
ar
X

iv
:1

70
7.

00
83

2v
2 

 [
cs

.D
C

] 
 2

0 
Se

p 
20

17

Modeling the Internet of Things:

a simulation perspective

Gabriele D’Angelo, Stefano Ferretti, Vittorio Ghini

Department of Computer Science and Engineering, University of Bologna

Bologna, Italy

{g.dangelo, s.ferretti, vittorio.ghini}@unibo.it

Abstract—This paper deals with the problem of properly
simulating the Internet of Things (IoT). Simulating an IoT
allows evaluating strategies that can be employed to deploy
smart services over different kinds of territories. However,
the heterogeneity of scenarios seriously complicates this task.
This imposes the use of sophisticated modeling and simulation
techniques. We discuss novel approaches for the provision of
scalable simulation scenarios, that enable the real-time execution
of massively populated IoT environments. Attention is given to
novel hybrid and multi-level simulation techniques that, when
combined with agent-based, adaptive Parallel and Distributed
Simulation (PADS) approaches, can provide means to perform
highly detailed simulations on demand. To support this claim,
we detail a use case concerned with the simulation of vehicular
transportation systems.

Index Terms—Internet of Things; Simulation; Wireless; Par-
allel and Distributed Simulation; Smart Cities

I. INTRODUCTION

The Internet of Things (IoT) is firmly established today.

We are surrounded by a multitude of sensors, devices, people

equipped with mobile terminals, all somehow connected to

the Internet, and the number of these things increases at a fast

pace. Such a growing amount of devices can be employed as

sources of sensed information, computation units, means for

communication. It is thus important to devise strategies to let

them interconnect [8]. These solutions must take into account

that things may have very specific characteristics both in terms

of hardware (in many cases, these devices are equipped with

a very little amount of memory and computational power),

software (specific OSes) and management (little or no admin-

istration utilities, few system updates).

The wide spectrum of possible uses of things makes simu-

lation a central tool for the real deployment of smart services.

The complex networks obtained by the interaction of IoT

devices are hard to design and to manage. IoT simulation

is necessary for both quantitative and qualitative aspects. To

name a few issues: capacity planning, “what-if” simulation and

analysis, proactive management and support for many specific

security-related evaluations. The problem is that modeling a

general IoT environment can be quite difficult [13], [33]. There

0 The publisher version of this paper is available at
https://doi.org/10.1109/HPCS.2017.13. Please cite this paper as: “Gabriele

D’Angelo, Stefano Ferretti, Vittorio Ghini. Modeling the Internet

of Things: a simulation perspective. Proceedings of the IEEE 2017

International Conference on High Performance Computing and
Simulation (HPCS 2017)”.

is wide a number of different aspects to take into consideration.

Among them, scalability is a main one. Traditional approaches

(that are single CPU-based) are often unable to scale to the

number of nodes (and level of detail) required by the IoT.

This paper introduces the main aspects of the simulation of

IoT, discussing a new combination of techniques to enhance

scalability and to permit the real-time execution of massively

populated IoT environments (e.g., large-scale smart cities).

For example: parallel and distributed simulation (PADS),

adaptive computational and communication load-balancing,

self-clustering. In particular, attention is given to the hybrid

and multi-level modeling and simulation techniques. In few

words, a hybrid simulation is a simulation where multiple

simulation models are glued together [39]. Each simulator has

a specific task, and these simulators are somehow orchestrated

by some simulation coordinator. We also refer to multi-level

simulation when these simulation tools work at a different

level of detail [13], [17]. These solutions allow creating

multiple, interacting instances of different simulations, that

are specifically designed to focus on particular aspects in a

reduced portion of the simulated area, or on a reduced subset

of simulated entities.

To demonstrate the validity of the proposed approach, we

analyze an application scenario related to the simulation of

vehicular transportation systems. The classic ways to analyze

vehicular networks relate to two antithetical approaches. One

is an abstract simulation of vehicles as moving entities, where

these entities are simple agents moving in a constrained

simulated space. Thus, we label the agent as a vehicle and

force it to move in given paths, representing streets. But from

a simulation point of view, the same model might represent

ants moving over tree branches. Thus, no details related

to vehicular systems are considered. The other approach is

to design a detailed simulation, embodying all sophisticated

aspects of the technologies inside a modern vehicle, i.e., motor,

pollution-related aspects, networking technologies to connect

to the Internet, etc. Due to all these details to consider, the

typical simulation can only be composed of few entities, due

to scalability issues concerned with the computational costs

for mimicking a vehicle.

As a matter of fact, there are situations in which the

use of the first approach can introduce errors due to the

oversimplification, while in other situations the latter approach

does not scale due the presence of unnecessary details. Hybrid

http://arxiv.org/abs/1707.00832v2
https://doi.org/10.1109/HPCS.2017.13


and multi-level approaches can solve the problem, since they

allow designing and configuring smart services in large scale

vehicular transportation systems over wide area networks. De-

tailed simulations can be triggered nevertheless. The advantage

is that the detailed (and thus, more costly) simulation can be

performed only when needed, in a limited simulated area, only

for the needed time interval of the simulation.

The remainder of this paper is organized as follows. Sec-

tion II describes the background about simulation techniques,

useful to introduce aspects related to the simulation of IoT.

In Section III the state of the art related to IoT simulation is

discussed. An approach based on adaptive parallel/distributed

simulation and multi-level simulation is introduced in Section

IV. In Section V, this approach is applied to a case study on

intelligent transportation systems. Finally, Section VI provides

some concluding remarks.

II. BACKGROUND

A. Simulation and Discrete Event Simulation

In a computer simulation, a process models the behavior

of some other system over time [23]. The system to be

simulated can be already existing or yet to be built. In most

cases, the simulation tools are used to support the design and

implementation of complex systems. In fact, most modern

systems are so complex that their study (i.e. dimensioning and

tuning) can be done only by using simulations.

Among the many simulation paradigms that have been pro-

posed, Discrete Event Simulation (DES) [36] is very popular

for its combination of expressiveness and usability. More

in detail, the main component of a DES is the simulation

model, that is implemented by a set of state variables. These

variables represent the simulated system in a given moment

of its evolution. Such evolution of the simulated model is

obtained processing an ordered sequence of events. Each event

represents a change in the simulated model state and it is

tagged (i.e. timestamped) with a specific simulated time. In

other words, the simulation evolution is obtained computing an

ordered sequence of events that need to be created, stored in a

specific data structure and then processed using the appropriate

processing handlers. As an example, the simulation of a

vehicular ad hoc network is made by events that represent

the different car positions during the simulation and the

transmission of wireless packets.

The implementation of DES is usually made by i) a set

of state variables, that are used to represent the state of the

modeled system, ii) an ordered event list, that are the pending

events waiting to be processed to evolve the simulation, iii) a

global clock, that represent the current time in the simulated

system [36].

B. Sequential DES

When a single CPU core (also called a Physical Execution

Unit, PEU) manages the whole simulated model and its evolu-

tion, the simulation is defined as sequential (i.e. monolithic).

This means that the PEU is in charge of processing all the

events in the correct timestamp order, originating new events

and updating the pending event list. The processing of events

in the correct order is necessary in order to avoid causality

errors in the simulation. The main advantage of the sequential

approach is that it is easy to implement and to debug but there

are also some drawbacks. For example, large systems require

a huge number of events to be stored and processed. Since all

of them are sequentially executed by a single PEU, then the

scalability of this approach is limited and the amount of time

required by the simulation runs is often excessive [18].

C. Parallel DES and PADS

An alternative approach to sequential DES is called Parallel

Discrete Event Simulation (PDES). In this case, a set of

interconnected PEUs (e.g. CPU cores or hosts) is in charge

of the simulation execution [24]. The simulation model is par-

titioned among different PEUs and each of PEU is in charge of

representing and executing only a part of the whole simulation

model. More in detail, each PEU implements a local pending

events list but some events need to be delivered to other PEUs

using a message passing approach. The partitioning of the

simulation model can increase the simulator scalability (thanks

to the parallelization of some tasks) but the set of PEUs needs

to be properly synchronized to prevent causality errors. A

PDES can be faster than the corresponding sequential DES

in simulating the same model, but this happens at the cost

of a more complex implementation and management of the

simulator.

The definition of Parallel and Distributed Simulation

(PADS) provided in [44] is quite simple: “a simulation that

is run on more than one processor”. Reduced time of the

simulation runs (with respect to the sequential approach),

model and simulator scalability, interoperability of simulators

and composability of simulation models are among the many

advantages of PADS with respect to sequential simulators [23].

In the PADS terminology, each PEU implements a model

component (called Logical Process, LP) that is a part of

the whole simulation [15]. In other words, a PADS is made

by the LPs and their interactions (see Figure 1). In fact,

each LP manages the evolution of a part of the simulated

model and communicates with other LPs for the necessary

synchronization and data distribution tasks [23].

The main characteristics of PADS (with respect to sequential

DES) is the lack of a global model state. In other words, in

the PADS execution architecture the single node in which the

whole simulation model is stored (and managed) is missing.

In fact, in this case, the simulation evolution is obtained only

through the coordinated computing and communication of

nodes arranged in a parallel/distributed architecture.

It is not always easy to define what is the difference between

a parallel and a distributed simulation. In this paper, for the

sake of simplicity, we assume that when the PEUs are inter-

connected by shared memory then it is a parallel simulation

and when the PEUs are connected by LAN (or Internet) then

it is distributed. Nowadays, most execution architectures are a

mix of parallel and distributed components [15].



Clearly, the characteristics of the network that interconnects

the PEUs have a strong effect on the PADS performance.

For example, the latency and bandwidth constraints in LAN-

based communications (or Internet) slow down the simulation

execution with respect to the low latency and high bandwidth

that can be found in shared-memory multi-processor.

Fig. 1. Model partitioning in the simulation of a smart city.

To summarize, the main characteristics of PADS are:

• the simulated model has to be partitioned in a set of

LPs [51]. The partitioning is a multi-objective optimiza-

tion problem in a dynamic system in which a part of

the information is unknown a priori. More in detail, the

partitioning of the simulated components in the paral-

lel/distributed architecture must be done minimizing the

amount of network communication among the LPs while

load-balancing (i.e. computation and communication) the

execution architecture;

• correctness: the PADS results are correct if and only if

they are the same as those of the corresponding sequential

simulator. Since each PEU has different hardware char-

acteristics and executes a specific part of the simulation

model, it is necessary to coordinate the PEUs using an

appropriate synchronization algorithm;

• since the simulated model is partitioned in different LPs,

some of the updates (i.e. events) that are generated in a

specific LP can be of interest for the components that are

allocated in other LPs. A simplistic solution would be to

broadcast all the updates. This behavior would introduce

a massive communication overhead and therefore it is

not acceptable. Data distribution is about the efficient

delivery of state updates. This can be achieved in many

ways, among them publish-subscribe mechanisms [29].

The implementation of PDES using a PADS approach is

obtained encapsulating the events in timestamped messages.

To obtain a correct execution of the PDES, the delivery and

processing of such messages must be done accordingly to the

causality constraint: “two events are in causal order if one

of them can have some consequences on the other” [35].

In other words, a correct PDES execution is obtained when

the causal order of events is not violated. In the case of a

DES, with a sequential execution (and a single pending event

list), it is easy to avoid causality violations. On the other

hand, in complex parallel and distributed architectures, there

are PEUs with different execution speeds, network delays,

model and execution architecture imbalances. In practice, in a

PADS, a synchronization algorithm is needed for the correct

handling of the simulation execution. In the years, many

different synchronization algorithm have been proposed; in

the following we summarize the main approaches that can

be followed:

• time-stepped: the simulated time is represented as a se-

quence of fixed-size timesteps. The timestamp associated

to events is the timestep in which they have to be pro-

cessed. In other words, the simulation model is updated

at every timestep. A consequence of this approach (that

is also a relevant limitation) is that the timestep size

is the lower bound to the interaction between model

components. In other words, each interaction between

two separate model components is not instantaneous

but requires a certain amount of time to be delivered.

The implementation of the time-stepped synchronization

mechanism can be centralized or distributed. In the dis-

tributed one, when a LP completes the processing of the

current timestep then it broadcasts an End-Of-Step (EOS)

message to all other LPs. Each LP waits to collect all the

EOS messages (from other LPs) before jumping to the

following timestep [48];

• conservative: the main assumption of this approach is

that causality violations must be prevented. This means

that each event must be analyzed before its processing.

If the event is “safe” (in terms of causality violations)

then it can be processed. Otherwise, the LP must stop

the processing of this event and switch to the evaluation

of other events. In the case where all the events are unsafe

then the LP must wait for more information on the safe-

ness of waiting events. Many synchronization algorithms

implement this approach, among them the Chandy-Misra-

Briant [42] and its variants are quite popular;

• optimistic: this approach is about processing the events

in receiving order without assessing their causality con-

straints. This means that causality violations may happen

and so the mechanism must be able to find the violations

and fix them. In the Time Warp algorithm [28] this is

done implementing a roll-back mechanism of the LP state

variables and (if necessary) propagating the roll-back to

all the LPs that have been affected by causality violation.

Such cascade of roll-backs brings the state of the whole

PADS back to the most recent one that is free from

causality violations. This restored state is then used by

the LPs as the new starting point for the processing of

events.

D. Adaptive PADS

As described above, the model partitioning is one of the

main problems of PADS. Most of the approaches that can

be found in the literature rely on a static partitioning (and

clustering) of the simulated model components in the available



LPs. To overcome the limitations of a static approach, in [15]

we proposed a dynamic mechanism that is based on the self-

clustering of model components. More in detail, the model

is partitioned in a large set of small-sized model components

that are called Simulated Entities (SEs). In this case, the model

evolution happens through the interactions among SEs. It is

easy to see that this approach is very similar to a multi-

agent system. In an adaptive PADS, the LPs are containers

of SEs and then it is possible to manage the migration of

SEs from one LP to another. The adaptive reallocation of SEs

allows the reduction of the communication overhead in the

parallel/distributed architecture (e.g. clustering the simulated

components that interact with high frequency in the same

LP) while load-balancing the execution architecture. In many

simulated models (and execution architectures), this approach

can lead to a speedup of the execution runs and a better

scalability.

The GAIA/ARTÌS simulator [7] implements the adaptive

PADS mechanism described above on top of the time-stepped

synchronization. In our previous work [17] we have demon-

strated that this approach can be integrated in a multi-level

simulation. In the following of this paper we will see that even

a hybrid simulation approach can be used in combination with

the adaptive PADS.

E. Hybrid Modeling and Simulation

The scientific literature is missing a clear and cohesive

definition of hybrid simulation [19]. Despite this, the mixing

of analytic and simulation models is not new [46]. In fact,

in the past this approach has been already implemented in

a few simulators [43]. In this paper, we consider hybrid

models all the solutions in which there is interoperability of

simulation models that follow different simulation approaches,

For example, linking discrete event simulation (DES) with

either system dynamics (SD) or agent based (ABS) [19] but

also analytical models (e.g. continuous simulation).

III. STATE OF THE ART

A. Simulation of the Internet of Things

The design, setup and tuning of large scale IoT sys-

tems requires the availability of either testbeds or simulation

tools [31]. In many cases, the cost and complexity of such

testbeds is so high that simulation is the only option. The

simulator used for the performance evaluation must be able to

deal with massively populated IoT environments and a high

level of detail in the interactions among the simulated compo-

nents. Both these aspects are fundamental for the scalability

of the simulation tools and must be properly considered when

reviewing the state of the art.

In [26], the authors consider both the aspects discussed

above, in fact they identify the main requirements for the

experimental facilities needed for the design and evaluation of

future IoT deployments. A discussion of the main drawbacks

of simulation-based approaches is followed by a survey of

existing IoT testbeds. The authors show that an approach based

on the federation of testbeds is feasible but with drawbacks.

It is worth noting that some testbeds are able to support an

approach that integrates simulation components, a solution is

often referred to co-simulation. One of the conclusions of this

paper is that the existing network simulators are unable to

support the scale and the level of detail required by future IoT

systems.

To improve the simulator scalability, SimIoT [47] uses a

cloud environment for the execution of back-end operations.

In [47], an use case is described, based on a health monitoring

system for emergency situations. The performance evaluation

considers 160 identical jobs that have been submitted by 16

IoT devices. More complex setups are needed to assess the

scalability of the proposed approach.

The problem of the large number of devices that must be

considered in IoT deployments is discussed in [37]. In this

paper, the authors firstly overview the available large-scale

simulators and emulators. Secondly, they propose MAMMotH,

a software architecture based on emulation. This approach is

promising, but the development of MAMMotH seems to have

stopped in 2013.

The integration of a general-purpose discrete event simula-

tion (e.g. DEUS) with domain specific simulators (e.g. Cooja

and ns-3) is pursued in [11] for assessing large-scale IoT

setups in urban environments. In this case, the authors consider

6 scenarios of medium complexity (i.e. 200.000 sensors, 400
hubs and 25.000 vehicles). The performance evaluation of the

integrated simulator shows a good scalability even if DEUS is

Java-based and with a monolithic architecture.

The integration of different simulators is part of the ap-

proach proposed in [33], in which Cooja-based simulations

(i.e. system level) are binded with a domain specific network

simulator (i.e. OMNeT++) to obtain a hybrid simulation

environment.

In [50], the OMNeT++ simulation framework is used to

model an IoT network infrastructure composed of sensors,

actuators, and even processors. This approach, that is again

based on a domain specific simulator, permits the simulation of

components (that are not yet available) and even the presence

of hardware in the loop.

[40] proposes what the authors call an Internet of Simulation

(IoS) that is a set of interconnected simulations in which all

the models and simulations are exposed to the Internet and

can be accessed on an “as-a-service” basis (i.e.“simulation as

a service”).

An interesting solution is proposed in [12]. In this case,

the SDL language is used to model the IoT scenario. In

the following, an automatic code generation is in charge of

translating the SDL description in a ns-3 simulator model.

The clear limitation of this approach is the scalability of ns-3.

In [22] is discussed the integration between an agent-

based methodology and a domain specific simulator (i.e. OM-

NeT++). Differently from the approach described in this paper,

the agent-based methodology is used for the modeling while

OMNeT++ implements the simulations.



B. Internet of Things and Smart-Cities

Concerning the use of IoT to build efficient services for

making “smarter” territories, from a simulation point of view

there are many requirements that the simulation tool must

provide. There are several parameters involved that should be

considered and possibly varied in order to perform a what-

if analysis. These parameters might force the IoT set-up and

deployment. For instance, assume that you need to create

a Wireless Sensor Network (WSN) of interacting in a IoT,

employed to build a smart service. In this case, a parameter

might be the wireless transmission ranges of communicating

devices. This parameter is influenced by the geographical

location where the WSN has to be deployed, and in turn

the transmission range influences the amount of sensors to

be deployed in the area.

Above all, the main issue is scalability, both in terms of

amount of modeled entities and granularity of events. An IoT

will be composed by thousands of interconnected devices.

Many of them will be mobile and each with very specific

behavior and technical characteristics [13], [20]. Then, in

certain scenarios, (almost) real-time simulations are required.

This is the case when proactive approaches are utilized to

perform “what-if analyses”.

Hybrid and multi-level simulation enable the simulation of

smart territories based on the use of the IoT. In fact, running

a complex, massively populated model at the highest level of

detail is unfeasible. A more profitable solution is to organize

the simulation as an orchestration of multiple simulators.

Each single simulator focuses on a specific level of detail,

with specific characteristics of the domain to be simulated

(e.g. mobility models, wireless/wired communications and so

on).

Agent-based simulation is the typical tool employed to

mimic urban systems, smart cities and transportation sys-

tems [30]. Agent-based simulation, together with land-use

transport interaction model and cellular automata are applica-

ble in planning support systems. Different time scales can be

modeled; for instance, one can perform short-term simulations

to model diurnal patterns in cities, while longer term models

can be exploited for strategic planning purposes. MASON [38]

and SUMO [34] are examples of simulation tools for the

simulation of moving (e.g. mobile users, vehicles) or static

entities. These tools have been successfully exploited to study

intelligent traffic control systems [9], [32], [49], [52], mobile

applications that resort to crowdsensed data [45] and so on.

While the implementation of models is quite simple for a

generic programmer, these approaches do not allow creating

massive scenarios, with many interconnected things.

CupCarbon is a multi-agent and discrete event simulator,

thought to simulate smart-cities and IoT WSN [41]. In partic-

ular, its purpose is to enable distributed algorithms validation.

This tool employs OpenStreetMap to simulate sensors deploy-

ment on a map. The main goal of this tool is to help trainers to

explain the basic concepts and how sensor networks work and

it can help scientists to test their wireless topologies, protocols,

etc. The main problem of scalability remains.

We conclude this section mentioning simulators that are

more prone to image and 3D based representations of smart

cities. Examples are CanVis, Second Life, Suicidator City

Generator, Blended Cities. In particular, it is worth mentioning

UrbanSim, that provides tools for examining the interplay

between land use, transportation, and policy in urban areas [6].

It is intended for use by Metropolitan Planning Organizations

and others needing to interface existing travel models with

new land use forecasting and analysis capabilities. UrbanSim

does not focus on scenario development, as most of these

tools do, but rather on understanding the consequences of

certain scenarios on urban communities. However, such a

kind of tools do not usually cope with issues concerned with

wireless communications and pervasive computing, which are

the keywords related to the IoT world.

IV. MULTI-LEVEL HYBRID SIMULATION

The fine grained simulation models needed for the accurate

assessment of IoT have scalability problems in presence of

a large number of nodes, as typical in IoT systems. In other

words, the time required by a monolithic simulator to obtain

statistically correct results is excessive. Furthermore, we need

simulation tools that can be used for the real-time assessment

and “what-if analysis” of complex IoT setups.

An approach based on PADS can enhance the simulator

scalability but with some significant limitations, in fact mas-

sively populated IoT would still be difficult to handle. The

common solution to the simulators scalability problem is to

reduce the level of detail in the simulation model. In our view,

this solution might turn out to be very dangerous, in terms

of simulation outcomes. In fact, it often leads to misleading

(or wrong) results. An alternative solution, that we have

proposed in the past [17], is based on multi-level modeling

and simulation [25]. In the approach that we propose, multiple

simulation models (and simulators) are the components of a

new combined simulator [39]. More in detail, each component

is able to handle a specific task and to work at a different level

of detail (i.e. multi-level simulator). In addition, each simu-

lator can follow a different simulation paradigm (i.e. hybrid

simulator).

As an example, a “high level” adaptive PADS simulator

(i.e. GAIA/ARTÌS) can be used to coordinate the execution of

some domain specific simulators (e.g. OMNeT++ [4], ns-3 [3],

SUMO [5]). The “high level” works at a coarse grained level

of detail, while the “low level” simulators are used for the fine

grained of some specific parts of the simulated system. The

switch between “high level” and “low level” can be automatic

(e.g. based on specific locations in the simulated area) or

triggered by the simulation modeler (e.g. for the detailed

analysis of specific behaviors observed during the simulation).

For example, the presence of hotspots of wireless devices in

a simulated area can cause network capacity and congestions

problems that need to be analyzed with specific simulation

tools.



Fig. 2. Multi-level hybrid simulation scheme, the level 0 and 1 simulators are time-stepped while the level 2 is continuous. Each simulator works at a different
level of abstraction.

The main issues to cope with, when dealing with

hybrid/multi-level approaches, are the interoperability among

the simulators and the design of the inter-model interactions.

In fact, such interactions impose synchronization and runtime

communication of state exchanges among model components.

Figure 2 shows an example of a hybrid/multi-level simula-

tion scenario. At the simulation bootstrap, the whole simula-

tion is performed at level 0 (hence, with minimal details). This

means that the high level simulator is in charge of all the model

components and their interactions. As said before, the level

0 simulator implements time-stepped synchronization [14].

When a specific portion of the simulated area needs to be

simulated with a higher level of detail (i.e. at timestep t2),

then another simulation level is triggered (only for that specific

simulation area). This means that the state of a specific group

of simulation components needs to be transfered from level 0

to level 1. The result is that a part of the simulated area is still

simulated at level 0 while a specific zone is implemented at

level 1. Following this approach, different simulation areas

can be simulated at different levels of detail, concurrently.

It is clear that different simulation tools (following different

modeling approaches) can be used for the different areas. If

needed, then a sub-portion of level 1 simulation might be

simulated at level 2 (that is an even higher level of detail).

In this specific case, the simulator at level 2 does not follow

a time-stepped approach; that is, it implements a continuous

simulation.

To simplify, we will detail this description considering

only the first two levels (i.e. level 0 and 1). All the model

components managed by the level 0 simulator are synchro-

nized with t-sized timesteps and all level 1 components with

t′-sized timesteps. Timestep t2 (i.e. t′
1

at level 1) is when

there is the switch of some model components from the

coarse grained simulator to the finer one. Going on with

the simulation execution, the level 0 components will jump

from t2 to t3 while the level 1 components will update their

state t′
2
, t′

3
and t′

4
. It is worth noticing that t′

4
at level 1 is

the same of t3 at level 0. At t′4, the execution of the level

1 simulator is terminated and all its simulation components

must be migrated back to the higher layer (i.e. level 0). All

that procedure needs to be arranged under the constraints of

the time-stepped synchronization mechanism. This means that

all the interactions among level 0 components must happen

only at coarse grained timestep while the interactions at level

1 happen at fine grained timestep. Finally, the interaction

between components managed at different levels need to be

arranged at the coarse grained timesteps, that is when there is

a match between the timesteps at the different levels.

During a hybrid/multi-level simulation, the total number of

simulated entities might not change; what changes is the level

of detail used to perform the analysis. This clearly increases

the scalability of the whole simulation system, since in-depth

simulations are performed only when needed and for a subset

of entities. It should also be clear that higher level simulations

might introduce some errors, due to the lack of detail. Thus,

the trade-off here becomes when (in the simulated time)

and where (in the simulated area) triggering more detailed

simulations (higher simulation costs), rather than keeping a

simplified simulation model (larger approximation errors). As

in every simulation, appropriate verification and validation

techniques need to be used.

V. A CASE STUDY WITH INTELLIGENT TRANSPORTATION

SYSTEMS

An important use case for the IoT lies in the smart

cities domain and relates to transportation systems. Numerous

examples exist of startups, services and technologies being

developed. Just to mention a few, BestMile is a cloud platform

to manage autonomous vehicle fleets.

Kiunsys is developing solutions to deal with all aspects of

parking, ranging from analytics software to sensors manage-

ment. Based on this solution, the city of La Spezia (Italy) has

deployed more than 1000 parking spot sensors to communicate

free parking spots in real time.



Hi-Park is another example of parking application.

Anagog has recently built a platform enabling mobile

applications developers to collect and analyze in real-time

raw signals from multiple smart-phone sensors, in order to

determine and predict the user mobility status. Thus, for

instance, data coming from a smart-phone can be used to

determine whether a user is driving a car. Based on this

information, it is possible to deliver assistive services and

information, or stop those that could distract drivers.

The Array of Things is a more general urban sensing

project, which has some strong implications on transportation

systems. It builds a network of interactive, modular sensor

boxes to collect real-time data on the city environment, infras-

tructure and activity for research and public use. It has been

installed in the city of Chicago (USA). The goal is to use

this technology as a “fitness tracker” for the city, measuring

factors that impact on livability in Chicago such as climate,

air quality, noise and to use it to regulate traffic.

The modeling and simulation of an urban (or rural) scenario,

equipped with a large amount of sensors, devices and mobile

nodes that produce data to be used in intelligent transportation

systems, requires taking into account several issues. These

range from data gathering and distribution, communication

and interaction among vehicles, up to path planning strategies

and pollution issues. It is thus evident that the use of a

multilevel/hybrid simulation approach may introduce serious

advantages. In fact, assuming the need to consider traffic

conditions of a geographical area, it is necessary to take into

account the street map, identify the critical points and under-

stand if it is possible to tune or modify the traffic circulation of

the area, also considering polluting emissions. While it might

seem prohibitive to take all such issues in a single simulator,

the composition and properly tuned interaction of different

simulators can solve the problem. To devise a solution, we

will use a top-down approach, starting from a higher level

of abstraction that models the whole general area, and then

describing more detailed solutions for specific problems, to

be simulated in smaller regions of the simulated area.

A. Level 0: Modeling the urban area

The urban street area can be viewed as a complex network.

This, through a mathematical analysis, allows the analysis of

the whole road network and the identification of the network

characteristics, the shortest-path routes, the diameter of the

net, the critical points (e.g., those intersection points that

have high centrality measures). Moreover it allows to find the

presence of cul-de-sacs, calculate statistics like intersection

density, average node connectivity, etc.

A tool that can be used to obtain this is OSMnx [10].

OSMnx is a Python package that is able to retrieve admin-

istrative boundary shapes and street networks from Open-

StreetMap, and export it using a typical representation em-

ployed by complex network software tools, such as NetworkX

or Gephi.

Figure 3 shows a visual representation of the street map

of the city of Fano (Italy). In the map, gray lines represent

two-way streets, while red lines are one-way streets. Nodes

are crossroads, traffic circles, semaphore crossings; these are

colored based on their betweenness centrality level (the darker

the higher value). Nodes which are bigger in size represent

crossroads (or traffic circles) with highest betweenness.

Betweenness is a measure of centrality based on shortest

paths. In particular, given a node n, the betweenness centrality

of n measures the amount of shortest paths among all pairs

of network nodes (x, y), passing through n, with respect to

all shorted paths from x to y. In other words, betweenness

centrality represents the degree of which nodes stand between

each other. Hence, it is a measure that helps identifying the

critical points in a network.

Based on this preliminary analysis, the modeling tool iden-

tifies critical points and triggers more specific traffic related

simulations.

B. Level 1: Simulation of the urban area

The step described above is useful to properly understand

which are the places that the hybrid simulation tool has to

monitor in detail. In case of a large urban area to monitor, the

focus on specific critical points allows reducing the computa-

tional costs to perform the whole analysis. In order to perform

a simulation of the whole urban area, several simulators can

be exploited. Agent-based simulators can be of real help in

this case [13]. In particular, one can employ the well known

SUMO as a tool for the road traffic simulation [5], or some

properly network assessment tools built over an agent-based

simulation with PADS capabilities [16].

This level is thought to control and validate the road network

and to perform what-if analyses by varying the amount of

vehicles, assessing traffic circulation when introducing barri-

ers, removing roads or adding novel ones. The simulator at

this level will be in charge of coordinating the execution of

a number of lower level simulators, to study the goodness of

transportation solutions. Regarding the specific traffic analysis,

it might be possible to trigger a more detailed simulation, still

based on a SUMO-like solution, for instance. Moreover, it is

possible to trigger simulations, on smaller portions of the area,

assessing tailpipe emissions and pollution problems in general.

Communication issues in infrastructured and infrastructure-

less wireless networks can be simulated through specific

simulation tools, e.g., Omnet++ based. Finally, in order to

properly simulate smart cities’ services, it might be possible

to resort to some cloud simulator (see Section V-E).

C. Level 2a: Environmental simulator

All the issues concerning the impact of the vehicular

traffic on the general environment can be simulated by re-

sorting to tools such as the ADvanced VehIcle SimulatOR

(ADVISOR) [1]. ADVISOR is a MATLAB/Simulink based

simulation tool for the analysis of the performance and fuel

economy of conventional (gasoline/diesel), electric, and hybrid

vehicles. It allows interchanging a variety of components,

vehicle configurations, and control strategies. The goal of the



Fig. 3. Street Map of Fano (Italy). Gray lines represent two-way streets, red lines one-way streets. Crossroads are colored based on their betweenness centrality
level, the darker the higher. Nodes bigger in size represent the crossroads with highest betweenness (i.e., critical points).

simulator is to allow testing efficiency of automobiles, espe-

cially in terms of tailpipe emissions, fuel economy, accelera-

tion and grade sustainability. To this aim, the simulator works

using a component-based approach, where components are

typically modeled through a set of equations and quasi-steady

approximations. While the typical use of the tool is based

on a graphical interface, it provides means to perform batch

simulations. This eases the interaction with other components

of a hybrid simulation software.

Using ADVISOR, it is possible to build a simulator that,

based on the vehicles present on a given portion of the con-

sidered geographical area, measures the amount of emissions.

These results would be passed to the higher level simulator.

D. Level 2b: VANETs and Vehicular communications

Vehicular communication networks might be based on some

general networking infrastructure, or on some ad-hoc solution.

Tools such as VANET Omnet++ implement an intelligent

transportation system and allow utilizing various types of

vehicle communication, such as Vehicle-to-Vehicle (V2V)

communication and Vehicle-to-Infrastructure (V2I) wireless

communications. Such a tool allows generating a topology of

vehicles equipped with one (or more) network interface card

and using some communication protocols.

At this level, it is possible to study all problems con-

cerned with the deployment of a networking infrastructure

for supporting vehicular communications, as well as more

sophisticated solutions. For instance, in case of intermittent

connections, seamless communication strategies that employ

multi-homing mechanisms might be tested [21].

E. Level x: Simulating the cloud

As said above, most of the IoT architectures that will be

deployed in the next years will be cloud-based. This means

that a comprehensive modeling and simulation approach must

consider the problems involved with the simulation of complex

cloud services. In other words, it will not be acceptable to

simulate only the low-level part of the IoT software architec-

ture (e.g. devices, sensors and communication networks). In

fact, most of the performance (and scalability) of IoT services

will depend on the cloud services that will provide essential

coordination and communication services. For this reason, we

are working to integrate simulators such as CloudSim [2] in

our multi-layer/hybrid simulation architecture. In the follow-

ing, this will permit to consider emerging testbeds such as

edge and fog computing environments [27].

VI. CONCLUSIONS

This paper presented the main issues that arise in the

simulation of the Internet of Things and in the deployment of

smart services on smart territories. The two main issues are the

need for scalability and high level of detail in the simulation.

However, these two requirements lead to technical solutions

that are counterposed. In other words, you typically have to



trade the high level of details for scalability. We also provided

an overview of the existing simulation techniques, reaching

the conclusion that a good strategy relies on the use of adap-

tive, agent-based, Parallel and Distributed Simulation (PADS),

coupled with multi-level and hybrid simulation approaches.

To clarify the advantages of a hybrid, multi-level simula-

tion approach, we presented a use case related to intelligent

transportation systems. In this case, wide geographical areas,

with a multitude of simulation entities, can be simulated with

agent-based PADS. However, when needed it is possible to

trigger a more detailed, fine grained simulation, so as to

consider aspects which could not be simulated otherwise.

The interesting aspect of this approach is that the detailed

(and more costly) simulation can be performed in a specific,

limited simulated area, only for the needed time interval of

the simulation.

REFERENCES

[1] ADVISOR Advanced Vehicle Simulator, http://adv-vehicle-

sim.sourceforge.net/.

[2] Cloudsim: A framework for modeling and simulation of cloud comput-
ing infrastructures and services.

[3] ns-3 web site, https://www.nsnam.org.

[4] Omnet++ web site, https://omnetpp.org.

[5] Sumo web site, http://sumo.dlr.de.

[6] Urbansim web site, http://www.urbansim.org/main/webhome.

[7] Parallel And Distributed Simulation (PADS) Research Group.
http://pads.cs.unibo.it, 2017.

[8] L. Atzori, A. Iera, and G. Morabito. The internet of things: A survey.
Comput. Netw., 54(15):2787–2805, Oct. 2010.

[9] R. Bauza, J. Gozalvez, and M. Sepulcre. Operation and performance of
vehicular ad-hoc routing protocols in realistic environments. In Vehicular

Technology Conference, 2008. VTC 2008-Fall. IEEE 68th, pages 1–5,
Sept 2008.

[10] G. Boeing. Osmnx: New methods for acquiring, constructing, analyzing,
and visualizing complex street networks. CoRR, abs/1611.01890, 2016.

[11] G. Brambilla, M. Picone, S. Cirani, M. Amoretti, and F. Zanichelli. A
simulation platform for large-scale internet of things scenarios in urban
environments. In Proceedings of the First International Conference
on IoT in Urban Space, URB-IOT ’14, pages 50–55, ICST, Brussels,
Belgium, Belgium, 2014. ICST (Institute for Computer Sciences, Social-
Informatics and Telecommunications Engineering).

[12] M. Brumbulli and E. Gaudin. Complex Systems Design & Management

Asia: Smart Nations – Sustaining and Designing: Proceedings of the

Second Asia-Pacific Conference on Complex Systems Design & Manage-
ment, CSD&M Asia 2016, chapter Towards Model-Driven Simulation of
the Internet of Things, pages 17–29. Springer International Publishing,
Cham, 2016.

[13] G. D’Angelo, S. Ferretti, and V. Ghini. Simulation of the internet
of things. In 2016 International Conference on High Performance

Computing Simulation (HPCS), pages 1–8, July 2016.

[14] G. D’Angelo and M. Marzolla. New trends in parallel and distributed
simulation: From many-cores to cloud computing. Simulation Modelling

Practice and Theory (SIMPAT), 2014.

[15] G. D’Angelo. The simulation model partitioning problem: an adaptive
solution based on self-clustering. Simulation Modelling Practice and

Theory (SIMPAT), 70:1 – 20, 2017.

[16] G. D’Angelo and S. Ferretti. Highly intensive data dissemination in
complex networks. Journal of Parallel and Distributed Computing,
99:28 – 50, 2017.

[17] G. D’Angelo, S. Ferretti, and V. Ghini. Multi-level simulation of internet
of things on smart territories. Simulation Modelling Practice and Theory
(SIMPAT), 73:3 – 21, 2017.

[18] E. Egea-Lopez, J. Vales-Alonso, A. Martinez-Sala, P. Pavon-Mario, and
J. Garcia-Haro. Simulation scalability issues in wireless sensor networks.
Communications Magazine, IEEE, 44(7):64 – 73, july 2006.

[19] T. Eldabi, M. Balaban, S. Brailsford, N. Mustafee, R. E. Nance, B. S.
Onggo, and R. G. Sargent. Hybrid simulation: Historical lessons, present
challenges and futures. In Proceedings of the 2016 Winter Simulation

Conference, WSC ’16, pages 1388–1403, Piscataway, NJ, USA, 2016.
IEEE Press.

[20] S. Ferretti and G. D’Angelo. Smart shires: The revenge of countrysides.
In Proc. of IEEE Symposium on Computers and Communication. IEEE,
2016.

[21] S. Ferretti, V. Ghini, and F. Panzieri. A survey on handover management
in mobility architectures. Computer Networks, 94:390 – 413, 2016.

[22] G. Fortino, W. Russo, and C. Savaglio. Simulation of agent-oriented
internet of things systems. In Proc. 17th Workshop” From Objects to

Agents, pages 8–13, 2016.

[23] R. Fujimoto. Parallel and Distributed Simulation Systems. Wiley &

Sons, 2000.
[24] R. M. Fujimoto. Parallel discrete event simulation. In Proceedings of

the 21st conference on Winter simulation, WSC ’89, pages 19–28, New
York, NY, USA, 1989. ACM.

[25] S. Ghosh. On the concept of dynamic multi-level simulation. In
Proceedings of the 19th Annual Symposium on Simulation, ANSS ’86,
pages 201–205, Los Alamitos, CA, USA, 1986. IEEE Computer Society
Press.

[26] A. Gluhak, S. Krco, M. Nati, D. Pfisterer, N. Mitton, and T. Razafind-
ralambo. A survey on facilities for experimental internet of things
research. IEEE Communications Magazine, 49(11):58–67, November
2011.

[27] H. Gupta, A. V. Dastjerdi, S. K. Ghosh, and R. Buyya. ifogsim: A
toolkit for modeling and simulation of resource management techniques
in internet of things, edge and fog computing environments. CoRR,
abs/1606.02007, 2016.

[28] D. Jefferson. Virtual time. ACM Transactions Program. Lang. Syst.,
7(3):404–425, 1985.

[29] Y. Jun, C. Raczy, and G. Tan. Evaluation of a sort-based matching
algorithm for ddm. In Proceedings of the sixteenth workshop on Parallel

and distributed simulation, PADS ’02, pages 68–75, Washington, DC,
USA, 2002. IEEE Computer Society.

[30] S. Karnouskos and T. N. d. Holanda. Simulation of a smart grid city
with software agents. In Computer Modeling and Simulation, 2009.

EMS ’09. Third UKSim European Symposium on, pages 424–429, Nov
2009.

[31] G. Kecskemeti, G. Casale, D. N. Jha, J. Lyon, and R. Ranjan. Modelling
and simulation challenges in internet of things. IEEE Cloud Computing,
4(1):62–69, Jan 2017.

[32] J. P. Kerekes, M. D. Presnar, K. D. Fourspring, Z. Ninkov, D. R.
Pogorzala, A. D. Raisanen, A. C. Rice, J. R. Vasquez, J. P. Patel, R. T.
MacIntyre, and S. D. Brown. Sensor modeling and demonstration of a
multi-object spectrometer for performance-driven sensing. volume 7334,
pages 73340J–73340J–12, 2009.

[33] M. Kirsche. Simulating the internet of things in a hybrid way. In
Proceedings of the Networked Systems (NetSys) 2013 PhD Forum, 03
2013. Poster Abstract.

[34] D. Krajzewicz, J. Erdmann, M. Behrisch, and L. Bieker. Recent
development and applications of SUMO - Simulation of Urban MObility.
International Journal On Advances in Systems and Measurements,
5(3&4):128–138, December 2012.

[35] L. Lamport. Time, clocks, and the ordering of events in a distributed
system. Commun. ACM, 21:558–565, July 1978.

[36] A. M. Law and D. M. Kelton. Simulation Modeling and Analysis.
McGraw-Hill Higher Education, 3rd edition, 1999.

[37] V. Looga, Z. Ou, Y. Deng, and A. Ylä-Jääski. Mammoth: A massive-
scale emulation platform for internet of things. In 2012 IEEE 2nd

International Conference on Cloud Computing and Intelligence Systems,
volume 03, pages 1235–1239, Oct 2012.

[38] S. Luke, C. Cioffi-Revilla, L. Panait, K. Sullivan, and G. Balan. Mason:
A multiagent simulation environment. Simulation, 81(7):517–527, July
2005.

[39] L. Magne, S. Rabut, and J.-F. Gabard. Towards an hybrid macro-micro
traffic flow simulation model. In INFORMS spring 2000 meeting, 2000.

[40] D. Mckee, S. Clement, X. Ouyang, J. Xu, R. Romano, and J. Davies.
The internet of simulation, a specialisation of the internet of things with
simulation and workflow as a service (sim/wfaas), January 2017.

[41] K. Mehdi, M. Lounis, A. Bounceur, and T. Kechadi. Cupcarbon:
A multi-agent and discrete event wireless sensor network design and
simulation tool. In Proceedings of the 7th International ICST Conference

http://pads.cs.unibo.it


on Simulation Tools and Techniques, SIMUTools ’14, pages 126–131,
ICST, Brussels, Belgium, Belgium, 2014. ICST (Institute for Computer
Sciences, Social-Informatics and Telecommunications Engineering).

[42] J. Misra. Distributed discrete event simulation. ACM Computing Surveys,
18(1):39–65, 1986.

[43] P. J. Mosterman. An Overview of Hybrid Simulation Phenomena and
Their Support by Simulation Packages, pages 165–177. Springer Berlin
Heidelberg, Berlin, Heidelberg, 1999.

[44] K. Perumalla. Tutorial: Parallel and distributed simulation: Traditional
techniques and recent advances, 2007.

[45] C. Prandi, S. Ferretti, S. Mirri, and P. Salomoni. Trustworthiness
in crowd- sensed and sourced georeferenced data. In 2015 IEEE

International Conference on Pervasive Computing and Communication
Workshops, PerCom Workshops 2015, St. Louis, MO, USA, March 23-27,

2015, pages 402–407, 2015.
[46] J. G. Shanthikumar and R. G. Sargent. A unifying view of hybrid simu-

lation/analytic models and modeling. Operations Research, 31(6):1030–
1052, 1983.

[47] S. Sotiriadis, N. Bessis, E. Asimakopoulou, and N. Mustafee. Towards
simulating the internet of things. In Advanced Information Networking
and Applications Workshops (WAINA), 2014 28th International Confer-

ence on, pages 444–448, May 2014.
[48] S. Tay, G. Tan, and K. Shenoy. Piggy-backed time-stepped simulation

with ’super-stepping’. In Simulation Conference, 2003. Proceedings of

the 2003 Winter, volume 2, pages 1077 – 1085 vol.2, dec. 2003.
[49] A. Wegener, M. Piórkowski, M. Raya, H. Hellbrück, S. Fischer, and

J.-P. Hubaux. Traci: An interface for coupling road traffic and network
simulators. In Proceedings of the 11th Communications and Networking

Simulation Symposium, CNS ’08, pages 155–163, New York, NY, USA,
2008. ACM.

[50] P. Wehner and D. Göhringer. Internet of Things Simulation Using OM-
NeT++ and Hardware in the Loop, pages 77–87. Springer International
Publishing, Cham, 2017.

[51] X. Zeng, R. Bagrodia, and M. Gerla. Glomosim: a library for parallel
simulation of large-scale wireless networks. SIGSIM Simul. Dig.,
28(1):154–161, 1998.

[52] D. Zubillaga, G. Cruz, L. D. Aguilar, J. Zapotécatl, N. Fernández,
J. Aguilar, D. A. Rosenblueth, and C. Gershenson. Measuring the
complexity of self-organizing traffic lights. Entropy, 16(5):2384, 2014.


	I Introduction
	II Background
	II-A Simulation and Discrete Event Simulation
	II-B Sequential DES
	II-C Parallel DES and PADS
	II-D Adaptive PADS
	II-E Hybrid Modeling and Simulation

	III State of the Art
	III-A Simulation of the Internet of Things
	III-B Internet of Things and Smart-Cities

	IV Multi-level Hybrid Simulation
	V A Case Study with Intelligent Transportation Systems
	V-A Level 0: Modeling the urban area
	V-B Level 1: Simulation of the urban area
	V-C Level 2a: Environmental simulator
	V-D Level 2b: VANETs and Vehicular communications
	V-E Level x: Simulating the cloud

	VI Conclusions
	References

