Query-Adaptative Locality Sensitive Hashing

Hervé Jégou, INRIA/LJK Laurent Amsaleg, CNRS/IRISA
Cordelia Schmid, INRIA/LJK Patrick Gros, INRIA/IRISA

ICASSP’2008
April 4 2008

%l | N R 1A

Problem setup

We want to find the (k-)nearest neighbor(s)
of a given query vector

— without computing all distances!

X
X
X Curse of the dimensionality
q * exact search inefficient
Ly f X — approximate nearest neighbor

dataset: n d-dimensional vectors
i=1.n, z;, = (x1,...,24)

query
q = (Q17°°°7Qd)

%l | N R 1A

Application : large-scale (= 1 million) image search

Image
dataset

Image search
system

State-of-the-art for image search:
* local description = 2000 local descriptors per image

* SIFT descriptors [Lowe 04]: d=128, Euclidean unitary vectors

INTENSIVE USE OF NEAREST NEIGHBOR SEARCH

% INRIA

Approximate nearest neighbor (ANN) search

Many existing approaches
* very popular one: Locality Sensitive Hashing (LSH)

- provides some guarantees on the search quality for some distributions

LSH: many variants, e.g.,
* for the Hamming space [Gionis, Indyk, Motwani, 99]
* Euclidean version [Datar, Indyk, Immorlica, Mirrokni, 04] - E?LSH
* using Leech lattice quantization [Andoni, Indyk, 06]

* spherical LSH [Terasawa, Tanaka, 07]

and applications: computer vision [Shakhnarovich & al, 05], music search [Casey,
Slaney, 07], etc

% INRIA

Euclidean Locality Sensitive Hashing (E2LSH)

1) Projection on m random directions

hT(z) = (z]a;)—b;

hi(z) = |h} ()]

2) Construction of € hash functions:
concatenate k indexes h, per hash

function

9j(®) = (hj1()s - By e

3) For each g,, compute two hash values
universal hash functions: u,(.), u,(.)

store the vector id in a hash table

Search: algorithm summary and complexity

For all h, compute h(q)

For j = 1..¢, compute g,(q) and hash values u,(g,(q)) and u,(g(q))

For j = 1..¢, retrieve the vectors id having the same hash keys
* proportion T of the dataset vectors, i.e. T*n vectors

Exact distance computation between query and retrieved vectors
Large dataset = step 4 is by far the most computationally intensive

Performance measure: rate of correct nearest neighbors found
vs average short-list size

% INRIA

O(m d)

O(t k)

O(€ T n)

O(¢ T nd)

Geometric hash function: the lattice choice [Andoni Indyk 06]

Motivation: instead of using

hiIRd%Z

and in turn hash functions as
gj(f’?) = (hj,l(aj)a e °7hj,k(az))

Why not directly using a structured vector quantizer?

* spheres would be the best choice (but no such space partitioning)

Well-know lattice quantizers: Hexagonal (d=2), E,; (d=8), Leech (d=24)

/x. '
()
%44 I N R1A 0’.

LSH using Lattice

Several lattices or concatenation of lattices are used for geometric hashing
g;(x) = lattice-idx(z; ; 4« — ;)

. bj is now a vectorial random offset

* X, Is formed of d* components of x (# for each g))

Previous work by Andoni and Indyk makes use of the Leech lattice (d*=24)
* very good quantization properties
« d"=24,48, ...

Here, we use the ES8 lattice
* very fast computation together with excellent quantization properties

* d*=8, 16, 24, ...

% INRIA

Hash function selection criterion: motivation

%l | N R 1A

Let consider several hash functions and
corresponding space partitioning

The position of the query within the cell has a
strong impact on the probability that vectors
which are close are in the same cell or not

llllllllllllll

HASH FUNCTION RELEVANCE CRITERION A;:

the distance to the cell center in the projected
k-dimensional subspace

= root square of the square Euclidean error in a
quantization context

Hash function relevance criterion: E2LSH or lattice-based

r (x]a;)—b;
E2LSH: Recall that 1V (z) = m

hi(z) = [hi(z)]

square of the relevance criterion = quantization error in the projected space

A\(2)2 = Y (B, (z) — hy(z) — 0.5)°

1=1..k

For lattice-based LSH, distance between query and lattice point

Remark for E8: A, requires no extra-computation

— byproduct of the lattice point calculation

% INRIA

Relevance criterion: impact on quality (SIFT descriptors)

1 HiHHH

— LiE
— 0.9 }
\2:2/ + ++

. (07 T .,.+.+|.. __________

mh PPy
ﬁ 0.7 s
~ +

)
\,; 0.6 N

>

[l 05
—~
—~

8 0.4 S
N—"
E 0.3

0.2
N 3 P
=)
H
R 0.1 i —
0 0.25 0.5 0.75 1.0 1.25

Ag, () VE/2

A closer to 0: much higher confidence in the vectors retrieved

% INRIA

Query adaptative LSH: exploiting the criterion

|dea: =3, (=1
* define a larger pool of £ hash functions /

* use only for the most relevant ones /

Search is modified as follows

- forj=1..¢, compute criterion A,

- select the €' (<< ¢) hash functions associated with the lowest values of A,

Perform the final steps as in standard LSH, using the hash function subset only

« compute u, and u, and parse the corresponding buckets

* compute the exact distances between query and vectors retrieved from
buckets

% INRIA

Query adaptative LSH: exploiting the criterion

|dea: =3, (=1
* define a larger pool of £ hash functions

* use only for the most relevant ones /

Search is modified as follows

- forj=1..¢, compute criterion A,

- select the €' (<< ¢) hash functions associated with the lowest values of A,

Perform the final steps as in standard LSH, using the hash function subset only

« compute u, and u, and parse the corresponding buckets

* compute the exact distances between query and vectors retrieved from
buckets

% INRIA

Results: SIFT descrlptors

PI‘O] LSH — L
PrOJ QALSH -------- /‘“ ““ :

E8_ L SH llllllll ;

0.8
0.6

04 b=

rate of nearest neighbors correctly found

] -
0]] e
0.001 0.01 0.1 1

% of the database
W! NRITA retrieved

Conclusion

Using E8 Lattice for LSH provides
* excellent quantization properties
* high flexibility for d”

QALSH trades memory against accuracy

— without noticably increasing search complexity for large datasets

This a quite generic approach: can be jointly used with other versions of LSH

* binary or spherical LSH

%l | N R 1A

Thank you for your attention!

%N RIA

Brute force search of optimal parameters

0.1

% of the databaseretrieved

0.01

0.001

0.1

% of thedatabaseretrieved

0.01

0.001

punoj AJ199.1100 s JoqubiBu 158 Jeau Jo are

E, LSH

Random projection L SH

% INRIA

p.d.f. of the relevance criterion

p(A(g;(2)))

1.6

1.4

1.2

0.8

0.6

0.4

0.2

| g™ | I i, T I
0 0.25 0.5 0.75 1.0 1.25 L5
Ag;(2))

Euclidean Locality Sensitive Hashing (E2LSH)

1) Projection on m random directions

hT(z) = (z]a;)—b;

w

aman

------ ' 0\1) 2) Construction of € hash functions:
N " concatenate k indexes h, per hash
% (3,0) function

............. .

0 .
. - . »
O O
. o« e
. " 0
th .
. O
o N
B e
RS DR
NS
- » .
D TN asumunans . - .
s Sanannsgenttt B . v .
------ 3 D — . .
----- v N .
[B . h - 3 3 —_— e o o
. . . P
0 0 . 0
N . . :
! s ;) : . I)
.) . . .)
. 0 .
- . - . s .
. 0 . O 0
B . . 0 .
- * - .
s . "
0 . .
.
. .

3) For each g,, compute two hash values

T, Y
4/ universal hash functions: u,(.), u,(.)

store the vector id in a hash table

