dataset refinement were ob-
served in the GMM-Svec system with a relative reduction of 18% in
minimum DCF and 20% in EER over the candidate impostor dataset.

The SRE’08 results in Table 2 demonstrate that the refined
datasets generalised well to unseen data such that performance im-
provements were observed relative to the candidate dataset in the
majority of cases. Relative improvements of up to 10% were ob-
served in the performance metrics from the refined datasets over the
use of the candidate dataset along with a substantial reduction in
dataset size of 80-85%. One inconsistency in the SRE’08 results
was the loss in EER of the GLDS system when using the refined
dataset. The reason for this drop in performance is expected to have
arisen due to the relatively large kernel space of the GLDS config-
uration compared to the alternate SVM systems. The availability
of a large number of dimensions may have allowed the refinement
process to produce a dataset that was over-refined towards the devel-
opment data, thereby reducing it’s potential performance on unseen
data. Further investigations are required to determine the extent that
the size of the kernel space effects the refinement process.

Overall, these results demonstrate that background dataset re-
finement was able to bring about performance improvements on the
differing feature sets of each SVM configuration trialled.



Appears in # Sets
≥ 1 ≥ 2 ≥ 3 ALL

No. Examples 3588 2303 1400 709

Table 3. Number of impostor examples that appear in the top 2000
from each SVM feature set. Results for male subset.

5.3. Exploiting Inter-Feature Impostor Suitability Metrics

The following experiments investigate, firstly, the similarity of the
ranked candidate datasets from the four SVM configurations and,
secondly, whether the cumulative coefficient metrics obtained in sev-
eral kernel spaces can be combined to form a robust impostor suit-
ability metric for use in an unseen classifier.

In order to observe the extent of correlation between the rank-
ing of the candidate dataset in each SVM configuration, the 2000
highest-ranking candidate examples from each system were anal-
ysed. Table 3 shows the overlap and how the candidate examples
were distributed across the datasets. It can be seen that in the four
sets, 3588 unique examples were observed, 709 of which were com-
mon to the top 2000 of all four systems. Whilst there is signif-
icant overlap between the sets, a total of 1285 examples (3558-
2303=1285) appeared in only one of the four datasets. Thus, on
average, around 16% of examples from each dataset were unique to
that system.

Given the different composition of ranked candidate datasets
from each SVM configuration, of interest is whether these differ-
ences can be exploited in order to form a more general ranking met-
ric to be utilised in the refinement process. To evaluate the poten-
tial benefits gained through combination of impostor suitability mea-
sures, a set of experiments looked at combining measures from the
GMM-Svec, MLLR and N-gram systems in order to determine an
appropriate background set for a held-out classifier, in this case, the
GLDS system. The previous experiments using the GLDS features
(Section 5.2) resulted in limited gains in the evaluation of unseen
data through system-dependent refinement. By combining several
metrics from alternate feature sets, it was anticipated that a refined
dataset for the GLDS system could be more robustly selected.

The approaches to metric combination trialled include a min-
imum, maximum and averaging function of the metrics. In these
experiments, the minimum metric is analogous to the intersection of
the datasets, while the maximum is similar to finding their union.
Each of these approaches were used in the ranking of the candidate
dataset from which refined datasets were selected to minimise the
SRE’06 EER in the GLDS configuration (with possible differences
in background sizes) before being evaluated on the SRE’08. Table 4
details the results from these evaluations. For comparison, perfor-
mance from the refined dataset selected via system-dependent re-
finement with GLDS features is also presented in this table.

The SRE’06 results in Table 4 indicate that performance of-
fered through each metric combination approach was comparable
to the use of system-dependent refinement in the GLDS system. In
contrast, the use of the maximum impostor suitability metric in the
SRE’08 resulted in the best performance in the evaluation of the un-
seen dataset; superior even to system-dependent impostor suitability
measures. These results suggest that the combination of cumula-
tive support vector coefficients from multiple feature sets disjoint to
those in the classifier used for refinement can aid in producing an
appropriately refined dataset for the evaluation of unseen data.

6. CONCLUSION

This study investigated the applicability of dataset refinement to the
selection of the background dataset for a range of SVM-based fea-

Metric
Choice

Bckgnd.
Size

SRE’06 SRE’08
DCF EER DCF EER

GLDS 1000 .0223 4.66% .0289 6.76%
Minimum 750 .0222 4.71% .0300 6.83%
Average 1250 .0227 4.71% .0290 6.59%
Maximum 1250 .0225 4.66% .0283 6.61%

Table 4. GLDS performance obtained when combining the impostor
suitability metrics from alternate systems for the refinement process.

ture sets. These sets included GLDS features based on a polynomial
expansion, English phonetic ‘bag-of-N-Grams’, MLLR transforms
and the GMM mean supervector system. Development evaluations
found that dataset refinement provided performance improvements
in all SVM systems relative to the use of the un-refined dataset.
The refined datasets selected on a system-dependent basis were also
found to generalise well to the unseen data of the SRE’08.

An impostor suitability metric based on cumulative support vec-
tor coefficients allowed the refinement process to select a dataset
that generalised better to unseen data than the use of the originally
proposed frequency metric. Finally, the combination of suitability
metrics from multiple classifiers provided added robustness for the
ranking of a dataset prior to it’s refinement in a held out classifier.
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