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Abstract—In-network function offloading represents a key
enabler of the SDN-based data plane programmability to enhance
network operation and awareness while speeding up applications
and reducing the energy footprint. The offload of network
functions exploiting machine learning and artificial intelligence
has been recently considered with intermediate solutions such as
feature extraction acceleration and mixed architectures including
AI-specific platforms (e.g., GPU, FPGA).

Indeed, the P4 language enables the programmability of
deep neural networks inside the pipelines of both software and
hardware switches and NICs. However, programmable hardware
pipeline chipsets suffer from significant computing capability
limitations (e.g., missing arithmetic logic units, limited and slow
stateful registers) preventing the plain programmability of a deep
neural network (DNN) operating at wirespeed.

This paper proposes an innovative knowledge distillation
technique that maps a DNN into a cascade of lookup tables
(i.e., flow tables) with limited entry size. The proposed mapping
avoids stateful elements and maths operators, whose requirement
prevented the deployment of DNNs within hardware switches
up to now. The evaluation is carried out considering a cyber
security use case targeting a DDoS mitigator network function,
showing negligible impact due to the lossless mapping reduction
and feature quantization.

Index Terms—In-network computing, artificial intelligence,
knowledge distillation, P4, hardware acceleration, DDoS
mitigation.

I. INTRODUCTION

The advent of in-network Artificial Intelligence (AI) will
enable future network devices to process data (i.e., packets,
flows, aggregate traffic) at wirespeed with the support of
builtin AI-enabled components [1], [2]. In-network function
offloading is becoming popular thanks to the flexibility
and maturity of programmable data plane languages such
as P4, and has the potential to bring programmable and
versatile networking operation at the data plane thus saving
computational resources for applications at the edge and with
limited energy consumption, since re-using the same network
infrastructure devices [3].

So far, network accelerations encompassing AI have
been delegated to external backends, for example at co-
located Field Programmable Gate Arrays (FPGAs) or at
Graphics Processing Units (GPUs)-equipped servers, that
lead to suboptimal solutions providing additional latency
and low energy efficiency. A relevant intermediate solution
encompasses AI features extraction at the data plane and

cloud-based inference [4]. Recent attempts to introduce
machine learning (ML) algorithms directly at the data plane of
programmable devices have leveraged reconfigurable pipelines
able to reproduce or approximate ML algorithms as a series of
flow tables and stateful operations [5]. For example, existing
works target binary neural networks at the Network Interface
Card (NIC) [6] and a restricted family of machine learning
algorithms, such as Support Vector Machines (SVMs) [7],
Decision Trees (DTs) [8] and Random Forests (RFs) [9].

Conversely, Deep Neural Network (DNN) pipeline
deployments inside programmable network devices are
facing relevant hardware constraints due to the specific
DNN workflow requiring fast Arithmetic Logic Units (ALU)
for neuron computation and high speed update of stateful
memories, while hardware programmable pipelines are
designed to support a large number of match-action flow
tables with very limited arithmetic variable manipulation and
low update rates for stateful memories. For this reason, so
far, only P4 DNN implementations for software switches
or smart NICs have been presented [10], [11], with limited
performance capabilities.

In this paper, to the best of our knowledge, we propose for
the first time a knowledge distillation method that maps the
P4 DNN pipeline, in principle requiring ALU and significant
stateful capabilities, into a cascaded architecture of flow tables,
matching the input features with the DNN outcomes as a
simple aggregated input/output Lookup Table (LUT). The
developed distillation technique is lossless with respect to
the originary pipeline, meaning that no information is lost
during the mapping from the DNN to the LUT. Moreover,
provided that inputs and outputs match the hardware memory
constraints, the method is agnostic to the DNN complexity,
requiring a fixed amount of resources for the distilled
LUT. We apply the proposed workflow to a cyber security
use case targeting Distributed Denial of Service (DDoS)
attack mitigation, showing the applicability of the proposed
distillation technique inside a P4 pipeline, the feasibility of
the approach and its advantages in terms of efficient use
of stateless features with respect to other existing offloading
deployments in the data plane, e.g., entropy-based anomaly
detection strategies [12], typically requiring large stateful
memories. The proposed distillation technique represents the
first theoretical step of the applicability of fully offloaded AI-



based functions inside network programmable devices.

II. IN-NETWORK PROGRAMMABLE AI: STRATEGIES AND
CURRENT LIMITATIONS

The programmability of the Software Defined Networking
data plane has reached a mature level of abstraction, language
capabilities (e.g., P4) and data plane acceleration tools (e.g.,
eBPF, DPDK). This enables network engineers to concentrate
on legacy network functions development while abstracting
from the complexity of the hardware platforms. However,
when novel data plane offloading strategies are conceived
bringing more complex requirements (e.g., a machine learning
algorithm), relevant limitations are still in place, being the
main programmable hardware platforms designed for specific
network functions.

The P4 language enables in-network functions programming
as pipeline structures and logic workflows. Thanks to stateful
objects (e.g., registers) any packet content may be processed
in combination with flow/session statistics. In addition, thanks
to the high-level language property logic and arithmetic
manipulation supported by P4, it is possible to instruct the
arithmetic manipulation of metadata variables in order to
derive neuron compute functions, including the non-linear
stage at the end of the linear combination of neuron states
and weights. Such plain approach has two main drawbacks: 1)
parallelized operation is either prevented or strongly limited;
2) Hardware backends do not support all the P4 language
capabilities.

The former drawback results in suboptimal latency
performance. As shown in the P4 DNN implementation
in software switches exploiting all the potential of the P4
language, the intra-switch latency is around one order of
magnitude higher for standard pipelines (e.g., forwarding and
steering) [11]. The latter drawback is due to the hardware
vendors chipset design policies, aiming at accelerating typical
network functions such as routing, forwarding, and load
balancing.

In Fig. 1 we show the different flavours in the design
of a programmable network function exploiting a DNN. In
flavour a) the switch/NIC is designed to receive and match
selected packets/flows to be sent to an external device (e.g.,
FPGA) implementing the DNN. The outcome of the DNN
is sent back to the switch/NIC using internal interfaces (e.g.,
dedicated or SDN control plane interfaces). In this design,
the packets may be either stored in specific buffers waiting
for prediction/classification or directly steered to the external
device. In both cases, extra delays are introduced due to the
device chaining. Moreover, the solution is not power efficient,
since requiring two devices operating at wirespeed. In flavour
b) the switch/NIC design is enriched to host packet and
metadata processing in order to extract the DNN features at
runtime. Feature extraction represents one of the most time
and resource consuming steps if performed using software-
based functions, whereas it has been demonstrated to be fast
and effective at the data plane level exploiting programmable
parsers and a limited amount of memory registers and

counters [4]. The DNN engine is outsourced again to a
dedicated device, e.g., a GPU, while packet enforcement and
deparser stages run on the switch/NIC. Again, the packets
need to be buffered while waiting for the DNN outcome.
Finally, flavour c) represents the proposed solution offloading
a complete pipeline including the DNN function inside the
programmable switch/NIC, without resorting to any additional
device. The design includes parsers, feature extraction, and
the DNN macro-function at wirespeed, thus packet buffering
(and latency) is minimized and just one device is utilized
for the entire operation, leading to significant power savings,
since the impact of a programmable chipset in respect to
fixed-function ASIC is negligible [13]. Moreover, the modular
P4 design allows for multiple network functions acceleration
inside the same pipeline/device, thus additional functions (e.g.,
forwarding/steering, load balancer) may co-exist with the
DNN-based in-network function.

While the last solution is the only one that allows achieving
fully in-network AI functionalities, it is not possible to deploy
neural networks within the dataplane pipeline with common
methods. DNNs are distributed architectures of interconnected
primitives (artificial neurons), whose operation relies on the
repetition of simple mathematical tasks, mainly constituted
by multiply-accumulate operations. These AI models learn
from examples to build good approximate solutions to tasks,
and are particularly resilient to noisy inputs and low-precision
representation formats if trained accordingly [14]. Hence, the
high resolution of floating-point is not mandatory and the
related computational burden can be avoided with integers
used instead. However, the programmable ASIC pipelines of
commercially available P4 switches do not support, up to
date, floats or fast integer arithmetic [11]. The requirement
of wirespeed processing allows only for specific tasks such
as flow table matching, with variables stored in an integer
format. The lack of multiply-accumulate operations prevents
the deployment of DNNs on current hardware P4 switches,
even if the parameters are quantized in an integer format.

An implementation example of DNN inside a P4 software
switch is shown in [15], comprising two main P4 stages:
the feature extraction and the DNN function. Indeed, the P4
language allows the definition and declaration of functions
implementing a DNN, using integer-based neuron computation
updates and tree-based structures, with limited parallelized
computations leading to low performance capabilities. The
porting of such P4 codes inside a programmable ASIC
backend is successful only for the feature extraction stage,
while the DNN function requires a complete remapping
design, mainly avoiding ALU-based operations.

III. CASCADED LUT AS A DEEP NEURAL NETWORK

To deploy ML models within hardware pipelines with
strictly limited arithmetic capabilities, we have conceived a
strategy to distill the knowledge of a trained DNN into a
LUT, with no loss of information, leveraging the constraint
of integer-encoded variables as an advantage. Fig. 2 represents
the core idea of our knowledge distillation technique. Consider



Fig. 1: Strategies for the deployment of AI models at the Switch/NIC side. (a) the packet flow is directly sent to a co-located
FPGA, wich parse the data and run a DNN. (b) Hybrid strategy where packet features are extracted within the switch/NIC and
sent to the DNN run on a GPU. (c) The ML model is deployed in the pipeline within the switch/NIC.

Fig. 2: Deep neural network distillation in a lookup table for
inference acceleration. Integer-encoded inputs are treated as
a compound address of the LUT, whose entries encode the
corresponding output of the distilled DNN.

the case of a 2-input network, whose inputs are integers with n
and m bits, respectively. Once the DNN is trained, the inputs
are paired and treated as a compound address of the final
LUT, whose bitwidth is n + m. The table is generated by
simply collecting the DNN outputs for all the possible input-
pair combinations, which are 2(n+m). With this method, the
inference of a DNN is reduced to a match-action on a flow
table. It is worth noting that this is a lossless procedure as it
considers exhaustively all the possible DNN outcomes.

With respect to other table-based quantization
strategies [16]–[18], we rely on LUTs not to accelerate
the quantization process nor to perform multiplications at
higher speed, but to distill the knowledge of the whole DNN.
Logically, the LUT distillation method has some limitations:
first (i) memory consumption grows exponentially with
the number of bits composing the input features, second
(ii) features should not use the floating-point format but
the integer one, and lastly (iii) also the number of output
variables linearly affect the LUT size, i.e., if the DNN
produces three output then three entries are added in the
LUT per input combination. Nonetheless, the LUT distillation
method presents stark advantages, with the most important
being making DNNs deployable in hardware P4 switches.
No constraint is set to the DNN complexity nor type: if the
requirements on inputs and outputs are met, this method
applies to huge DNNs and even to other ML algorithms.
Training more complex DNNs results, up to some extent, in
a more accurate model [14], with the drawback of increasing
the training and LUT distillation times. Moreover, if a use

case requires periodical retraining of the neural model, this
can be done on a co-processor and applied by replacing the
LUT.

In practical cases, several input features are used in ML
tasks, resulting in huge memory requirements that would
prevent the use of this method. Consider a DNN with one
8-bit output and four 8-bit input features, the correspondent
LUT entries would be 232 = 0.537 Gbytes, a value well
beyond the memory capabilities of current P4 switches. To
circumvent this issue, and exploit the LUT distillation method,
a hierarchical structure composed of simple and cascaded
DNNs can be designed instead of a single DNN. The workflow
of this strategy is represented in Fig. 3. Input features are
paired and sent to a first layer of DNNs, whose outputs are
in turn paired and sent to a second layer of DNNs. This is
done recursively until the final output is computed, forming
a hierarchical architecture of simple 2-input neural networks.
The compound structure can be trained for the target task,
and the LUT distillation method is applied to each neural
model forming a corresponding structure of cascaded tables.
Following the initial example with four 8-bit inputs, with
this technique the final model will have three tables with 216

entries each, and a total memory usage of 24.6 kbytes. The
cascaded method opens the possibility to distill DNNs in LUTs
even when several inputs are present. More features will result
in a deeper hierarchy of tables, with a depth of ⌈logx y⌉, where
x is the number of inputs per small DNN and y is the total
number of inputs.

IV. DEMONSTRATION WITH DDOS MITIGATION

To demonstrate the capabilities and potentiality of the LUT
distillation method, we carried out experiments considering a
DDoS mitigation problem. We have chosen the UNSW-NB15
Network Intrusion Detection data set [19], which contains both
normal and malicious traffic packets. For this task, the ML
model is developed to act as a firewall, categorizing benign
and malicious packets. The neural model can be embedded
in a P4 pipeline that extracts features and enforces actions
on packets like the one described in [11]. Among the 49
features of the UNSW-NB15 dataset, we chose 2 stateless
and 6 stateful features as possible inputs to the DNN model.



Fig. 3: Cascaded LUT DNN design strategy. Instead of training a single DNN, input features are grouped in pairs and sent to
separate DNNs, which are in turn paired recursively until the final output. After training the models are distilled into LUTs.
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Fig. 4: (a) The 2-input base neural network module, this corresponds to a distilled LUT; (b) model architecture for stateful
features; (c) model architecture for the stateless features; (d) model architecture for the combined features.

Depending on the type of features used, we developed three
different architectures that use (i) stateful, (ii) stateless, and
(iii) both types of features. Specifically, we chose as stateful
features the number of connections having the same source
(ct src ltm) and destination (ct dst ltm) IP address within the
last processed 100 packets. As stateless features, we chose
the IP protocol (IP proto), IP Time To Live (TTL) (s TTL),
the source and destination TCP window advertisement (swin
and dwin), source-to-destination (s bytes) and destination-to-
source transaction bytes (d bytes).

The dataset is highly unbalanced with respect to the normal
traffic samples, hence a random oversampling technique is
applied to balance the training set, obtaining a 50 − 50 %
distribution among the two classes. The test set has been
kept unbalanced since its distribution must represent as much
as possible real data, resulting in a balance of 90 − 10 %.
Concerning the DNN models, we used a 2-input base module,
which is depicted in Fig. 4(a). The module is composed of 3
layers, with 64, 32, and 1 neuron, respectively. The ReLU is
adopted as activation function in the first two layers, while the
output layers exploit the sigmoid function to perform binary
classification of the packets in the benign or attack class.
The size and shape of this basic model have been chosen to
guarantee a rather rapid training and LUT distillation. Still, the
DNN complexity can be increased without impacting memory
consumption to have higher prediction accuracies.

Once trained, the DNN model is converted to a single LUT

Considered Features F1-score
8-bit inputs

F1-score with
reduced bitwidh

Stateful 42.96 %

Stateless 93.75 % 92.19 %

Combined 93.26 % 93.91 %

TABLE I: F1-score on the test set for the models, considering
features on 8 bits and a with reduced bitwidth.

with the method described in Sec. III, and is directly exploited
in the experiment with stateful-only features, as only 2 features
are used. Fig. 4(b) represents the distilled table for this case.
In the other two architectures, which exploit stateless-only
or both type of features, the number of inputs is 6 and 8,
respectively. Hence, several instances of the Neural Network
(NN) module are stacked on top of each other, trained, and
consequently compressed to LUTs, as sketched in Fig. 4(c)
and Fig. 4(d).

In a first set of experiments, we used input features
represented on 8 bits. For this case, the s bytes and d bytes
features are quantized on 8 bits relying on a quantile-
based discretization, while the others are already compatible
with the chosen format. The trained model accuracy has
been validated on a test set with the F1-score, which is
the performance metric used with unbalanced datasets [14].
The results of these experiments are reported in the second



column of Table I. The model with stateful-only features
provides an F1-score lower than 50%, a non-acceptable
performance for this DDoS detection task. On the other
hand, the DNN models with stateless-only and combined
features provide a consistent accuracy of 93.75% and 93.26%,
respectively. When comparing these two approaches, the
stateless features scenario slightly outperforms the combined
features. Moreover, stateless features are more amenable to
a P4 implementation since they can be directly extracted
from packets, without further computations. On the contrary,
stateful features need co-located memory stages and additional
operations to be computed, making them less suitable for
a future P4 application. Hence, the use-case that considers
only stateless features is the favorite candidate, for the easily
implementable features and slightly less complex architecture.

Although these results already validate the proposed
method, there may be the need to further shrink the table
size to make them more compatible with P4 switches, as in
most devices flow tables entries should be kept limited for
memory management. In compliance with this constraint, we
have carried out another set of experiments with the same
architectures as the first one, but pairing input features so that
their combined bitwidth results less than 14 (i.e., LUT size
below 10000 entries). Table II reports how the features were
combined in this case with the resulting total number of bits.
The output of each DNN is encoded on 6 bits. The second
column of Table II reports the results for this scenario in the
case of stateless-only and combined features. The F1-scores
are above 92 %, with a slight decrease in accuracy for the
stateless-only case, while a small increase is experienced in
the model with combined features.

Input Number of bits

{swin, quantized s TTL} 11

{dwin, quantized IP proto} 11

{ct src ltm, quantized dbytes} 13

{ct dst ltm, quantized sbytes} 13

TABLE II: Input features and corresponding biwidths for the
combined scenario in the reduced bitwidth experiments.

V. CONCLUSIONS

The development of AI models able to run at wirespeed
and low energy consumption in compliance with the physical
hardware is the key missing piece to bring advanced in-
network functions in the data plane. While DNNs have been
implemented in P4 software switches and smart NICs, the
limited computing capability of hardware switches prevents
their deployment. To circumvent this issue, in this paper we
proposed and demonstrated a knowledge distillation technique
that allows to convert DNNs into a cascaded architecture based
on LUTs, with no information loss and with a resource usage
independent from the DNN complexity. Moreover, in case
the DNN needs to be retrained as for tackling a different

task, the system can be reconfigured on the fly by simply
changing the LUT flow entries, thus avoiding to recompile
the whole P4 pipeline. To demonstrate the working principle,
we developed a ML model to act as a DDoS attack mitigator
task with the UNSW-NB15 dataset. We chose 2 stateful and
6 stateless features among the available ones, and developed
three DNN models for different kind of input features: stateful-
only, stateless-only and both type of features. We carried a first
set of experiments encoding inputs on 8-bits, and a second set
with reduced bitwidths to keep the single LUT size below
ten thousand entries, for better hardware compatibility. In all
cases the models for the stateless-only and aggregated features
achieved a F1-score above 92 %.

The provided results represent the first relevant step of the
applicability of DNN offloading inside P4 backends. Further
works will deploy the considered solution in different P4-
enabled hardware platforms (e.g., Tofino switches, smart NICs,
Data Processing Units) evaluating the performance in terms of
required hardware resources, throughput, latency and power
savings.
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[8] B. M. Xavier, R. S. Guimarães, G. Comarela, and M. Martinello,
“Programmable Switches for in-Networking Classification,” in IEEE
INFOCOM 2021 - IEEE Conference on Computer Communications,
2021, pp. 1–10.

[9] B. Coelho and A. Schaeffer-Filho, “BACKORDERS: using random
forests to detect DDoS attacks in programmable data planes,” in
Proceedings of the 5th International Workshop on P4 in Europe, 2022,
pp. 1–7.



[10] Y.-S. Lu and K. C.-J. Lin, “Enabling Inference Inside Software
Switches,” in 2019 20th Asia-Pacific Network Operations and
Management Symposium (APNOMS), 2019, pp. 1–4.

[11] F. Cugini, D. Scano, A. Giorgetti, A. Sgambelluri, L. De Marinis,
P. Castoldi, and F. Paolucci, “Telemetry and AI-based security
P4 applications for optical networks [Invited],” Journal of Optical
Communications and Networking, vol. 15, no. 1, pp. A1–A10, 2023.

[12] A. C. Lapolli, J. Adilson Marques, and L. P. Gaspary, “Offloading real-
time ddos attack detection to programmable data planes,” in 2019 IFIP
IEEE Symposium on Integrated Network and Service Management, 2019,
pp. 19–27.

[13] Y. Tokusashi, H. T. Dang, F. Pedone, R. Soulé, and N. Zilberman,
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