
Query-Adaptative Locality Sensitive Hashing

Hervé Jégou, INRIA/LJK Laurent Amsaleg, CNRS/IRISA

Cordelia Schmid, INRIA/LJK Patrick Gros, INRIA/IRISA

ICASSP’2008

April 4th 2008

Problem setup

We want to find the (k-)nearest neighbor(s)

of a given query vector

→ without computing all distances!

Curse of the dimensionality

• exact search inefficient

→ approximate nearest neighbor

dataset: n d-dimensional vectors

query

q
xi

i = 1::n; xi = (x1; : : : ; xd)

q = (q1; : : : ; qd)

Application : large-scale (= 1 million) image search

State-of-the-art for image search:

• local description ≈ 2000 local descriptors per image

• SIFT descriptors [Lowe 04]: d=128, Euclidean unitary vectors

INTENSIVE USE OF NEAREST NEIGHBOR SEARCH

Image search

system

ranked image list

Image

dataset

query

Approximate nearest neighbor (ANN) search

Many existing approaches

• very popular one: Locality Sensitive Hashing (LSH)

→ provides some guarantees on the search quality for some distributions

LSH: many variants, e.g.,

• for the Hamming space [Gionis, Indyk, Motwani, 99]

• Euclidean version [Datar, Indyk, Immorlica, Mirrokni, 04] → E2LSH

• using Leech lattice quantization [Andoni, Indyk, 06]

• spherical LSH [Terasawa, Tanaka, 07]

and applications: computer vision [Shakhnarovich & al, 05], music search [Casey,

Slaney, 07], etc

Euclidean Locality Sensitive Hashing (E2LSH)

1) Projection on m random directions

2) Construction of l hash functions:

concatenate k indexes hi per hash

function

3) For each gj, compute two hash values

universal hash functions: u1(.), u2(.)

store the vector id in a hash table

hi(x) = bhri (x)c
hr
i
(x) =

hxjaii¡bi
w

gj(x) = (hj;1(x); : : : ; hj;k(x))

(1,0) (2,0) (3,0)

(0,0)

(3,1)(2,1)
(1,1)(0,1)

(0,-1) (1,-1) (2,-1)

bi

0

1

1

1

1

2
2

2

w

O

a1

Search: algorithm summary and complexity

• For all hi, compute hi(q) O(m d)

• For j = 1..l, compute gj(q) and hash values u1(gj(q)) and u2(gj(q)) O(l k)

• For j = 1..l, retrieve the vectors id having the same hash keys O(l  n)

• proportion  of the dataset vectors, i.e. *n vectors

• Exact distance computation between query and retrieved vectors O(l  n d)

Large dataset ⇒ step 4 is by far the most computationally intensive

Performance measure: rate of correct nearest neighbors found
vs average short-list size

Geometric hash function: the lattice choice [Andoni Indyk 06]

Motivation: instead of using

and in turn hash functions as

Why not directly using a structured vector quantizer?

• spheres would be the best choice (but no such space partitioning)

Well-know lattice quantizers: Hexagonal (d=2), E8 (d=8), Leech (d=24)

hi : R
d ! Z

gj(x) =
¡
hj;1(x); : : : ; hj;k(x)

¢

LSH using Lattice

Several lattices or concatenation of lattices are used for geometric hashing

• bj is now a vectorial random offset

• xi,j,d’ is formed of d* components of x (≠ for each gj)

Previous work by Andoni and Indyk makes use of the Leech lattice (d*=24)

• very good quantization properties

• d* = 24, 48, …

Here, we use the E8 lattice

• very fast computation together with excellent quantization properties

• d* = 8, 16, 24, …

gj(x) = lattice-idx(xi;j;d¤ ¡ bj)

Hash function selection criterion: motivation

Let consider several hash functions and
corresponding space partitioning

The position of the query within the cell has a
strong impact on the probability that vectors
which are close are in the same cell or not

HASH FUNCTION RELEVANCE CRITERION j:

the distance to the cell center in the projected
k-dimensional subspace

= root square of the square Euclidean error in a
quantization context

Hash function relevance criterion: E2LSH or lattice-based

E2LSH: Recall that

square of the relevance criterion = quantization error in the projected space

For lattice-based LSH, distance between query and lattice point

Remark for E8: j requires no extra-computation

→ byproduct of the lattice point calculation

hi(x) = bhri (x)c
hr
i (x) =

hxjaii¡bi
w

¸j(x)
2 =

X

i=1::k

¡
hrj;i(x)¡ hi(x) ¡ 0:5

¢2

Relevance criterion: impact on quality (SIFT descriptors)

 closer to 0: much higher confidence in the vectors retrieved

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.25 0.5 0.75 1.0 1.25 1.5p
k=2¸(gj(x))

P
(g
j
(N
N
(x
))
=
g j
(x
)j¸
(g
j
(x
))

Query adaptative LSH: exploiting the criterion

Idea:

• define a larger pool of l hash functions

• use only for the most relevant ones

Search is modified as follows

• for j = 1..l, compute criterion j

• select the l’ (<< l) hash functions associated with the lowest values of j

Perform the final steps as in standard LSH, using the hash function subset only

• compute u1 and u2 and parse the corresponding buckets

• compute the exact distances between query and vectors retrieved from

buckets

l=3, l’=1

Query adaptative LSH: exploiting the criterion

Idea:

• define a larger pool of l hash functions

• use only for the most relevant ones

Search is modified as follows

• for j = 1..l, compute criterion j

• select the l’ (<< l) hash functions associated with the lowest values of j

Perform the final steps as in standard LSH, using the hash function subset only

• compute u1 and u2 and parse the corresponding buckets

• compute the exact distances between query and vectors retrieved from

buckets

l=3, l’=1

Results: SIFT descriptors

Proj-QALSH
Proj-LSH

E8-QALSH
E8-LSH

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.001 0.01 0.1 1

ra
te

 o
f
n
e
a
re

s
t
n
e
ig

h
b
o
rs

 c
o
rr

e
c
tl
y
 f

o
u
n
d

% of the database

retrieved

Conclusion

Using E8 Lattice for LSH provides

• excellent quantization properties

• high flexibility for d*

QALSH trades memory against accuracy

→ without noticably increasing search complexity for large datasets

This a quite generic approach: can be jointly used with other versions of LSH

• binary or spherical LSH

Thank you for your attention!

?

Brute force search of optimal parameters

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.001 0.01 0.1 1

ra
te

 o
f

ne
ar

es
t n

ei
gh

bo
rs

 c
or

re
ct

ly
 f

ou
nd

% of the database retrieved

E8 LSH

LSH
QALSH

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.001 0.01 0.1 1

ra
te

 o
f

ne
ar

es
t

ne
ig

hb
or

s
co

rr
ec

tl
y

fo
un

d

% of the database retrieved

Random projection LSH

LSH
QALSH

p.d.f. of the relevance criterion

Euclidean Locality Sensitive Hashing (E2LSH)

1) Projection on m random directions

2) Construction of l hash functions:

concatenate k indexes hi per hash

function

3) For each gj, compute two hash values

universal hash functions: u1(.), u2(.)

store the vector id in a hash table

hi(x) = bhri (x)c
hr
i
(x) =

hxjaii¡bi
w

0

1

1

1

1

2

2

2

bi
w

O

a1

(1,0) (2,0)
(3,0)

(0,0)

(3,1)
(2,1)

(1,1)(0,1)

(0,-1) (1,-1)
(2,-1)

gj(x) = (hj;1(x); : : : ; hj;k(x))

