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Problem setup

We want to find the (k-)nearest neighbor(s)
of a given query vector

— without computing all distances!

X
X
X Curse of the dimensionality
q * exact search inefficient
Ly f X — approximate nearest neighbor

dataset: n d-dimensional vectors
i=1.n, z;, = (x1,...,24)

query
q = (Q17°°°7Qd)
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Application : large-scale (= 1 million) image search

Image
dataset

Image search
system

State-of-the-art for image search:
* local description = 2000 local descriptors per image

* SIFT descriptors [Lowe 04]: d=128, Euclidean unitary vectors

INTENSIVE USE OF NEAREST NEIGHBOR SEARCH
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Approximate nearest neighbor (ANN) search

Many existing approaches
* very popular one: Locality Sensitive Hashing (LSH)

- provides some guarantees on the search quality for some distributions

LSH: many variants, e.g.,
* for the Hamming space [Gionis, Indyk, Motwani, 99]
* Euclidean version [Datar, Indyk, Immorlica, Mirrokni, 04] - E?LSH
* using Leech lattice quantization [Andoni, Indyk, 06]

* spherical LSH [Terasawa, Tanaka, 07]

and applications: computer vision [Shakhnarovich & al, 05], music search [Casey,
Slaney, 07], etc
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Euclidean Locality Sensitive Hashing (E2LSH)

1) Projection on m random directions

hT(z) = (z]a;)—b;

hi(z) = |h} ()]

2) Construction of € hash functions:
concatenate k indexes h, per hash

function

9j(®) = (hj1()s - By e

3) For each g,, compute two hash values
universal hash functions: u,(.), u,(.)

store the vector id in a hash table




Search: algorithm summary and complexity

For all h, compute h(q)

For j = 1..¢, compute g,(q) and hash values u,(g,(q)) and u,(g(q))

For j = 1..¢, retrieve the vectors id having the same hash keys
* proportion T of the dataset vectors, i.e. T*n vectors

Exact distance computation between query and retrieved vectors
Large dataset = step 4 is by far the most computationally intensive

Performance measure: rate of correct nearest neighbors found
vs average short-list size
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O(€ T n)
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Geometric hash function: the lattice choice [Andoni Indyk 06]

Motivation: instead of using

hiIRd%Z

and in turn hash functions as
gj(f’?) = (hj,l(aj)a e °7hj,k(az))

Why not directly using a structured vector quantizer?

* spheres would be the best choice (but no such space partitioning)

Well-know lattice quantizers: Hexagonal (d=2), E,; (d=8), Leech (d=24)

/x. '
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LSH using Lattice

Several lattices or concatenation of lattices are used for geometric hashing
g;(x) = lattice-idx(z; ; 4« — ;)

. bj is now a vectorial random offset

* X, Is formed of d* components of x (# for each g))

Previous work by Andoni and Indyk makes use of the Leech lattice (d*=24)
* very good quantization properties
« d"=24,48, ...

Here, we use the ES8 lattice
* very fast computation together with excellent quantization properties

* d*=8, 16, 24, ...
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Hash function selection criterion: motivation
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Let consider several hash functions and
corresponding space partitioning

The position of the query within the cell has a
strong impact on the probability that vectors
which are close are in the same cell or not

llllllllllllll

HASH FUNCTION RELEVANCE CRITERION A;:

the distance to the cell center in the projected
k-dimensional subspace

= root square of the square Euclidean error in a
quantization context



Hash function relevance criterion: E2LSH or lattice-based

r (x]a;)—b;
E2LSH: Recall that 1V (z) = m

hi(z) = [hi(z)]

square of the relevance criterion = quantization error in the projected space

A\(2)2 = Y (B, (z) — hy(z) — 0.5)°

1=1..k

For lattice-based LSH, distance between query and lattice point

Remark for E8: A, requires no extra-computation

— byproduct of the lattice point calculation
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Relevance criterion: impact on quality (SIFT descriptors)
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A closer to 0: much higher confidence in the vectors retrieved
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Query adaptative LSH: exploiting the criterion

--------------

|dea: =3, (=1
* define a larger pool of £ hash functions /

* use only for the most relevant ones /

Search is modified as follows

- forj=1..¢, compute criterion A,

- select the €' (<< ¢) hash functions associated with the lowest values of A,

Perform the final steps as in standard LSH, using the hash function subset only

« compute u, and u, and parse the corresponding buckets

* compute the exact distances between query and vectors retrieved from
buckets
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Results: SIFT descrlptors
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Conclusion

Using E8 Lattice for LSH provides
* excellent quantization properties
* high flexibility for d”

QALSH trades memory against accuracy

— without noticably increasing search complexity for large datasets

This a quite generic approach: can be jointly used with other versions of LSH

* binary or spherical LSH
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Thank you for your attention!

%N RIA



Brute force search of optimal parameters
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p.d.f. of the relevance criterion
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Euclidean Locality Sensitive Hashing (E2LSH)

1) Projection on m random directions

hT(z) = (z]a;)—b;
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3) For each g,, compute two hash values

T, Y
4/ universal hash functions: u,(.), u,(.)

store the vector id in a hash table



