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Problem setup

We want to find the (k-)nearest neighbor(s) 

of a given query vector

→ without computing all distances!

Curse of the dimensionality

• exact search inefficient

→ approximate nearest neighbor

dataset: n d-dimensional vectors

query

q
xi

i = 1::n; xi = (x1; : : : ; xd)

q = (q1; : : : ; qd)



Application : large-scale (= 1 million) image search

State-of-the-art for image search: 

• local description ≈ 2000 local descriptors per image

• SIFT descriptors [Lowe 04]: d=128, Euclidean unitary vectors

INTENSIVE USE OF NEAREST NEIGHBOR SEARCH
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Approximate nearest neighbor (ANN) search

Many existing approaches

• very popular one: Locality Sensitive Hashing (LSH)

→ provides some guarantees on the search quality for some distributions

LSH: many variants, e.g.,

• for the Hamming space [Gionis, Indyk, Motwani, 99]

• Euclidean version [Datar, Indyk, Immorlica, Mirrokni, 04] → E2LSH

• using Leech lattice quantization [Andoni, Indyk, 06]

• spherical LSH [Terasawa, Tanaka, 07]

and applications: computer vision [Shakhnarovich & al, 05], music search [Casey, 

Slaney, 07], etc



Euclidean Locality Sensitive Hashing (E2LSH)

1) Projection on m random directions

2) Construction of l hash functions: 

concatenate k indexes hi per hash 

function

3) For each gj, compute two hash values

universal hash functions: u1(.), u2(.)

store the vector id in a hash table

hi(x) = bhri (x)c
hr
i
(x) =

hxjaii¡bi
w

gj(x) = (hj;1(x); : : : ; hj;k(x))
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Search: algorithm summary and complexity

• For all hi, compute hi(q) O(m d)

• For j = 1..l, compute gj(q) and hash values u1(gj(q)) and u2(gj(q)) O(l k)

• For j = 1..l, retrieve the vectors id having the same hash keys O(l  n)

• proportion  of the dataset vectors, i.e. *n vectors

• Exact distance computation between query and retrieved vectors O(l  n d)

Large dataset ⇒ step 4 is by far the most computationally intensive

Performance measure: rate of correct nearest neighbors found 
vs average short-list size



Geometric hash function: the lattice choice [Andoni Indyk 06]

Motivation: instead of using 

and in turn hash functions as

Why not directly using a structured vector quantizer?

• spheres would be the best choice (but no such space partitioning)

Well-know lattice quantizers: Hexagonal (d=2), E8 (d=8), Leech (d=24)

hi : R
d ! Z

gj(x) =
¡
hj;1(x); : : : ; hj;k(x)

¢



LSH using Lattice

Several lattices or concatenation of lattices are used for geometric hashing

• bj is now a vectorial random offset 

• xi,j,d’ is formed of d* components of x (≠ for each gj)

Previous work by Andoni and Indyk makes use of the Leech lattice (d*=24)

• very good quantization properties

• d* = 24, 48, …

Here, we use the E8 lattice

• very fast computation together with excellent quantization properties

• d* = 8, 16, 24, …

gj(x) = lattice-idx(xi;j;d¤ ¡ bj)



Hash function selection criterion: motivation

Let consider several hash functions and 
corresponding space partitioning

The position of the query within the cell has a 
strong impact on the probability that vectors 
which are close are in the same cell or not

HASH FUNCTION RELEVANCE CRITERION j: 

the distance to the cell center in the projected 
k-dimensional subspace

=  root square of the square Euclidean error in a 
quantization context



Hash function relevance criterion: E2LSH or lattice-based

E2LSH: Recall that

square of the relevance criterion = quantization error in the projected space

For lattice-based LSH, distance between query and lattice point

Remark for E8: j requires no extra-computation

→ byproduct of the lattice point calculation

hi(x) = bhri (x)c
hr
i (x) =

hxjaii¡bi
w

¸j(x)
2 =

X

i=1::k

¡
hrj;i(x)¡ hi(x) ¡ 0:5

¢2



Relevance criterion: impact on quality (SIFT descriptors)

 closer to 0: much higher confidence in the vectors retrieved
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Query adaptative LSH: exploiting the criterion

Idea: 

• define a larger pool of l hash functions 

• use only for the most relevant ones

Search is modified as follows

• for j = 1..l, compute criterion j

• select the l’ (<< l) hash functions associated with the lowest values of j

Perform the final steps as in standard LSH, using the hash function subset only

• compute u1 and u2 and parse the corresponding buckets 

• compute the exact distances between query and vectors retrieved from 

buckets

l=3, l’=1
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Results: SIFT descriptors
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Conclusion

Using E8 Lattice for LSH provides

• excellent quantization properties

• high flexibility for d*

QALSH trades memory against accuracy 

→ without noticably increasing search complexity for large datasets

This a quite generic approach: can be jointly used with other versions of LSH

• binary or spherical LSH 



Thank you for your attention!

?



Brute force search of optimal parameters
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p.d.f. of the relevance criterion



Euclidean Locality Sensitive Hashing (E2LSH)

1) Projection on m random directions

2) Construction of l hash functions: 

concatenate k indexes hi per hash 

function

3) For each gj, compute two hash values

universal hash functions: u1(.), u2(.)

store the vector id in a hash table

hi(x) = bhri (x)c
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