
CPU and GPU Accelerated Fully Homomorphic Encryption**

Toufique Morshed∗, Md Momin Al Aziz† and Noman Mohammed‡
Computer Science, University of Manitoba

Email: ∗morshed@cs.umanitoba.ca, †azizmma@cs.umanitoba.ca, ‡noman@cs.umanitoba.ca

Abstract—Fully Homomorphic Encryption (FHE) is one of the
most promising technologies for privacy protection as it allows an
arbitrary number of function computations over encrypted data.
However, the computational cost of these FHE systems limits their
widespread applications. In this paper, our objective is to improve
the performance of FHE schemes by designing efficient parallel
frameworks. In particular, we choose Torus Fully Homomorphic
Encryption (TFHE) [1] as it offers exact results for an infinite
number of boolean gate (e.g., AND, XOR) evaluations. We first
extend the gate operations to algebraic circuits such as addition,
multiplication, and their vector and matrix equivalents. Secondly,
we consider the multi-core CPUs to improve the efficiency of both
the gate and the arithmetic operations.

Finally, we port the TFHE to the Graphics Processing Units
(GPU) and device novel optimizations for boolean and arithmetic
circuits employing the multitude of cores. We also experimentally
analyze both the CPU and GPU parallel frameworks for different
numeric representations (16 to 32-bit). Our GPU implementation
outperforms the existing technique [1], and it achieves a speedup
of 20× for any 32-bit boolean operation and 14.5× for multipli-
cations.

Index Terms—Fully Homomorphic Encryption, GPU paral-
lelism, Secure computation on GPU, Parallel FHE Framework

I. INTRODUCTION

Fully Homomorphic Encryption (FHE) [2] has attracted
attention in modern cryptography research. FHE cryptosys-
tems provide strong security guarantee and can compute an
infinite number of operations on the encrypted data. Due to
the emergence of various data-oriented applications [3, 4, 5]
on sensitive data, the idea of computing under encryption has
recently gained momentum. FHE is the ideal cryptographic
tool that addresses this privacy concern by enabling computa-
tion on encrypted data.
Motivating Applications. There has been significant advance-
ments in machine learning techniques and their applications
over the last few years. The usage and accuracy of such
methods have surpassed the state of the art solutions in
manifolds. We can attribute three components behind this
improvement: a) better algorithms, b) big data and c) efficient
hardware (H/W) enabled parallelism. With the increase of
cloud services, several service providers (e.g., Google Predic-
tion API [6], Azure Machine Learning [7]) have combined the
three attributes to facilitate machine learning as a service.

In these services, users outsource their data to the cloud
server to build a machine learning model. However, data
outsourcing exposes the sensitive data to the cloud service
provider [8] and thus susceptible to privacy attacks by the

** Accepted in 2020 IEEE International Symposium on Hardware Oriented
Security and Trust (HOST)

employees at the service provider [9]. FHE schemes are prac-
tical for such use cases as these schemes facilitate computation
on encrypted data. Using FHE, a data owner can encrypt the
sensitive data before outsourcing it to the server, and also the
server can execute the required machine learning algorithm for
data analysis.

A. Current Techniques

The homomorphic encryption schemes can be divided
into three major categories: Partially, Somewhat, and FHE
schemes. Partially Homomorphic schemes only support one
type of operation (e.g., addition or multiplication); such
schemes are not useful in performing arbitrary computations
on encrypted data.

Somewhat Homomorphic Encryption (SWHE) schemes
are more equipped than partially homomorphic encryption
schemes. These schemes support both addition and multipli-
cation operations on encrypted data, but for a limited (or pre-
defined) number of times. In addition, these schemes are rela-
tively efficient (see Table I for comparison) and therefore are
practical for certain applications. However, even these schemes
require complex parameterization and are not powerful enough
for more complicated operations such as deep learning.

FHE schemes support both addition and multiplication
operations for an arbitrary number of times. This property
allows computing any function on the encrypted data. Both
SWHE and FHE use the Learning with Error (LWE) paradigm,
where an error is introduced with the ciphertext value to
guarantee security [18]. This error grows with each operation
(especially multiplication) and causes incorrect decryption
after a certain number of operations. Therefore, this error
needs to be minimized to support arbitrary computation. The
process of reducing the error is called Bootstrapping. FHE
employs bootstrapping after a certain number of operations
resulting in higher computation overhead, while SWHE pro-
vides faster execution time by limiting/pre-defining the number
of operations on the encrypted data.

The above discussion provides an intuition about the ap-
plications of different HE schemes. That is, SWHE is better
suited for the applications where the computational depth
is shallow and known (/fixed) prior to the computations.
However, these schemes are not suitable for applications that
require arbitrary depth like deep learning. In order to compute
complicated functions like deep learning, the researchers have
proposed alternative models that require the existence of a
third party [19, 20, 21]. The aim is to minimize the propagated
error without executing the costly bootstrapping procedure
for SWHE schemes. However, such an assumption (i.e., the

ar
X

iv
:2

00
5.

01
94

5v
1

 [
cs

.C
R

]
 5

 M
ay

 2
02

0

Table I: A comparative analysis of existing Homomorphic Encryption schemes for different parameters on 32-bit number.

Year Homomorphism Bootstrapping Parallelism Bit security Size (kb) Add. (ms) Mult. (ms)
RSA [10] 1978 Partial × × 128 0.9 × 5
Paillier [11] 1999 Partial × × 128 0.3 4 ×
TFHE [1] 2016 Fully Exact AVX [12] 110 31.5 7044 4,89,938
HEEAN [13] 2018 Somewhat Approximate CPU 157 7,168 11.37 1,215
SEAL (BFV) [14] 2019 Somewhat × × 157 8,806 4,237 23,954
cuFHE [15] 2018 Fully Exact GPU 110 31.5 2,032 1,32,231
NuFHE [16] 2018 Fully Exact GPU 110 31.5 4,162 1,86,011
Cigulata [17] 2018 Fully Exact × 110 31.5 2,160 50,690
Our Method - Fully Exact GPU 110 31.5 1,991 33,930

Table II: A comparison of the execution times (sec) of TFHE
[25] and our CPU, GPU framework for 32-bit numbers

Gate Op. Addition Multiplication
Regular Vector Regular Matrix (mins)

TFHE [1] 1.40 7.04 224.31 489.93 8,717.89
CPU-Parallel 0.50 7.04 77.18 174.54 2,514.34
GPU-Parallel 0.07 1.99 11.22 33.93 186.23

existence of a trusted third party) is not always easy to fulfill.
In this article, we assume that the computational entity (e.g.,
cloud server) is standalone, and we show that parallelism can
be used to lower the cost of FHE instead of relaxing the
security assumptions for the computation model.
Why TFHE? There have been several attempts in improving
the asymptotic performance and numerical operations of FHE
[22, 23, 24], which are pivotal to this work (Section VIII
for details). Torus FHE (TFHE) [1] is one of the most
renowned FHE schemes that meets the expectation of arbitrary
depth of circuits with faster bootstrapping technique. TFHE
also incurs lower storage requirement compared to the other
encryption schemes (Table I). The plaintext message space is
binary in TFHE. Hence, the computations are based solely on
boolean gates, and each gate operation entails a bootstrapping
procedure in gate bootstrapping mode.
Why GPU? Most of the FHE schemes are based on the Learn-
ing With Errors (LWE), where plaintexts are encrypted using
polynomials and can be represented with vectors. Therefore,
most computations are operated on vectors that are highly
parallelizable. On the contrary, Graphics Processing Units
(GPUs) offer a large number of computing cores (compared to
CPUs). These cores can be utilized to compute parallel vectors
operations. Therefore, we can utilize these cores to parallel
the FHE computations. However, we also have to consider
the fixed and limited memory of GPUs (8-16GB) and their
reduced computing power compared to any CPU core.

B. Contributions

• In this paper, we extended the boolean gate operations
(AND, XOR, etc.), from earlier work [1], to higher level
algebraic circuits (e.g., addition, multiplications).

• Initially, we constructed a CPU parallel TFHE framework
as a baseline to leverage the available computational
cores. Experimental results demonstrate the advantage of
such construction using multi-threading as they outper-
form the sequential implementation.

Table III: Notations used throughout the paper

Notation Description
A ∈ Zr×c Integer matrix of dimension r × c
−→
A ∈ Z` Integer vector of length `

A,A′ ∈ Z ⊂ Bn n-bit integer number and its complement
ai ∈ B Binary bit at position i
Ln LWE sample vector of length n
n, m Bit size and Secret key size

, � Parallel and Left Shift operation
∧ , |, ⊕ Binary AND, OR and XOR operation

• We devised boolean gates using the GPU parallelism,
and employed novel optimizations such as bit coalescing,
compound gates, and tree-based additions to implement
the higher level algebraic circuits. We also modified
and incorporated parallelism to the existing algorithms:
Karatsuba and Cannon for multiplication and matrix
counterpart to achieve further speedup. The code is
readily available at https://github.com/toufique-morshed/
CPU-GPU-TFHE.

• We have conducted several experiments to compare the
computation time of the sequential TFHE [1] with our
proposed CPU and GPU parallel frameworks. We have
also outlined a real-world application with Linear Re-
gression on different datasets [26]. From Table II, our
proposed GPU method is 14.4× and 46.81× faster
than the existing technique for regular and matrix mul-
tiplications, respectively. We have also benchmarked our
performance with existing TFHE frameworks on GPU,
namely, cuFHE [15], NuFHE [16].

Notably, the existing GPU enabled TFHE libraries,
cuFHE [15] and NuFHE [16], have implemented the
TFHE boolean gates using GPUs, whereas our goal was to
construct an optimized arithmetic circuit framework. Our
design choices and algorithms reflect this improvement and
resultantly, our multiplications are around 3.9 and 4.5 times
faster than cuFHE and NuFHE, respectively.

II. PRELIMINARIES

A. Torus FHE (TFHE)

In this work, we closely investigate Torus FHE (TFHE) [1]
where the plain and ciphertexts are defined over a real torus
T = R/Z, a set of real numbers modulo 1. The ciphertexts
are constructed over Learning with Errors (LWE) [18] and
represented as Torus LWE (TLWE) where an error term

https://github.com/toufique-morshed/CPU-GPU-TFHE
https://github.com/toufique-morshed/CPU-GPU-TFHE

(sampled over a Gaussian distribution χ) is added to each
ciphertext. For a given dimension m ≥ 1 (key size), secret
key
−→
S ∈ Bm (m-bit binary vector), and error e ∈ χ, an LWE

sample is defined as (
−→
A,B) where

−→
A ∈ Tm s. t.

−→
A is a

vector of torus coefficients of length m (key size) and each
element Ai is drawn from the uniform distribution over T, and
B =

−→
A ·
−→
S + e.

The error term (e) in LWE sample grows and propagates
with the number of computations (e.g., addition, multiplica-
tion). Therefore, bootstrapping is introduced to decrypt and re-
encrypt the ciphertexts under encryption to remove the noise.

TFHE considers the binary bits as plaintext and generates
LWE samples as ciphertexts. Hence, LWE sample computa-
tions in ciphertext are analogous to binary bit computations in
plaintext. As a binary vector represents an integer number, an
LWE sample vector (Ln) can represent an encrypted integer.
For example, an n-bit integer becomes n-LWE sample after
encryption. Thus, the boolean gate operations of an addition
circuit between two n-bit numbers correspond to the similar
operations on LWE samples of encrypted numbers. Through-
out this paper, we use bit and LWE sample interchangeably.
Here, we choose TFHE for the following reasons:
• Fast and Exact Bootstrappping. TFHE provided the

fastest and exact bootstrapping technique which only
required around 0.1s. Some recent encryption schemes
[13, 27] also proposed faster bootstrapping and FHE
computations in general. However, they do not perform
exact bootstrapping and erroneous after successive com-
putations on the same ciphertexts.

• Ciphertext Size. Compared to the other HE schemes,
TFHE offers smaller ciphertext size as it operates on
binary plaintexts as shown in Table I. Nevertheless,
this minimal storage advantage allowed us to utilize the
limited and fixed memory of GPU when we optimize the
gate structures.

• Boolean Operations. TFHE also supports boolean opera-
tions which are extended to construct arbitrary functions.
These binary bits can then be operated in parallel if their
computations are independent of each other.

Existing Implementation: The current TFHE implementation
comes with the basic cryptographic functions (i.e., encryption,
decryption, etc.) and all binary gate operations. Although the
gates are computed somewhat sequentially in the original
implementation [1], the underlying architecture uses Advanced
Vector Extensions (AVX) [12]. AVX is an extension to x86
instruction set from Intel which facilitates parallel vector
operations. The bootstrapping procedure requires expensive
Fast Fourier Transform (FFT) operations (O(n log n)). The
existing implementation uses the Fastest Fourier Transform
in the West (FFTW) [28] which inherently uses AVX.

B. Parallelism

Our CPU Parallel framework utilizes the CPU cores and
existing resources (i.e., Vector Extensions) available in a typi-
cal computing machines. We exploit these parallel components
on CPUs as we breakdown each algebraic computation into

independent parts and distribute them among the available re-
sources. However, one major drawback of the CPU framework
is the limited number of available cores. Contemporary desk-
top computers come with 4 to 8 cores containing a maximum
of 16 threads. There have been multiple attempts [29] to use
a large number of CPUs collectively for parallel operations,
whereas we show that single GPU is equivalent (and better
performing) for most FHE operations.

In contrast to CPUs, GPU Parallel framework offers a
significant number of cores available solely from the hardware.
Thus, the expense of increasing cores with multiple CPUs
is reduced by integrating one GPU. Nevertheless, we had to
consider the two major shortcomings which are: a) limited
global memory and b) communication time through PCIe.

III. SEQUENTIAL FRAMEWORK

A. Addition

A carry-ahead 1-bit full adder circuit takes two input bits
along with a carry to compute the sum and a new carry
that propagates to the next bit’s addition. Therefore, in a
full adder, we have three inputs as ai, bi and ci−1, where i
denotes the bit position. Here, the addition of bit a1 and b1
in A,B ∈ Bn requires the carry bit from a0 and b0. This
dependency enforces the addition operation to be sequential
for n-bit numbers [30].

B. Multiplication

1) Naive Approach: For two n-bit numbers A,B ∈ Z, we
multiply (AND) the number A with each bit bi ∈ B, resulting
in n numbers. Then, these numbers are left shifted by
i bits individually resulting in [n, 2n]-bit numbers. Finally,
we accumulate (reduce by addition) the n shifted numbers
using the addition.

2) Karatsuba Algorithm: We consider the divide-and-
conquer Karatsuba’s algorithm for its improved time com-
plexity O(nlog

3

) [31]. It relies on dividing the large input
numbers and performing smaller multiplications. For n-bit
inputs, Karatsuba’s algorithm splits them into smaller numbers
of n/2-bit size and replaces the multiplication by additions and
subsequent multiplications (Line 11 of Algorithm 1). Later, we
introduce parallel vector operations for further optimizations.

IV. CPU-BASED PARALLEL FRAMEWORK

We propose a CPU framework utilizing the multiple cores
available in computers. Since the existing TFHE implementa-
tion uses AVX2, we employ that in our CPU framework.

A. Addition

Figure 1 illustrates the bitwise addition operation considered
in our CPU framework. Here, any resultant bit ri depends on
its previous ci−1 bit. The dependency restricts incorporating
any data-level parallelism in the addition circuit construction.

Here, it is possible to exploit task-level parallelism where
two threads execute the XOR and AND operations (Figure 1),
simultaneously. We observed that the time required to perform
such fork-and-join between two threads is higher than

Algorithm 1: Karatsuba Multiplication [31]
Input: X, Y ∈ Bn

Output: Z ∈ B2n

1 if n < n0 then
2 return BaseMultiplication(X, Y)
3 end
4 X0 ← X mod 2n/2

5 Y0 ← Y mod 2n/2

6 X1 ← X/2n/2

7 Y1 ← Y/2n/2

8 Z0 ← KaratsubaMultiply(X0, Y0)
9 Z1 ← KaratsubaMultiply(X1, Y1)

10 Z2 ← KaratsubaMultiply(X0 + Y0, X1 + Y1)
11 return Z ← Z0 + (Z2 - Z1 - Z0) 2n + (Z1)22n

��−1

��−1 �1

�1

�0

�0

��−2 �0

��

��

��−1

��

��

�0�0�1�1��−1

Figure 1: Bitwise addition of two n-bit numbers A and B.
ai, bi, ci, ri are ith-bit of A,B, carry, and the result

executing them serially. This is partially due to the costly
thread operations and eventual serial dependency of the results.
Hence, we did not employ this technique for CPUs.

B. Multiplication

Out of the three major operations (AND, left shift, and
accumulation in multiplications, the AND and left shifts
can be executed in parallel. For example, for any two 16-bit
numbers A, B (∈ B16), and four available threads, we divide
the AND and left shift operation among four threads.

On the other hand, the accumulation operation is demanding
as it requires n (for n-bit multiplication) additions. The accu-
mulation operation adds and stores values to the same variable,
which makes it atomic. Therefore, all threads performing
the previous AND and left shift have to wait for such
accumulation which is termed as global thread synchroniza-
tion [32]. Given that it is computationally expensive, we do
not employ this technique in any parallel framework.

We utilized a custom reduction operation in OpenMP [32],
which uses the global shared memory (CPU) to store the in-
between results. This customized reduction foresees additions
of any results upon completion and facilitates a performance
gain by avoiding the global thread synchronization.

C. Vector Operations

To compute the vector operations (addition, multiplication)
efficiently, we distribute the work into multiple threads. For
example,

−→
A ,
−→
B , and

−→
C ∈ Z` are three vectors of length

`, where
−→
C =

−→
A +

−→
B , and each element Ai, Bi, or Ci

are n-bit integers. The computation of each position of
−→
C is

independent. Hence, we can share the work among different
threads. We take similar measures for multiplication as well.

D. Matrix Operations

Matrix Addition is a series of addition operations between the
elements of two matrices. The addition operations between
them are independent of each other. Therefore, we divide the
matrices row-wise and distribute the additions among threads.
Matrix Multiplication is a bit more complicated than addition.
It consists of both multiplications and additions.

X× Y =

[
X00Y00 +X01Y10 X00Y01 +X01Y11
X10Y00 +X11Y10 X10Y00 +X11Y10

]
Inspecting the calculations above, in a 2x2 matrix multipli-

cation, we highlight three major observations.
• Each element of the resultant matrix is independent.
• All multiplication operations are independent.
• The addition operation is accumulation operation.

Here, the computation for rank 2 × 2 end with an addition
operation. However, for rank 3 (> 2), the computation for the
first index becomes [X×Y]00 = X00Y00+X01Y10+X02Y20,
where all the multiplication results are accumulated (reduced
by addition). We address the incorporation of parallelism in
such accumulation in Section V-B2.

The small and limited number of cores is a limitation while
distributing such matrix operation for CPU . Hence, we only
take the first observation into account and employ each core
to compute the results for the CPU-based parallel framework.

V. GPU-BASED PARALLEL FRAMEWORK

In this section, we first present three generalized techniques
to introduce GPU parallelism (GPU) for any FHE compu-
tations. Then, we adopt them to implement and optimize the
arithmetic operations.

A. Proposed Techniques

1) Parallel TFHE Construction: We depict the boolean
circuit computation in Figure 2. Here, each LWE sample
comprises of two variables namely

−→
A and B, where

−→
A is

defined as a vector. It is noteworthy that
−→
A is a 32-bit integer

vector defined by the secret key size (m) which has a lower
memory requirement compared to other FHE implementations
(Section VIII). In our parallel TFHE construction, we only
store the vector

−→
A on the GPU’s global memory.

In addition to all vector operations inside the GPU, we also
employ the native cuda enabled FFT library (cuFFT) which
uses the parallel cuda cores for FFT operations. Here, the
parallel batching technique from cuFFT supports multiple FFT
operations to be executed simultaneously. However, cuFFT
also limits such parallel number of batches. It keeps the
batches in an asynchronous launch queue, and processes a
certain number of batches in parallel. This number of parallel
batches solely depends on the hardware capacity and specifi-
cations [33].

BS	key

KS	key

Bootstrapping

KeySwitch

∧�0 �1

CPU

GPU

�0 �1

� �

�

�

�
�−1 ... �1 �0

�
�−1 ... �1 �0

�
�−1 ... �1 �0

�
�−1 ... �1 �0

�
�−1 ... �1 �0

�
�−1 ... �1 �0

Figure 2: Arbitrary operation between two bits where BS,
KS key represents bootstrapping and key switching keys,
respectively

�0

Plaintext	Bits

�
→

�−1

��−1

�
→

�−2 �
→

0

�0�
�−1 �

�−2

LWE		Samples

�
�−2

Figure 3: Coalescing n-LWE samples (ciphertexts) for n-bits

2) Bit Coalescing (BC): Bit Coalescing combines n-LWE
samples in a contiguous memory to represent n-encrypted
bits. The encryption of a n-bit number, X ∈ Bn requires n-
LWE samples (ciphertext), and each sample contains a vector
of length m. Instead of treating the vectors of ciphertexts
separately, we coalesce them altogether (dimension 1 ×mn)
as illustrated in Figure 3.

The intuition behind such construction is to increase paral-
lelism by extending the vector length in a contiguous memory.
Coalescing the vectors increases the vector length but we in-
corporate more threads to maximize parallelization and reduce
the execution time.

3) Compound Gate: Since addition is used in most arith-
metic circuits, we propose a new gate structure, Compound
Gates which allows further parallel operations among en-
crypted bits. These gates are a hybrid of two gates, which
takes two 1-bit inputs as an ordinary boolean gate but gives
two different outputs. The motivation behind this novel gate
structure comes from the addition circuit. For R = A+B, we
compute ri and ci with the following equations:

ri = ai ⊕ bi ⊕ ci−1 (1)
ci = ai ∧ bi | (ai ⊕ bi) ∧ ci−1 (2)

Here, ri, ai, bi, and ci denotes ith-bit of R,A,B, and the carry,
respectively. Figure 1 illustrates this computation for an n-bit
addition.

While computing the equations 1, and 2, we observe that
AND (∧) and XOR (⊕) are computed on the same input bits.
As these operations are independent, they can be combined
into a single gate, which then can be computed in parallel.
We name these gates as compound gates. Thus, a ⊕ b and
a ∧ b from Equation 1 and 2 can be computed as,

s, c = a⊕ b, a ∧ b︸ ︷︷ ︸
CONCAT

Here, the outputs of s =a∧ b and c =a⊕ b are concatenated.
The compound gates construction is analogous to the task-
level parallelism in CPU, where one thread performs ∧ , while
another thread performs ⊕ .

In GPU , the compound gates operations are flexible as ∧
or ⊕ can be replaced with any other logic gates. Furthermore,
the structure is extensible up to n-bits input and 2n-bits output.

B. Algebraic Circuits on GPU

1) Addition: Bitwise Addition (GPU1): From the addition
circuit in Section IV-A, we did not find any data-level paral-
lelism. However, we noticed the presence of task-level paral-
lelism for AND and XOR as mentioned in the compound gates
construction. Hence, we incorporated the compound gates to
construct the bitwise addition circuit. We also implemented
the vector addition circuits using GPU1 to support complex
circuits such as multiplications (Section V-B2).
Number-wise Addition (GPUn): We consider another addition
technique to benefit from bit coalescing. Here, we operate on
all n-bits together. For R = A + B, we first store A in R
(R = A). Then we compute, Carry =R ∧ B, R = R ⊕ B,
and B = Carry � 1, for n times.

Here, we utilize compound gates to perform R∧B and R⊕
B in parallel. Thus, in each iteration, the input becomes two
n-bit numbers, while in bitwise computation the input was two
single bits. On the contrary, even after using compound gates,
the bitwise addition (Equations 1 and 2) has more sequential
blocks (3) than the number-wise addition (0). We analyze both
in Section VI-C.

2) Multiplication: Naive Approach: According to Section
III-B1, multiplications have ∧ and � operations which can
be executed in parallel. It will result in n-numbers where
each number will have [n, 2n]-bits due to the �. We need
to accumulate these uneven sized numbers which cannot be
distributed among the GPU threads. Furthermore, the addition
presents another sequential bottleneck while adding and stor-
ing (+ =) the results in the same memory location. Therefore,
this serial addition will increase the execution time. In the
framework, we optimize the operation by introducing a tree-
based approach.

In this approach, we divide n-numbers (LWE vectors) into
two n/2 vectors. This two n/2 vectors are added in parallel.
We repeat the process as we divide the resultant vectors int two
n/4 vectors and add them in parallel. The process continues

�02

�00

�01

�04

�05

�07

�06

�03

�10

�13

�11

�12

�20

�21

�30

LW
E	
	S
am

pl
es

Final	
Result

Figure 4: Accumulating n = 8 LWE samples (Lij) in parallel
using a tree-based reduction

until we get the final result. Notably, the tree-based approach
requires log n steps for the accumulation. In Figure 4 for n =
8, all the ciphertexts underwent ∧ and � in parallel, and
waited for addition. Here, Lij represents the LWE samples
(encrypted numbers), i is the level, and j denotes the position.

Likewise vector additions, we integrated vector multiplica-
tions in similar fashion on our framework. Interestingly, we
used both vector additions and multiplications in Karatsuba’s
algorithm which we describe next.

Karatsuba Multiplication: We used Karatsuba’s algorithm
with some modifications in our framework to achieve further
efficiency while performing multiplications. However, this
algorithm requires both addition and multiplication vector
operations which tested the efficacy of these components as
well. We modified the original Algorithm 1 to introduce the
vector operations and rewrite the computations in Line 8-11
as:

〈Temp0, T emp1〉 = 〈X0, X1〉+ 〈Y0, Y1〉
〈Z0, Z1, Z2〉 = 〈X0, X1, T emp0〉 · 〈Y0, Y1, T emp1〉

〈Temp0, T emp1〉 = 〈Z2, Z1〉+ 〈1, Z0〉
Z2 = Temp0 + (Temp1)

′

In the above equations, X0, X1, Y0, Y1, Z0, Z1, and Z2 are
taken from the algorithm. 〈. . .〉 and · are used to denote con-
catenated vectors and dot product, respectively. For example,
in the first equation, Temp0 and Temp1 store the addition
of X0, Y0 and X1, Y1. It is noteworthy that in the CPU
framework, we utilized task-level parallelism to perform these
vector operations as described in Section IV.

3) Vector and Matrix Operations:
Addition: The vector addition is a pointwise addition of the

elements at their respective position. The underlying addition
operation incorporates bitwise addition. Since the operation
propagates bit by bit, we combine the bit from the numbers
(to be added) and compute them in parallel. For example, in
a vector addition of length `, we combine all the bits for the
required bit position and compute the result.

Matrix addition also performs pointwise additions between
the matrix elements. Hence, matrices represented in a row-
major vector format corresponds to a vector addition operation.
Therefore, we simply convert the matrices into row-major and
add them utilizing the parallel vector addition.

Multiplication: Analogous to additions, vector multiplica-
tions are also a pointwise operation. Here, we compute the
AND and left shift operations in parallel and accumulate
the values in a tree-based approach as described in regular
multiplications (Section V-B2).

Unlike addition, matrix multiplication is more complicated
as it requires more computations. Section IV-D presents a
schematic computation for a 2 × 2 matrix along with the
possible parallel computations. Notably, for two n-ranked
squared (for brevity) matrix multiplication, we require n3

multiplication operations. Here, we separate all the multipliers
and multiplicands into two vectors and perform parallel vector
operations. For example, in a square matrix of rank 16, each
vector length for multiplication will be 4096. Furthermore,
for each 16-bit vector components (matrix elements), the
computation raises to 4096 × 16 × 16-bits computation for
parallel multiplication.

Therefore, multiplying these vectors require larger GPU
memory which we wanted to avoid. It also required a large
number of threads for computing and storing the LWE samples
as well. Although, the threads can be reused sequentially,
this problem is more severe due to the fixed GPU memory
constraint. Hence, matrix multiplications on larger dimensions
can essentially run out of GPU memory.

Therefore, we consider a different technique named Can-
non’s Algorithm [34]. The algorithm consists of cycles con-
taining multiplication, addition, and shifting the matrix ele-
ments. Each cycle also depends on the values generated by the
previous cycle, incurring a sequential bottleneck. Nevertheless,
the algorithm provides a much needed scalability for large-
scale multiplication instead of using a considerable amount of
GPU memory which is often not present.

In each cycle, we first perform the multiplication using the
vector operations. Then, we add on the multiplied data using
the parallel vector additions. Lastly, we shift the elements’
positions for the next round.

VI. EXPERIMENTAL ANALYSIS

The experimental environment included an Intel(R) Core™
i7-2600 CPU having 16 GB system memory with a NVIDIA
GeForce GTX 1080 GPU with 8 GB memory [33]. The
CPU and GPU contained 8 and 40, 960 hardware threads,
respectively. We used the same setup to analyze all three
frameworks: sequential, CPU , GPU .

We use two metrics for the comparison: a) execution time
and b) speedup =

Tseq

Tpar
. Here, Tseq and Tpar are the time

for computing the sequential and the parallel algorithm. In
the following sections, we gradually analyze the complicated
arithmetic circuits using the best results from the foregoing
analysis.

4 8 12 16 20 24 28 32
0.0

0.5

1.0

1.5

Bit size [n]

Ti
m

e
[s
]

Sequential
CPU
GPU

(a) Comparison of Seq., CPU || and GPU ||

22 23 24 25 26 27 28 29 210
0.0

1.0

2.0

3.0

Bit size [n]

Ti
m

e
[s
]

NuFHE
GPU
cuFHE

(b) Analysis with GPU-assisted frameworks

1 4 8 16 24 32
0.00

0.05

0.10

0.15

Bit size [n]

Ti
m

e
[s
]

2-Single gate
Compound gate

(c) Compound gate against 2-single gates

Figure 5: Performance analysis of GPU-accelerated TFHE with the sequential and CPU || frameworks (5a), and comparison
with the existing GPU-assisted libraries (5b). Figure 5c presents the performance of compound gates against 2-single gate
operations

Table IV: Computation time (ms) for Bootstrapping, Key Switching and Misc. for sequential and GPU framework

Bit Size Sequential GPU
n Bootstrapping Key Switch Misc. Total Bootstrapping Key Switch Misc. Total
2 68.89 17.13 27.04 113.05 19.64 2.65 0.45 22.74
4 138.02 34.18 47.97 220.17 18.86 2.69 0.08 21.63
8 275.67 68.31 96.48 440.46 27.83 2.69 0.06 30.58

16 137.25 137.25 425.22 699.72 40.70 2.91 0.44 44.06
32 274.3 274.30 852.51 1401.10 66.74 3.34 0.42 70.50

A. GPU-accelerated TFHE

Initially, we discuss our performance over boolean gate
operations, which is deemed as a building blocks of any
computation. Figure 5a depicts the execution time difference
among the sequential, CPU and GPU framework for
[4, 32]-bits. The sequential AND operation takes a minimum
of 0.22s (4-bit) while the runtime increases to 1.4s for 32-
bits.

In the GPU framework, bit coalescing facilitates storing
LWE samples in contiguous memory and takes advantage
of available vector operations. Thus, it helps to reduce the
execution time from 0.22− 1.4s to 0.02− 0.06s for 4 to 32-
bits. Here, for 32-bits, our techniques provide a 20× speedup.
Similar improvement is foreseen in the CPU framework
as we divide the number of bits by the available threads.
However, the execution time increases for CPU framework
since there is only a limited number of available threads. This
limited number of threads is one of the primary motivations
behind utilizing GPU.

Then, we further scrutinize the execution time by dividing
gate operations into three major components—a) Bootstrap-
ping, b) Key Switching, and c) Miscellaneous. We selected
the first two as they are the most time-consuming operations
and fairly generalizable to other HE schemes. Table IV shows
the difference in execution time between the sequential and
the GPU for {2, . . . , 32}-bits. We show that the execution
time increment is less compared to the sequential approach.

We further investigated the bootstrapping performance in
GPU framework for the boolean gate operations. Our
cuda enabled FFT library takes the LWE samples in batches
and performs the FFT in parallel. However, due to the h/w

limitations, the number of batches to be executed in parallel
is limited. It can only operate on a certain number of batches at
once and next batches are kept in a queue. Hence, a sequential
overhead occurs for a large number of batches that can increase
the execution time.

Under the same h/w setting, we benchmark our proposed
framework with the existing GPU-based libraries (cuFHE
and NuFHE). Although our GPU framework outperforms
NuFHE for different bit sizes (Figure 5b), the performance
degrades for larger bit sizes w.r.t. cuFHE. As the cuFHE
implementation focuses more on the gate level optimization,
we focus on the arithmetic circuit computations. In Section
VI-C, we analyze our arithmetic circuits where our framework
outperforms the existing GPU libraries.

B. Compound Gate Analysis

According to Section V-A3, the compound gates are used
to improve the execution time for additions or multiplications.
Since, the existing frameworks do not provide these optimiza-
tions, we benchmark the compound gates with the proposed
single gate computations. Figure 5c illustrates the performance
of one compound gate over 2-single gates computed sequen-
tially. We performed several iterations for different number
of bits (1, . . . , 32) as shown on the X-axis while the Y-
axis represents the execution time. Notably,a 32-bit compound
gates will have two 32-bit inputs and output two 32-bits.

Here, bit coalescing improves the execution time as it takes
only 0.02s for one compound gates evaluation, compared to
0.04s on performing 2-single gates sequentially. However,
Figure 5c shows an interesting trend in the execution time
between 2-single gates and one compound gates evaluation.

Table V: Execution time (sec) for the n-bit addition

Frameworks 16-bit 24-bit 32-bit
Sequential 3.51 5.23 7.04
cuFHE [15] 1.00 1.51 2.03
NuFHE [16] 2.92 3.56 4.16
Cingulata [17] 1.10 1.63 2.16

Our Methods
CPU 3.51 5.23 7.04
GPUn 0.94 2.55 4.44
GPU1 0.98 1.47 1.99

Table VI: Execution time (sec) for vector addition

Length 16-bit 32-bit
` Seq. CPU GPU Seq. CPU GPU
4 13.98 5.07 1.27 28.05 10.02 2.56
8 27.86 9.96 1.78 56.01 19.29 3.58
16 55.66 19.65 2.82 111.3 38.77 5.70
32 111.32 38.99 5.41 224.31 77.18 11.22

The gap favoring the compound ones tends to get narrower
for higher number of bits. For example, the speedup for 1-bit
happens to be 0.04/0.02 = 2 times whereas it reduces to 1.01
for 32-bits. The reason behind this diminishing performance
is the asynchronous launch queue of GPUs.

As mentioned in Section V-A1, we use batch execution for
the FFT operations. Hence, the number of parallel batches de-
pends on the asynchronous launch queue size of the underlying
GPU which can delay the FFT operations for a large number
batches. This ultimately adversely affects the speedup for large
LWE sample vectors. Nevertheless, the analysis shows that the
1-bit compound gates is the most efficient, and we employ it
in the following arithmetic operations.

C. Addition

Table V presents a comparative analysis of the addition
operation for 16, 24, 32-bit encrypted numbers. We consider
our proposed frameworks: sequential, CPU , and GPU ,
and benchmark them with cuFHE [15], NuFHE [16] and
Cingulata [17]. Furthermore, we present the performance of
two variants of addition operation: GPUn (number-wise) and
GPU1 (bitwise) as discussed in Section V-B1.

Table V demonstrates that GPUn performs better than
the sequential and CPU circuits. The GPUn provides a
3.72× speedup for 16-bits whereas 1.58× for 32-bit. However,
GPUn performs better only for 16-bit additions compared to
GPU1 . For 24 and 32-bit additions, GPU1 performs around
2× better than GPUn . This improvement in essential as it
reveals the algorithm to choose between GPU1 and GPUn .

Although, both addition operations (GPUn and GPU1)
utilize compound gates, they differ in the number of input bits
(n and 1 for GPUn and GPU1 , respectively). Since the com-
pound gates performs better for smaller bits (Section VI-B),
the bitwise addition performs better than the number-wise
addition for 24/32-bit operations. Hence, we utilize bitwise
addition for building other circuits.

NuFHE and cuFHE do not provide any arithmetic circuits in
their library. Therefore, we implemented such circuits on their
library and performed the same experiments. Additionally, we

Table VII: Multiplication execution time (sec) comparison

Frameworks 16-bit 24-bit 32-bit
Naive

Sequential 120.64 273.82 489.94
CPU 52.77 101.22 174.54
GPU 11.16 22.08 33.99
cuFHE [15] 32.75 74.21 132.23
NuFHE [16] 47.72 105.48 186.00
Cingulata [17] 11.50 27.04 50.69

Karatsuba
CPU 54.76 - 177.04
GPU 7.6708 - 24.62

Table VIII: Execution time (min) for vector multiplication

Length 16-bit 32-bit
` Seq. CPU GPU Seq. CPU GPU
4 8.13 3.25 0.41 32.56 12.15 1.61
8 16.29 6.17 0.75 65.12 23.48 2.96

16 32.62 11.93 1.40 130.31 46.39 5.62
32 65.15 23.58 2.68 260.52 92.44 10.79

considered Cingulata [17] (a compiler toolchain for TFHE)
and compared the execution time. Table V summarizes all
the results, where we found our proposed addition circuit
(GPU1) outperforms the other approaches.

We further experimented on the vector additions adopting
the bitwise addition and showed the analysis in Table VI. Like
addition, the performance improvement on the vector addition
is also noticeable. The framework scales by taking similar
execution time for smaller vector lengths ` ≤ 8. However,
the execution time increases for longer vectors as they involve
more parallel bit computations, and consequently, increase the
batch size of FFT operations. The difference is clearer on 32-
bit vector additions with ` = 32 which takes almost twice
the time of ` = 16. However, for ` ≤ 8, the executions
times are almost similar due to the parallel computations. In
Section VI-B we have discussed this issue which relies on
the FFT batch size. Notably, Figure 5c also aligns with this
evidence as the larger batch size for FFT on GPUs affects the
speedup. For example, ` = 32 will require more FFT batches
compared to ` = 16 which requires more time to finish the
addition operation. We did not include other frameworks in
Table VI, since our GPU performed better comparing to the
others in Table V.

D. Multiplication

The multiplication operation uses a sequential accumulation
(reduce by addition) operation. Instead, we use a tree-based
vector addition approach (discussed in Section V-B2) and gain
a significant speedup. Table VII portrays the execution times
for the multiplication operations using the frameworks. Here,
we employed all available threads on the machine. Like the
addition circuit performance, here GPU outperforms the
sequential circuits and CPU operations by a factor of ≈ 11
and ≈ 14.5, respectively for 32-bit multiplication.

We further implemented the multiplication circuit on cuFHE
and NuFHE. Table VII summarizes the results comparing our
proposed framework with cuFHE, NuFHE, and Cingulata. Our

Table IX: Matrix multiplication execution time (min)

Dimension Sequential CPU GPU
2× 2 17.07 10.62 0.86
4× 4 136.68 47.78 5.90
8× 8 1,090.12 351.82 43.95

16× 16 8,717.89 2,514.34 186.23

GPU framework is faster in execution time than the other
techniques. Notably, the performance improvement is scalable
with the increasing number of bits. This is due to tree-based
additions following the reduction operations and computing
all boolean gate operations by coalescing the bits altogether.

Besides, we also analyze vector multiplications available in
our framework and present a comparison among the frame-
works in Table VIII. We found out an increase in execution
time for a certain length (e.g., ` = 32 on 16-bit or ` = 4
on 32-bit), which is similar to the issue in vector addition
(Section VI-C). Hence, the vector operations from ` ≤ 16 can
be sequentially added to compute arbitrary vector operations.
For example, we can use two ` = 16 vector multiplication to
compute ` = 32 multiplication resulting around 11 mins. In the
vector analysis, we did not add the computations over the other
frameworks since our framework surpassed their achievements
for a single multiplications.

E. Karatsuba Multiplication

In Table VII, we provide execution time for 16 and 24-
bit Karatsuba multiplication over encrypted numbers as well.
In the CPU construction of the algorithm, the execution
time does not improvement, rather it increases slightly. We
observed that for both 16 and 32-bit multiplication, Karatsuba
outperforms naive GPU multiplication algorithm on GPU by
1.50 times. Karatsuba multiplication can also be considered a
complex arithmetic operation as it comprises of both addition,
multiplication, and vector operations. However, the CPU
framework did not provide such difference in performance as
it took more time for the fork-and-join threads required
by the divide and conquer algorithm.

F. Matrix Operations

From Section V-B3, it is evident that the vector addition
represents matrix additions as both operations are done point-
wise. Therefore, Table VI can be extended to represent the
execution time for the matrix additions, where ` becomes the
number of elements of the matrices. Table IX enlists the matrix
multiplication execution time for different dimensions using
Cannon’s algorithm [34]. For a 16×16 matrix, GPU achieves
a ≈ 48 and ≈ 15 times speedup compared to the sequential
and CPU approach, respectively.

G. Application: Linear Regression

We employed the arithmetic operations (vector/matrix addi-
tion, multiplication) to compute linear regression models as an
application to test the efficacy of the framework. We produced
four synthetic dataset with different number of instances
(rows) and attributes (columns), and tabulated the execution

Table X: Execution time (min) for Linear Regression

Datasets #Rows #Attributes Data Type Time

Dataset 1
200

10 Numerical 163.38
Binary 53.91

Dataset 2 20 Numerical 268.86
Binary 67.88

Dataset 3
300

10 Numerical 245.38
Binary 80.91

Dataset 4 20 Numerical 403.85
Binary 95.88

times in Table X. Each datasets had two variants: binary and
numeric values. As the multiplications are essentially AND
operations for binary values, it takes less time compared to
the numeric dataset.

VII. DISCUSSION

In this section, we provide answers to the following ques-
tions about our proposed framework:
Is the proposed framework sufficient to implement any
computations? In this article, we show how to implement
boolean gates properly using GPUs to gain performance im-
provement. We then show how to compute addition, multipli-
cation, and matrix operations using the proposed framework.
Implementing more complex algorithms such as secure ma-
chine learning [35, 36] are beyond the scope of this paper. In
future work, we will investigate how to further optimize the
framework for machine learning algorithms. Note that we have
implemented a FHE scheme. Hence, any computable function
can be implemented using our framework.
For GPU framework, how do we compute on encrypted
data larger than the fixed GPU memory? The fixed GPU
memories and their variations in access speeds are limitations
for any GPU application. Similar problems also occur in
deep learning while handling larger datasets. The solution
includes batching the data or using multiple GPUs. Our
proposed framework can also avail such solutions as it can
easily be extended to accommodate larger ciphertexts.
How can we achieve further speedup on both frameworks?
On the CPU framework, we have attempted most H/W
or S/W level optimizations to the best of our knowledge.
However, our GPU framework partially relied on the global
GPU memory, which is slower than its counterparts. This is
critical as different device memories offer variant read/write
speeds. Notably, shared memory (L1) is the fastest memory
after register. Our implementation uses a combination of
shared and global memory due to the ciphertext size. In the
future, we would like to utilize only the shared memory, which
is much smaller but should provide better speedup compared
to the current approach.
How the bit security level would affect the reported
speedup? The current framework is analogous to the exist-
ing implementation of TFHE [37] providing 110-bit security
which might not be sufficient for some applications. However,
our GPU framework can accommodate any change for
the desired bit security level. Nevertheless, such change will
change the execution times as well. For example, any less

security level than 110-bits will result in faster execution and
likewise for a higher bit security. We will include and analyze
the speedup for the dynamic bit security levels in future.

VIII. RELATED WORKS

In this section, we discuss the other HE schemes from Table
I and categorize schemes based on their number representa-
tion: a) bit-wise, b) modular and c) approximate.
Bitwise Encryption usually takes the bit representation of
any number and encrypts accordingly. The computations are
also done bit-wise as each bit can be considered independent
from another. This bit-wise representation is crucial for our
parallel framework as it offers less dependency between bits
which we can operate in parallel. Furthermore, it provides
faster bootstrapping and smaller ciphertext size, which can be
easily tailored for the fixed memory GPUs. This concept is
formalized and named as GSW [38] around 2013, and it was
later improved in subsequent works [23, 1, 25].
Modular Encryption schemes utilize a fixed modulus q which
denotes the size of the ciphertexts. There have been many de-
velopments [39, 40] in this direction as they offer a reasonable
execution time (Table I). The addition and multiplication times
from FV [24] and SEAL [14] show the difference as they are
much faster compared to our GPU-based framework.

However, these schemes do a trade-off between the boot-
strapping and the efficiency as they are often designated as
somewhat homomorphic encryption. Here, in most cases, the
number of computations or the level of multiplications are pre-
defined as there is no procedure for noise reduction Decryption
is performed after the desired computation. Furthermore, the
encrypted data evidently suffers from larger ciphertexts as the
value of q is picked from large numbers.

For example, we selected the ciphertext modulus of 250
and 881 bits for FV-NFLlib [24] and SEAL [14], respectively.
The polynomial degrees (d) were chosen 13 and 15 for the two
frameworks as it was required to comply with the targeted bit
security to populate Table I. It is noteworthy that smaller q
and d will result in faster runtime and smaller ciphertexts, but
they will limit the number of computations as well. Therefore,
this modular representation requires to fix the number of
homomorphic operations limiting the use cases.
Approximate Number representations are recently proposed
by Cheon et al. (CKKS [41]) in 2017. These schemes also
provide efficient Single Instruction Multiple Data (SIMD) [42]
operations similar to the modular representations as mentioned
above. However, they have an inexact but efficient boot-
strapping mechanism which can be applied in less precision-
demanding applications. The cryptosystem also incurs larger
ciphertexts (7MB) similar to the modular approach as we
tested it for q = 1050 and d = 15. Here, we did not discuss
HELib [43], the first cornerstone of all HE implementations
since its cryptosystem BGV [40] is enhanced and utilized by
the other modular HE schemes (such as SEAL [14]).

The goal of this work is to parallelize an FHE scheme. Most
HE schemes that follow modular encryption are either some-
what or adopt inexact bootstrapping. Besides, their expansion

after encryption requires more memory. Hence, we choose the
bitwise and bootstrappable encryption scheme: TFHE.
Hardware Solutions are less studied and employed to increase
the efficiency of FHE computations. Since the formulation
of FHE [2] with ideal lattices, most of the efficiency im-
provements are considered from the standpoint of asymptotic
runtimes. A few approaches considered the incorporation of
existing multiprocessors (e.g., GPU) or FPGAs [44] to achieve
faster homomorphic operation. Dai and Sunar ported another
scheme LTV [45] to GPU-based implementation [46, 47]. LTV
is a variant of HE that performs a limited number of operations
on a given ciphertext.

Lei et al. ported FHEW-V2 [23] to GPU [48] and extended
the boolean implementation to 30-bit addition and 6-bit multi-
plication with a speed up ≈ 2.5. Since TFHE extends FHEW
and performs better than it predecessor, we consider TFHE as
our baseline framework.

In 2015, a GPU based HE scheme CuHE [46] was proposed.
However, it was not fully homomorphic as it did not have
bootstrapping, hence we do not include it in our analyses. Later
in 2018, two GPU FHE libraries cuFHE [15] and NuFHE [16]
were released. Both the libraries focused on optimizing of the
boolean gate operations. Recently, Yang et al. [49] bench-
marked cuFHE and its predecessor TFHE, and analyzed the
speedup which we also discuss in our paper (Table I).

Our experimental analysis shows that only performing the
boolean gates in parallel is not sufficient to reduce the execu-
tion time of higher level circuit (i.e., multiplication). Hence,
besides employing GPU for homomorphic gate operations, we
focus on arithmetic circuit. For example, we are 3.9 times
faster than cuFHE in 32-bit multiplications.

Recently, Zhou et al. improved TFHE by reducing and
performing the serial operations of bootstrapping in paral-
lel [50]. However, they did use any hardware acceleration
to the existing FHE operations. We consider this work as
an essential future direction that can be integrated to our
framework for better executing times.

ACKNOWLEDGMENTS

We sincerely thank the reviewers for their insightful com-
ments. This research was supported in part by the NSERC
Discovery Grants (RGPIN-2015-04147). We also acknowledge
the support from NVIDIA for their GPU support and Amazon
Cloud Grant.

IX. CONCLUSION

In this paper, we constructed the algebraic circuits for FHE,
which can be utilized by arbitrary complex operations. Further-
more, we explored the CPU-level parallelism for improving
the execution time of the underlying FHE computations.
Our notable contribution is the proposed GPU-level parallel
framework that utilizes novel optimizations such as bit coa-
lescing, compound gate, and tree-based vector accumulation.
Experimental results show that the proposed method is 20×
and 14.5× faster than the existing technique for computing
boolean gates and multiplications respectively (Table II).

REFERENCES

[1] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachene,
“Faster fully homomorphic encryption: Bootstrapping in
less than 0.1 seconds,” in International Conference on the
Theory and Application of Cryptology and Information
Security. Springer, 2016, pp. 3–33.

[2] C. Gentry et al., “Fully homomorphic encryption using
ideal lattices.” in Stoc, vol. 9, no. 2009, 2009, pp. 169–
178.

[3] A. Pham, I. Dacosta, G. Endignoux, J. R. T. Pastoriza,
K. Huguenin, and J.-P. Hubaux, “Oride: A privacy-
preserving yet accountable ride-hailing service,” in 26th
USENIX Security Symposium (USENIX Security 17).
Vancouver, BC: USENIX Association, 2017, pp. 1235–
1252.

[4] M. Kim, Y. Song, and J. H. Cheon, “Secure searching
of biomarkers through hybrid homomorphic encryption
scheme,” BMC medical genomics, vol. 10, no. 2, p. 42,
2017.

[5] H. Chen, R. Gilad-Bachrach, K. Han, Z. Huang, A. Jalali,
K. Laine, and K. Lauter, “Logistic regression over en-
crypted data from fully homomorphic encryption,” BMC
medical genomics, vol. 11, no. 4, p. 81, 2018.

[6] Google Prediction API.
Https://cloud.google.com/prediction/, Accessed
on 21 May, 2019. [Online]. Available:
https://cloud.google.com/prediction/

[7] Microsoft Azure Machine Learning.
Https://azure.microsoft.com/en-us/services/machine-
learning-studio/, Accessed 21 May, 2019. [Online].
Available: https://azure.microsoft.com/en-us/services/
machine-learning-studio/

[8] M. N. Sadat, M. M. Al Aziz, N. Mohammed, S. Pakho-
mov, H. Liu, and X. Jiang, “A privacy-preserving dis-
tributed filtering framework for nlp artifacts,” BMC med-
ical informatics and decision making, vol. 19, no. 1, pp.
1–10, 2019.

[9] “Uber employees’ spied on ex-partners, politicians and
Beyonce,” accessed 21 May, 2019. [Online]. Available:
https://www.theguardian.com/technology/2016/dec/13/
uber-employees-spying-ex-partners-politicians-beyonce

[10] R. L. Rivest, A. Shamir, and L. Adleman, “A method
for obtaining digital signatures and public-key cryptosys-
tems,” Communications of the ACM, vol. 21, no. 2, pp.
120–126, 1978.

[11] P. Paillier, “Public-key cryptosystems based on composite
degree residuosity classes,” in International Conference
on the Theory and Applications of Cryptographic Tech-
niques. Springer, 1999, pp. 223–238.

[12] C. Lomont, “Introduction to intel advanced vector exten-
sions,” Intel White Paper, pp. 1–21, 2011.

[13] J. H. Cheon, K. Han, A. Kim, M. Kim, and Y. Song,
“Bootstrapping for approximate homomorphic encryp-
tion,” in Annual International Conference on the The-
ory and Applications of Cryptographic Techniques.

Springer, 2018, pp. 360–384.
[14] “Microsoft SEAL (release 3.2),” https://github.com/

Microsoft/SEAL, Feb. 2019, microsoft Research, Red-
mond, WA.

[15] “CUDA-accelerated Fully Homomorphic Encryption
Library,” Sep. 2019. [Online]. Available: https://github.
com/vernamlab/cuFHE

[16] “NuFHE, a GPU-powered Torus FHE implementation,”
Sep. 2019. [Online]. Available: https://github.com/
nucypher/nufhe

[17] “Cingulata,” Sep. 2019. [Online]. Available: https:
//github.com/CEA-LIST/Cingulata

[18] O. Regev, “On lattices, learning with errors, random
linear codes, and cryptography,” Journal of the ACM
(JACM), vol. 56, no. 6, p. 34, 2009.

[19] M. N. Sadat, A. Aziz, M. Momin, N. Mohammed,
F. Chen, X. Jiang, and S. Wang, “Safety: secure gwas
in federated environment through a hybrid solution,”
IEEE/ACM Transactions on Computational Biology and
Bioinformatics (TCBB), vol. 16, no. 1, pp. 93–102, 2019.

[20] C. Juvekar, V. Vaikuntanathan, and A. Chandrakasan,
“GAZELLE: A low latency framework for secure neural
network inference,” in 27th USENIX Security Symposium
(USENIX Security 18). USENIX Association, 2018, pp.
1651–1669.

[21] E. Hesamifard, H. Takabi, M. Ghasemi, and R. N.
Wright, “Privacy-preserving machine learning as a ser-
vice,” Proceedings on Privacy Enhancing Technologies,
vol. 2018, no. 3, pp. 123–142, 2018.

[22] Z. Brakerski, C. Gentry, and S. Halevi, “Packed cipher-
texts in lwe-based homomorphic encryption,” in Interna-
tional Workshop on Public Key Cryptography. Springer,
2013, pp. 1–13.

[23] L. Ducas and D. Micciancio, “Fhew: Bootstrapping ho-
momorphic encryption in less than a second,” Cryptology
ePrint Archive, Report 2014/816, 2014, https://eprint.iacr.
org/2014/816.

[24] J. Fan and F. Vercauteren, “Somewhat practical fully
homomorphic encryption.” IACR Cryptology ePrint
Archive, vol. 2012, p. 144, 2012.

[25] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène,
“Faster packed homomorphic operations and efficient
circuit bootstrapping for tfhe,” in International Confer-
ence on the Theory and Application of Cryptology and
Information Security. Springer, 2017, pp. 377–408.

[26] M. N. Sadat, X. Jiang, M. M. Al Aziz, S. Wang, and
N. Mohammed, “Secure and efficient regression analysis
using a hybrid cryptographic framework: Development
and evaluation,” JMIR medical informatics, vol. 6, no. 1,
p. e14, 2018.

[27] C. Boura, N. Gama, and M. Georgieva, “Chimera: a
unified framework for b/fv, tfhe and heaan fully homo-
morphic encryption and predictions for deep learning,”
Cryptology ePrint Archive, Report 2018/758, Tech. Rep.,
2018.

[28] M. Frigo and S. G. Johnson, “Fftw: An adaptive software

https://cloud.google.com/prediction/
https://azure.microsoft.com/en-us/services/machine-learning-studio/
https://azure.microsoft.com/en-us/services/machine-learning-studio/
https://www.theguardian.com/technology/2016/dec/13/uber-employees-spying-ex-partners-politicians-beyonce
https://www.theguardian.com/technology/2016/dec/13/uber-employees-spying-ex-partners-politicians-beyonce
https://github.com/Microsoft/SEAL
https://github.com/Microsoft/SEAL
https://github.com/vernamlab/cuFHE
https://github.com/vernamlab/cuFHE
https://github.com/nucypher/nufhe
https://github.com/nucypher/nufhe
https://github.com/CEA-LIST/Cingulata
https://github.com/CEA-LIST/Cingulata
https://eprint.iacr.org/2014/816
https://eprint.iacr.org/2014/816

architecture for the fft,” in Proceedings of the 1998
IEEE International Conference on Acoustics, Speech and
Signal Processing, ICASSP’98 (Cat. No. 98CH36181),
vol. 3. IEEE, 1998, pp. 1381–1384.

[29] A. Salem, P. Berrang, M. Humbert, and M. Backes,
“Privacy-preserving similar patient queries for combined
biomedical data,” Proceedings on Privacy Enhancing
Technologies, vol. 2019, no. 1, pp. 47–67, 2019.

[30] C. C. McGeoch, “Parallel addition,” The American
Mathematical Monthly, vol. 100, no. 9, pp. 867–871,
1993. [Online]. Available: http://www.jstor.org/stable/
2324666

[31] A. A. Karatsuba and Y. P. Ofman, “Multiplication of
many-digital numbers by automatic computers,” in Dok-
lady Akademii Nauk, vol. 145, no. 2. Russian Academy
of Sciences, 1962, pp. 293–294.

[32] R. Chandra, L. Dagum, D. Kohr, R. Menon, D. Maydan,
and J. McDonald, Parallel programming in OpenMP.
Morgan kaufmann, 2001.

[33] NVIDIA, “Geforce gtx 1080 graphics cards from nvidia
geforce.” [Online]. Available: https://www.nvidia.com/
en-us/geforce/products/10series/geforce-gtx-1080/

[34] L. E. Cannon, “A cellular computer to implement the
kalman filter algorithm,” Ph.D. dissertation, Montana
State University-Bozeman, College of Engineering, 1969.

[35] P. Xie, M. Bilenko, T. Finley, R. Gilad-Bachrach,
K. Lauter, and M. Naehrig, “Crypto-nets: Neu-
ral networks over encrypted data,” arXiv preprint
arXiv:1412.6181, 2014.

[36] H. Takabi, E. Hesamifard, and M. Ghasemi, “Privacy
preserving multi-party machine learning with homomor-
phic encryption,” in 29th Annual Conference on Neural
Information Processing Systems (NIPS), 2016.

[37] N. Gama and I. Chillotti, “Tfhe: Fast fully homomorphic
encryption library over the torus,” https://github.com/
tfhe/tfhe/tree/v1.0.1, 2017.

[38] C. Gentry, A. Sahai, and B. Waters, “Homomorphic en-
cryption from learning with errors: Conceptually-simpler,
asymptotically-faster, attribute-based,” in Annual Cryp-
tology Conference. Springer, 2013, pp. 75–92.

[39] Z. Brakerski and V. Vaikuntanathan, “Efficient fully
homomorphic encryption from (standard) lwe,” SIAM
Journal on Computing, vol. 43, no. 2, pp. 831–871, 2014.

[40] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(lev-
eled) fully homomorphic encryption without boot-
strapping,” ACM Transactions on Computation Theory
(TOCT), vol. 6, no. 3, p. 13, 2014.

[41] J. H. Cheon, A. Kim, M. Kim, and Y. Song, “Ho-
momorphic encryption for arithmetic of approximate
numbers,” in International Conference on the Theory
and Application of Cryptology and Information Security.
Springer, 2017, pp. 409–437.

[42] M. J. Flynn, “Some computer organizations and their
effectiveness,” IEEE transactions on computers, vol. 100,
no. 9, pp. 948–960, 1972.

[43] S. Halevi and V. Shoup, “Algorithms in helib,” in Annual

Cryptology Conference. Springer, 2014, pp. 554–571.
[44] Y. Doröz, E. Öztürk, E. Savaş, and B. Sunar, “Accelerat-

ing ltv based homomorphic encryption in reconfigurable
hardware,” in International Workshop on Cryptographic
Hardware and Embedded Systems. Springer, 2015, pp.
185–204.

[45] A. López-Alt, E. Tromer, and V. Vaikuntanathan, “On-
the-fly multiparty computation on the cloud via multikey
fully homomorphic encryption,” in Proceedings of the
forty-fourth annual ACM symposium on Theory of com-
puting. ACM, 2012, pp. 1219–1234.

[46] W. Dai and B. Sunar, “cuhe: A homomorphic encryp-
tion accelerator library,” in International Conference on
Cryptography and Information Security in the Balkans.
Springer, 2015, pp. 169–186.

[47] W. Dai, Y. Doröz, and B. Sunar, “Accelerating swhe
based pirs using gpus,” in International Conference on
Financial Cryptography and Data Security. Springer,
2015, pp. 160–171.

[48] X. Lei, R. Guo, F. Zhang, L. Wang, R. Xu, and G. Qu,
“Accelerating homomorphic full adder based on fhew
using multicore cpu and gpus,” IEEE Transactions on
Industrial Informatics, 2019.

[49] H.-b. Yang, W.-j. Yao, W.-c. Liu, and B. Wei, “Efficiency
analysis of tfhe fully homomorphic encryption software
library based on gpu,” in Workshops of the International
Conference on Advanced Information Networking and
Applications. Springer, 2019, pp. 93–102.

[50] T. Zhou, X. Yang, L. Liu, W. Zhang, and N. Li, “Faster
bootstrapping with multiple addends,” IEEE Access,
vol. 6, pp. 49 868–49 876, 2018.

http://www.jstor.org/stable/2324666
http://www.jstor.org/stable/2324666
https://www.nvidia.com/en-us/geforce/products/10series/geforce-gtx-1080/
https://www.nvidia.com/en-us/geforce/products/10series/geforce-gtx-1080/
https://github.com/tfhe/tfhe/tree/v1.0.1
https://github.com/tfhe/tfhe/tree/v1.0.1

	I Introduction
	I-A Current Techniques
	I-B Contributions

	II Preliminaries
	II-A Torus FHE (TFHE)
	II-B Parallelism

	III Sequential Framework
	III-A Addition
	III-B Multiplication
	III-B1 Naive Approach
	III-B2 Karatsuba Algorithm

	IV CPU-based Parallel Framework
	IV-A Addition
	IV-B Multiplication
	IV-C Vector Operations
	IV-D Matrix Operations

	V GPU-based Parallel Framework
	V-A Proposed Techniques
	V-A1 Parallel TFHE Construction
	V-A2 Bit Coalescing (BC)
	V-A3 Compound Gate

	V-B Algebraic Circuits on GPU
	V-B1 Addition
	V-B2 Multiplication
	V-B3 Vector and Matrix Operations

	VI Experimental Analysis
	VI-A GPU-accelerated TFHE
	VI-B Compound Gate Analysis
	VI-C Addition
	VI-D Multiplication
	VI-E Karatsuba Multiplication
	VI-F Matrix Operations
	VI-G Application: Linear Regression

	VII Discussion
	VIII Related Works
	IX Conclusion

