2017 International Conference on High Performance Computing & Simulation

A Methodology for Soft Errors Detection and
Automatic Recovery

Diego Montezanti
and A. De Giusti
and M. Naiouf
Instituto de Investigacion en Informatica LIDI (III-LIDI)
Universidad Nacional de La Plata
La Plata (1900), Buenos Aires, Argentina
{dmontezanti,degiusti,mnaiouf} @lidi.info.unlp.edu.ar

Index Terms—soft error detection, automatic recovery, system-
level checkpoint, user-level checkpoint

Abstract—Handling faults is a growing concern in HPC;
higher error rates, larger detection intervals and silent faults are
expected in the future. It is projected that, in exascale systems,
errors will occur several times a day, and they will propagate to
generate errors that will range from process crashes to corrupted
results because of undetected errors. In this article, we propose
a methodology that improves system reliability against transient
faults, when running parallel message-passing applications. The
proposed solution, based on process replication, has the goal of
helping programmers and users of parallel scientific applications
to achieve reliable executions with correct results. This work
presents a characterization of the strategy, defining its behavior
in the presence of faults and modeling the temporal costs of
employing it. As a result, we show its efficacy and viability to
tolerate transient faults in HPC systems.

I. INTRODUCTION

System reliability has become critical, especially in the area
of High-Performance Computing (HPC), as systems perfor-
mance and number of cores continue growing. Applications
running on modern supercomputers must deal with fault rates
of just few hours [1], and it is estimated that they could even
get to about a few minutes in large parallel applications in
exascale platforms. Consequently, these applications will not
be able to progress efficiently without appropriate help [2].
The main concern is in relation to silent errors, namely Silent
Data Corruption (SDC), with numerous recent reports and
studies on their probabilities and impacts [3]. SDC is the most
dangerous type of fault that can occur, because the program
appears to be running correctly but, upon conclusion, invalid
results are produced. Consequently SDC create serious prob-
lems in science, which relies on large-scale simulations, so its
mitigation is one of the major challenges for current and future
resilience. Given the difficulty and cost of adding hardware
redundancy to the registry and processor arithmetical logic
units [4], and the high cost of re-running HPC applications
from the beginning, specific software strategies are needed for
the target systems. Without efficient containment mechanisms,
a failure that affects one task can result in the entire application
crash or in incorrect outputs that, in a best-case scenario, are
only detected after execution is complete, and very hard to

978-1-5386-3250-5/17 $31.00 © 2017 IEEE
DOI 10.1109/HPCS.2017.71

434

Jorge Villamayor
and Dolores Rexachs
and Emilio Luque
CAOS - Computer Architecture and Operating Systems
Universidad Auténoma de Barcelona, Barcelona, Spain
{jorgeluis.villamayor,dolores.rexachs,emilio.luque } @uab.es

correct. A single SDC causes deep effects on all processes
that communicate in a message-passing application [5].

A common approach for providing fault tolerance is to
perform redundant software execution, using the state machine
replication approach, which implies that the replicas of a pro-
cess follow the same execution sequence and produce the same
output if given the same input [6]. Multicore architectures are
convenient for redundant execution, which is a viable solution
for detecting SDC in the context of HPC [1].

Checkpoint-based rollback recovery (C/R) is a common,
well-studied technique for mitigate the losses of useful work
caused by fail-stop failures, in which a process crashes [2].
Checkpointing involves periodically saving the application
state; if a failure occurs, all processes restart from their recent
checkpoints. Unfortunately, the overhead for using C/R in-
creases with the number of cores. Taking into account the time
required for C/R, a significant amount of computation time
could be wasted if the fault rate is high. However, using C/R
for transient fault mitigation is not so effective, because the
stored checkpoint could contains undetected failures, making
recovery impossible. The situation gets worse if computation
is strongly coupled, since an error in one node could be
propagated to the others in micro-seconds [7].

In this context of results not being reliable and costly to
verify, this paper presents a methodology which is designed to
provide transient fault tolerance for scientific message-passing
parallel applications that execute in multicore clusters. The
methodology has the goal of helping programmers and users of
parallel scientific applications to achieve reliable executions.
It is based in duplicating the execution of each process of
the parallel application in a core of the same socket of the
original process, leveraging the multicores hardware redun-
dancy. The proposed solution achieves silent error coverage
by addressing the problem in three different ways, each of
them with particular features and performance: only detection
with notification, and two different forms of recovery: the
first one based in multiple system-level checkpoints, and the
second utilizing a single safe application-level checkpoint.
A functional description and temporal characterization are
presented.

The remainder of the paper is organized as follows: Section

2 reviews some basic concepts and related work. Section 3
functionally details the proposed methodology separating it
in the three aforementioned stages. Section 4 evaluates the
temporal behavior of the possible strategies. Finally, in Section
5, the conclusions and future lines of work are presented.

II. BACKGROUND AND RELATED WORK

Depending on the impact on the application execution,
different types of transient faults can be found [8][9]. Latent
Errors (LE) affect data that are not used afterwards, so do
not have an impact on results. Detected Unrecoverable Errors
(DUE) cause abnormal conditions, from which the system
software can be notified but can not be recovered, resulting
in abrupt termination of the application. Time Out Errors
(TOE) cause the program to not end within a stipulated time
period. Finally, Silent Data Corruption (SDC) have effects that
propagate until the program, which appears to execute cor-
rectly, ends with incorrect output. In message-passing parallel
applications, these can cause: Transmitted Data Corruption
(TDC), which affect data that are part of the contents of
messages to be transmitted (i.e. if undetected, they propagate
to other processes), or Final Status Corruption (FSC), where
the altered data are not transmitted, but the error propagates
locally, corrupting the final results of the affected process.

Current technologies cannot deal with frequent SDC. Exist-
ing algorithmic solutions [10] can only be applied to specific
kernels. On the other hand, compiler or runtime software-
based detection strategies can be applied to any code, but
they are complex in nature. Containment aims to avoid the
propagation of the damage to other nodes, or to prevent it
from corrupting the data stored in checkpoints, which would
make recovery impossible [2]. In [11], the authors propose the
use of redundancy in HPC systems, which allows increasing
availability and offers a trade-off between the number and the
quality of components. In [12], it is shown that replication is
more efficient than C/R in situations where both error rate and
overhead of C/R are high.

Traditionally, SDC are detected by replicating executions
and comparing the obtained results between replicas.
Software-redundancy solutions are focused on replication at
the level of threads [13], processes [4] and machine status,
removing the need for expensive hardware; other solutions
that are less accurate but require less resources have been
explored, such as approximate replication, which implements
upper and lower limits for computation results [2]. MR-MPI
[11] proposes transparent redundancy in HPC and partial
process replication; it can be used in combination with C/R
in non-replicated processes [14]. TMPI [12] is a protocol
for redundant execution of MPI applications, focused on
failures that cause the system to stop; it uses the profiling
layer to interpose MPI functions. Each node is duplicated,
so the application fails only if two corresponding replicas
fail. Redundancy scales, i.e., the probability of simultaneous
failure of a node and its replica decreases when the number
of nodes increases, at the cost of duplicating the amount
of resources and quadrupling the number of messages. In

435

[6] a scheme based in multithreaded processes for shared
memory systems is proposed, handling non determinism due
to memory accesses.The authors of [1] propose a protocol
for hybrid task-parallel MPI applications, which implements
recovery based in uncoordinated checkpoints and message
logging, restarting only the task that experienced the error
and handling the MPI calls inside the task. RedMPI [5] is
a MPI library that exploits rMPI’s per-process replication
to detect and correct SDC, comparing at the receiver side
the messages sent by replicated issuers. It implements an
optimization based on hashing to avoid sending all messages
and comparing their entire contents. It does not require
application code modifications and it ensures determinism
between replicated processes. Results show it can protect
applications even with high failure rates so it can potentially
be used on large-scale systems. The authors show that
even a single transient error can have a deep effect on the
application, causing a cascading corruption pattern towards
all other processes through MPI messages. Like our proposal,
RedMPI also allows customizing the mapping of the replicas
on the same physical node as the native processes, or in
neighbors with lower network latency. Like us, they monitor
communications, as their accuracy is necessary to output
correction. Detection is delayed upon transmission, but
validation is performed on the receiver side. This results in
additional overhead, latency and network congestion in which
our strategy does not incur. Fault tolerant protocols for other
parallel programming models, such as PGAS [15] have been
also proposed.

III. DESCRIPTION OF THE METHODOLOGY

In the following subsections, the fundamentals of the dif-
ferent proposed alternatives to achieve fault tolerance will be
found, as well as an evaluation of the temporal effects of
implementing each particular feature. A simplified model is
included, which takes into account the factors that affect the
total running time, both in the absence of faults as with a
single silent error occurring during the execution. The baseline
for evaluations is the time involved in a manual strategy
for ensuring reliable results, that consists in launching two
instances of the application in parallel, and comparing final
results in a non-automatic fashion. Such a strategy makes the
same utilization of the computing resources that our proposal,
i.e. half of the total available cores for each individual instance.
Without any faults, there may be a coincidence of final results;
however, if a transient fault occurs, a third re-execution and a
new comparison are required to pick the outputs of the runs
that form a majority as the correct ones (voting mechanism).
In table I we summarize the parameters involved and their
meanings.

Tra= Tprog + Tcomp

TFP = 2(Tprog + Tcomp) + Trest

6]
2

Equation 1 shows the execution time of the manual strategy
in absence of faults (fault absence, T 4), although equation 2
is the time when a fault occurs (fault presence, Trp), when,

Parameter Meaning

TABLE T
PARAMETERS INVOLVED IN TEMPORAL CHARACTERIZATION

besides the re-execution time, there exists a restart time and
(at least) a new comparison for voting.

A. Error detection with notification

The first feature, detection, is achieved by validating the
messages between processes in deterministic parallel applica-
tions, before being sent. This allows isolating the error that
affect a process by preventing it from propagating to the
others. The detection strategy is designed to detect failures
that cause SDC (both variants) and TOE. It consists in
duplicating each application process in a thread, requiring a
synchronization mechanism between both redundant threads.
When a communication is to be performed, the leading thread
stops running and waits for its replica to reach the same
point, and all message contents, calculated by both replicated
threads, are compared. If they match, only one of the threads
sends the message, therefore no consuming additional net-
work bandwidth. When the receptor gets the message, it is
synchronized with its replica, makes a copy of the received
contents for it, and then both redundant threads continue
the execution. When the application processes finish, their
results are compared with the ones of their replicated threads
to detect failures that may have locally propagated until the
end. Additionally, detection of TOEs is based on the premise
that, in dedicated homogeneous system, the execution times
of two replicated threads should be similar [16]. Therefore,
a notorious difference can be assumed as both replicas have
separated their flows due to a silent error. Thus, time-out
interval should be configured accordingly on the application
behavior: if too high, detection latency increases; if too low,
a small difference in processing times could result in the
detection of a false positive. Anyway, if one of the processes
goes into an infinite loop, an error is effectively detected.

Figure 1 shows an outline of the proposed detection mecha-
nism. Each application process is mapped to a core, and each

436

Tprog Execution time of two instances of the original application in E 1 Copy of Data to the Replica
parallel. E
Teomp Time of manual comparison of results. Automatic comparison 2
may take shorter. In simplified model is considered the same; {
may include calculating a hash.
Trest Time of manually restarting the application. Automatic restart Original Send Instant H Resultant
may take shorter. In simplified model is considered the same. ~. .-"f - Send Instant
fa Fraction of overhead due to detection mechanism. Dependent P1 .
on the application. Can be experimentally determined. 0 <
L [P]
X Instant of fault detection, expressed as a fraction of the A >
application progress. Random. 0 < X <1. Validation Interval
n Number of checkpoints made during the whole execution,
given a checkpoint interval. (a) Normal operation
tes Time involved in storing a system checkpoint.
t; Checkpoint interval. Can be adjusted to minimize overhead. |P°' |
k Number of extra checkpoints the application needs to rollback
to find a non-corrupted one. Dependent on the application and | PO o
detection latency. Can be experimentally determined. . i
tea Time involved in storing an application checkpoint. Shorter Original Send Instant ~_ = / _—~ Message is
than t¢s. not Sent

Fault Ocurrence

Instant
| P1 * -
"

T —— >

Fault Detection Instant

Latency of Detection
(b) Operation when detecting a fault

Fig. 1. Detection mechanism

redundant thread runs in a core that shares some cache level
with the original; thus, there is no need to access to main
memory, harnessing the hierarchy to solve comparisons. As
a consequence of this replication scheme, half of computing
resources are usable from the standpoint of the parallel appli-
cation performance. It should be clear that the method consists
in launching only one instance of the application, with each
of the processes internally replicated in a thread, instead of
the baseline case, in which two independent instances of the
application are launched in parallel; however, both the baseline
case and our strategy make the same use of the computational
resources.

As this methodology makes use of process duplication, it
is capable of performing only detection (triplication should be
used for achieving correction by voting). The two following
subsections show how recovery can be made without need
of triplication. Because all the described strategies make use
of the computational resources available in the system, it is
also remarkable that there is not additional cost owing to the
incorporation of fault tolerance mechanisms.

The overhead introduced in execution time is a consequence
of process duplication, synchronization between replicas, com-
parison before sending, copy of the received messages and
final verification of the results; it is measured for some real
HPC applications. As regards as the validation interval, if
results are compared only at the end, detection introduces
little overhead, but the fault would remain latent for a long
time, making much computation unusable; however, if partial

results are validated too frequently (e.g., at any communi-
cation) higher overhead is introduced but the fault can be
detected faster, thus not computing uselessly. Therefore, a
compromise must be reached between detection interval and
introduced overhead. Our previous studies [16] show that,
depending on the computation-to-communication ratio of the
target application and the size of the workflow, the overhead
can be widely variable between extreme values.

When a SDC or TOE occurs, the only-detection strategy
notifies the user and leads the system to a safe stop, in the
absence of a recovery strategy. Having such a mechanism al-
lows immediately re-launching the application upon detection,
avoiding unnecessary and costly wait for the conclusion with
incorrect results, so validating messages narrows error latency.

3
“

Equation 3 shows the execution time of the detection strategy
in absence of faults. The original time is incremented by a
factor f,4, the overhead of detection mechanism, and the final
comparison that is performed for correctness. Equation 4 is the
time when a fault occurs. The first term is the time executed
until the instant of detection, and the whole re-execution. Upon
detection a restart is required, and the final comparison in the
re-execution. It should be clear that such a verification method
will be equally effective when more than a single error occurs
during the execution. The first error that causes a discrepance
between contents of messages or final results will lead the
system to a safe stop. Only two extremely unlikely cases make
this mechanism vulnerable; more details on them can be found
in [17]. The detection strategy can address multiple non-related
errors, but we limit the analysis of the temporal behavior to
first-order terms, i.e. with no error or single error ocurring.

TFA = Tprog(l + fd) + Tcomp
TFP = Tprog(l + fd)(l + X) + Tcomp + Trcst

B. Recovery based in multiple system-level checkpoints

The second alternative consists in incorporating a recov-
ery strategy, in the way to tolerate transient faults. This is
accomplished by the storage of a number of coordinated
distributed checkpoints, built with a system-level tool. Given
the possibility of a silent error corrupting the internal state
of one of the replicated processes, there is no guarantee of
a checkpoint to be consistent. It is necessary to determine
if it is possible to restart from the last recorded checkpoint;
otherwise, a previous one has to be used. Thus, a chain of
checkpoints has to be stored in order to ensure recovery [7].
It is remarkable that, given the short-lived nature of transient
faults, the restart can be attempted from the corrupted node
itself. Two cases are possible:

1) The transient fault and its detection occur within a
checkpoint interval. Application is restarted from the
last checkpoint. Particularly, if the fault is detected
previously to the first checkpoint, the application is
relaunched from the beginning.

Transient fault occurs before recording a checkpoint, but
is detected after it, i.e. the detection latency transposes

2)

437

the checkpoint interval. In this case, last checkpoint
is not valid, and restarting from it should cause the
repetition of the previous error. Thus, restart from the
prior checkpoint must be attempted. This situation can
be generalized: depending on the latency, the fault can
go through any number of checkpoints, and several
attempts may be done until rollback recovery is possible.

Rollback
P Y
Fault)
S S —— 7 TR R
L . /| Detection
|
Latency
[Po |

Coordinated “CLEAN" checkpoint Coordinated "CLEAN" check poirt

(a) Detection latency bounded in checkpoint interval

Rollback

- ~
Fault e

o

Y ‘Detection
Latency

PO

P

3 B

1 TrmsEEEmEEmE

Coordinated “CLEAN" checkpoint Coordinated "DIRTY” checkpoint

(b) Detection latency transposing checkpoint interval

Fig. 2. Use of multiple system-level checkpoints for recovery

To evaluate this recovery scheme, controlled fault injection
has to be made, corresponding to the two above mentioned
cases. The injection is made from inside the application
code, by changing the value of a variable in only one of
the redundant threads of a process in a single iteration of
the computation; thus, a bit-flip in a processor register is
simulated, since data corruption manifests as an observable
difference between the memory state of the replicas. Figure
2 outlines the recovery mechanism. The proposed algorithm,

in pseudocode, is described as Algorithm 1. For simplicity,
injection mechanism is not shown.

i int extern_counter=0; /% controls the number
of rollbacks; external , has not to be
checkpointed x/

> boolean fault_detected= FALSE;

v (.

L) // application execution time
s sys_ckpt(n—1); // save a system checkpoint
6
(...) // application execution time
s sys_ckpt(n); /! save a system checkpoint

if (fault_detected== TRUE) {
when communicating x/
1 extern_counter++;

/% fault detected

/% extern_counter=1;

restart from checkpoint n will be tried =/
fault_detected= FALSE; /x reset detected
faults in restarting x*/
restart_from_sys_ckpt(n); /+ from last
checkpoint (Fig 2a) =/
14 }
15
6 (...) // application execution time
/+* If a fault is never detected again,
checkpoint(n) was clean and execution
finishes normally x/
7 if (fault_detected== TRUE) { /+ fault detected
when communicating x/
18 /* checkpoint(n) was dirty because the fault is
detected again =*/
19 extern_counter ++; /% extern_counter=2;
restart from checkpoint n—1 will be tried =/
20 fault_detected= FALSE; /% reset detected
faults in restarting x*/
delete_sys_ckpt(n); // the dirty one
2 restart_from_sys_ckpt(n—1); /* from last but
one checkpoint (Fig 2b) =/

23 }
Algorithm 1: Recovery algorithm with system-level check-
points

The implementation of the methodology consists in a li-
brary of modified MPI functions and data types with ex-
tended functionality for fault detection by comparison before
sending, message copies upon reception, and synchroniza-
tion between replicated threads. The coordinated system-
level checkpoints are built with DMTCP library [18], which
generates distributed-per-process checkpoint files, and a sin-
gle restart script for each checkpoint. Master/Worker matrix-
multiplication is the test application. Even though transient
faults can occur at any place and time during the execution,
significant moments and variables were selected for controlled
fault-injection experiments. The expected behavior was ob-
tained in both cases of possible silent errors. To make this
recovery method more usable, it needs to be automated; this
is achieved by letting a process, external to the application,
to read the extern_counter and executing the correspondent
restart script respect to its value; also, it has to delete a check-
point that has caused a failed restart. The target application
only needs to read extern_counter to learn if an injection
has to be made (which occurs only once), and then write it

438

upon detection.

TFA = Tp'r'og(l + fd) + Tcomp + ntcs (5)
TFP = Tprog(1 + fd) + Tcamp + (n + k)tcs+
. ©)
+(Y (k—m+1/2)t; + (k+ D)Trest
m=0

Equation 5 shows the execution time of this strategy in absence
of faults. The time is the same as with only-detection but
the aggregated term is the time involved in storing n system-
level checkpoints. Equation 6 is the time when a fault occurs.
Parameter k appears, which represents the number of check-
points that need to be rewinded if the restart from the last one
fails. The third term is the time consumed in checkpointing,
considering that one or more checkpoints should be recorded
again if found corrupted during the recovery process. Fourth
term is an approach of the time of re-execution, taking into
account that the fault, in average, may be detected at the half
of checkpoint interval, and, in the best case (k = 0) this lapse
will need to be re-executed; if £ > 0, that fraction plus an
integer number of checkpoint intervals will require several re-
executions. The last term is the number of required restarts.

This method is suitable when only system-level-checkpoints
are available. However, it has two important drawbacks. The
first one is related to the required storage amount. The
uncertainty about the validity of the recorded checkpoints
avoids deleting previous ones: if so, there is a risk of having
to re-execute a significant part of the application, or even
relaunching it from the beginning [7]. Anyway, solutions about
multilevel checkpointing can be used to mitigate the negative
impact of multiple checkpoints over the storage [2]. The
second relevant drawback is scalability: coordinated-system-
level checkpoints are not expected to be the best solution
in upcoming exascale systems, because the large amount of
related-to-the-system information they store. Instead, user-
level checkpoints are becoming more frequent, due to their
lower costs and portability [1]. Clearly, this is a costly method,
because of the need of keeping an undetermined amount of
active checkpoints and the number or retries that can be
required.

C. Recovery based in a single safe application-level check-
point

The third alternative in the way to achieve transient fault
tolerance tries to overcome the problems of using system-
level checkpoints. When available, user-level checkpoints are
more suitable, because they only store the application-related
information. Despite of needing a deep knowledge of the
application internal structure (computing and communication),
they are smaller, more portable and scalable than their system-
level counterparts. Because of this, our methodology pro-
poses the utilization of a single checkpoint for recovery,
plus a mechanism to ensure the reliability of the last stored
checkpoint. This allows deleting the previous one, saving
storage space and guaranteeing that no too far relaunches are

required. The proposed solution benefits from the synchroniza-
tion mechanism between replicas to record per-thread user-
level checkpoints, which consist in storing only the variables
that are significant to the application at the particular moment.
Both-replicas checkpoints are recorded, and then a hash on
each one is calculated. The two hashes are compared, in the
same way as contents of messages in the detection stage.
If the comparison is successful, the checkpoint is valid, i.e.
represents a consistent state for recovery, so the previous one
can be safely discarded to save storage. The new checkpoint
recorded by one of the redundant threads substitutes the
old one in stable storage. In the other hand, if an error is
detected, the checkpoint has been corrupted and cannot be
used for recovery, so it has to be deleted and rollback to
prior checkpoint has to be made. Therefore, there is only one
valid checkpoint at a time, except for the lapse of validation,
but after it there is only one again, independently of the
results of the verification. Proposed algorithm, in pseudocode,
is described as Algorithm 2.

1 /% usr_ckpt function definition */

5 boolean usr_ckpt(n) {

4 for (thread_id=0, thread_id <2, thread_id++) {
/!l for both replicas

5 store_all_significant_variables (thread_id);

6 // makes its custom checkpoint

7 hash_array|[thread_id]=compute_hash(thread_id);

9 synch_threads () ; // wait for each other
10 if (thread_id==0) { /+ only one of the
compares hashes x/
if (hash_array[0]==hash_array[1]) { /=
x/
12 remove_all_significant_variables (thread_id);

replicas

if

successful

/] deletes its own checkpoint
return TRUE; /% this 1is a valid
checkpoint; previous can be discarded =/
14 } else return FALSE; // corrupted checkpoint
s}
6} // end of function
/% K ok sk ok ok 3 ok ok ok ok ok ok sk sk ok ok ok ok ok ok ok ok ok ok ok ok *okok k[
18
o (...) /] application execution time
20 if (usr_ckpt(n)== TRUE) // n: current checkpoint
21 remove_usr_ckpt(n 1); /+ delete previous since
current is valid =/
2 else {
remove_usr_ckpt(n); /% remove current corrupted
checkpoint */
24 restart_from_usr_checkpoint(n 1); /+ from
previous x/
s}

Algorithm 2: Recovery algorithm with application-level
checkpoints

TFA - Tprog(l + fd) + Tcomp + n(tca + Tcomp) (7)

Trp = Tprog(l + fd) + Tcomp + n(tca + Tcomp)+
+(1/2)tt + T’r'cst

Equation 7 shows the execution time in absence of faults. The
time is the same as with only-detection but the aggregated

®)

439

term is the time involved in storing n user-level checkpoints
and validating each of them. Equation 8 is the time when a
fault occurs. As no more than a single rollback is needed,
in average only half of the checkpoint interval has to be re-
executed (fourth term), and also there is a single restart time
(last term).

IV. EVALUATION OF THE MODEL

In order to show how our model can be used to evaluate
the temporal behavior of each alternative, a simple example
is presented, which includes real measured overhead values
taken from carried-out tests [16] for parameters in table I. The
tests were performed using a cluster of Blade multicores with
four blades. Each blade has two quad core Intel Xeon 5405
2.0GHz processors with 64Kb private L1 cache and 6Mb L2
cache (shared between pairs of cores), 10Gb RAM memory
(shared between both processors) and 250Gb local disk. The
operating system is GNU/Linux Debian 6.0.7 (64 bits, kernel
version 2.6.32) and the MPI library used is OpenMPI (version
1.6.4).

Three parallel benchmark applications were used for tests:
matrix multiplication; solution to Laplaces equation; and DNA
sequence alignment. These benchmarks are well-known, rep-
resentative, computationally intensive scientific applications,
and they have three different communication patterns: Master-
Worker, Single-Program-Multiple-Data (SPMD) and Pipeline,
respectively. Benchmark applications were tested using differ-
ent number of processes: P = 4, 8, 16. Various problem sizes
were used for each application: N=2048, 4096, 8192, 16384
for matrix multiplication; N=4096, 8192, 16384 for solution
to Laplaces equation and N=65536, 131072, 262144, 524288
for DNA sequence alignment.

Tests were carried out to compare execution times of
the three applications between raw MPI versions and an
MPI-based implementation of our strategy, that incorporates
mechanisms of process duplication, synchronization between
replicas, comparison and copy of the messages contents and
final validation of the results. The resulting overheads of
adding these features were measured and therefore, average
parameters Tr,, and f; were obtained. For clarity, in the
case of the original MPI executions, at most four application
processes were mapped by node, which means that only four
cores of each node were used. In the case of our implemen-
tation, the same mapping was assigned, but as the redundant
threads execute on available cores, all the cores of each node
were used. On the other hand, parameters ¢.s and 7). were
obtained from averaging times measured with DMTCP library
tools. Last, parameters X, n and ¢; are manually assigned for
a typical case.

All values used for the temporal evaluation, obtained as
described, are listed in table II, and the resulting times in each
case are summarized in table III.

Although this is a simple test case with real values, it can
be observed that adding degrees of sophistication involves
larger overheads in absence of faults, as expected. However,
when a silent error occurs, the different alternatives may be

Parameter Value
Torog 10 hours
Teomp 1 hour
Trest 0.3 hours

fa 0.15

X 0.5

n 4

tes 0.9 hours

t; 2.5 hours

tea 0.5 hours
TABLE T

VALUES UTILIZED FOR TEMPORAL EVALUATION

Situation Execution Time [hs]
Baseline, without fault (Eq. 1) 11
Baseline, with fault (Eq. 2) 22,3
Only detection, without fault (Eq. 3) 12.5
Only detection, with fault (Eq. 4) 18.5
Multiple checkpoints, without fault (Eq. 5) 16,1
Multiple checkpoints, with fault (Eq. 6, k = 0) 17.7
Multiple checkpoints, with fault (Eq. 6, k = 1) 22.6
Single checkpoint, without fault (Eq. 7) 18.5
Single checkpoint, with fault (Eq. 8) 20

TABLE TIT
RESULTS OF TEMPORAL EVALUATION

capable to offer a gain both in time and reliability, which
becomes particularly significant in applications that can run
for many hours. Even, with this set of parameters, the situation
of rolling back to the last but one system checkpoint (Equation
6, k=1) temporally behaves worse than the baseline case,
suggesting that storing more than a single checkpoint is not
always convenient. It should be clear that this is not a general
conclusion (the temporal behavior is highly-dependent of the
application communication pattern, the volume of transmitted
data, and the instant of detection), but it shows how the model
can be used for temporal evaluation if the involved parameters
can be measured or estimated, as well as the potential of the
proposed methodology in aiding users of scientific applications
to reach dependable executions.

V. CONCLUSIONS AND FUTURE WORK

Given the fact that a single SDC causes deep effects on
all processes that communicate, it can be concluded that
protecting the applications at the level of the MPI messages
is a feasible and effective method for detecting, isolating
and preventing subsequent data corruption. In this paper, a
methodology for detecting and recovering from silent errors is
presented, which consists in three complementary alternatives.
Functional and temporal characterization is made, showing
the viability and efficacy to tolerate transient faults in HPC
systems.

As a future work, emulation of non-deterministic calls is
required in order to enlarge the scope of applications that can
be protected. Experimental validation with applications with
customized user-level checkpoints has to be extended. Optimal
checkpoint interval to minimize expected execution time has
to be derived. On the other hand, forcing the time in equation
6 to be smaller than equation 4 allows to obtain the maximum

440

number of worth stored checkpoints for recovery. Because the
replicated threads should be mapped on cores that share low
level caches for best performance, it would be interesting to
study the effects of moving the replicas to another socket in
the node because the application has the mapping binded to
intra-socket cores.

As a final goal, the integration with architectures that use
C/R strategies for tolerating permanent will must be intended,
in order to achieve fault-tolerance for both types of errors.It
is important to remark that the actual implementation of our
proposal is in a prototype stage, but a stable productive version
of the library is being developed and characterized.

REFERENCES

[1] T. Martsinkevich, O. Subasi, O. Unsal, F. Cappello, and J. Labarta,
“Fault-tolerant protocol for hybrid task-parallel message-passing appli-
cations,” in Cluster Computing (CLUSTER), 2015 IEEE International
Conference on. 1EEE, 2015, pp. 563-570.

F. Cappello, A. Geist, W. Gropp, S. Kale, B. Kramer, and M. Snir,
“Toward exascale resilience: 2014 update,” Supercomputing frontiers
and innovations, vol. 1, no. 1, pp. 5-28, 2014.

J. Elliott, M. Hoemmen, and F. Mueller, “Evaluating the impact of sdc
on the gmres iterative solver,” in Parallel and Distributed Processing
Symposium, 2014 IEEE 28th International. 1EEE, 2014, pp. 1193—
1202.

A. Shye, J. Blomstedt, T. Moseley, V. J. Reddi, and D. A. Connors,
“Plr: A software approach to transient fault tolerance for multicore ar-
chitectures,” IEEE Transactions on Dependable and Secure Computing,
vol. 6, no. 2, pp. 135-148, 2009.

D. Fiala, F. Mueller, C. Engelmann, R. Riesen, K. Ferreira, and
R. Brightwell, “Detection and correction of silent data corruption
for large-scale high-performance computing,” in Proceedings of the
International Conference on High Performance Computing, Networking,
Storage and Analysis. TEEE Computer Society Press, 2012, p. 78.

H. Mushtaq, Z. Al-Ars, and K. Bertels, “Efficient software-based fault
tolerance approach on multicore platforms,” in Proceedings of the Con-
ference on Design, Automation and Test in Europe. EDA Consortium,
2013, pp. 921-926.

G. Lu, Z. Zheng, and A. A. Chien, “When is multi-version checkpointing
needed?” in Proceedings of the 3rd Workshop on Fault-tolerance for
HPC at extreme scale. ACM, 2013, pp. 49-56.

S. S. Mukherjee, J. Emer, and S. K. Reinhardt, “The soft error problem:
An architectural perspective,” in High-Performance Computer Architec-
ture, 2005. HPCA-11. 11th International Symposium on. 1EEE, 2005,
pp. 243-247.

D. Montezanti, E. Frati, D. Rexachs, E. Luque, M. Naiouf, and
A. De Giusti, “Smcv: a methodology for detecting transient faults in
multicore clusters,” CLEI Electronic Journal, vol. 15, no. 3, pp. 5-5,
2012.

Z. Chen, “Algorithm-based recovery for iterative methods without check-
pointing,” in Proceedings of the 20th international symposium on High
performance distributed computing. ACM, 2011, pp. 73-84.

C. Engelmann and S. Bohm, “Redundant execution of hpc applications
with mr-mpi,” in Proceedings of the 10th IASTED International Con-
ference on Parallel and Distributed Computing and Networks (PDCN),
2011, pp. 15-17.

K. Ferreira, R. Riesen, R. Oldfield, J. Stearley, J. Laros, K. Pedretti, and
T. Brightwell, “rmpi: increasing fault resiliency in a message-passing
environment,” Sandia National Laboratories, Albuquerque, NM, Tech.
Rep. SAND2011-2488, 2011.

G. Yalcin, O. S. Unsal, and A. Cristal, “Fault tolerance for multi-
threaded applications by leveraging hardware transactional memory,”
in Proceedings of the ACM International Conference on Computing
Frontiers. ACM, 2013, p. 4.

X. Ni, E. Meneses, N. Jain, and L. V. Kalé, “Acr: Automatic check-
point/restart for soft and hard error protection,” in Proceedings of the
International Conference on High Performance Computing, Networking,
Storage and Analysis. ACM, 2013, p. 7.

[2

[3

[t

[4

[5

[l

=
2

[7

—

(8]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

N. Ali, S. Krishnamoorthy, N. Govind, and B. Palmer, “A redundant
communication approach to scalable fault tolerance in pgas program-
ming models,” in Parallel, Distributed and Network-Based Processing
(PDP), 2011 19th Euromicro International Conference on. 1EEE, 2011,
pp. 24-31.

D. Montezanti, E. Rucci, D. Rexachs, E. Luque, M. Naiouf, and
A. De Giusti, “A tool for detecting transient faults in execution of parallel
scientific applications on multicore clusters,” Journal of Computer
Science & Technology, vol. 14, 2014.

G. A. Reis, J. Chang, N. Vachharajani, R. Rangan, and D. I. August,
“Swift: Software implemented fault tolerance,” in Proceedings of the
international symposium on Code generation and optimization. 1EEE
Computer Society, 2005, pp. 243-254.

J. Ansel, K. Arya, and G. Cooperman, “Dmtcp: Transparent checkpoint-
ing for cluster computations and the desktop,” in Parallel & Distributed
Processing, 2009. IPDPS 2009. IEEE International Symposium on.
IEEE, 2009, pp. 1-12.

441

