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Abstract— Autonomous agents such as unmanned aerial vehicles
(UAVs) have a great potential for deployment in next generation
wireless networks. While current literature has been mainly focused
on the use of UAVs for connectivity enhancement and routing in
military ad hoc networks, this paper proposes a novel usage model
for UAVs in wireless communication networks. In the proposed
model, a number of UAVs are required to collect data from a
number of randomly located tasks and transmit this data wirelessly
to a common receiver (such as the central command). Each
task represents a queue of packets that require collection and
transmission to the central receiver. The problem is modeled as
a hedonic coalition formation game between the UAVs and the
tasks that interact in order to form disjoint coalitions. Each formed
coalition is modeled as a polling system consisting of a number of
UAVs, designated as collectors, which act as a single server that
moves between the different tasks present in the coalition, collects
and transmits the packets to a common receiver. Within each
coalition, some UAVs can also take the role as a relay for improving
the packet success rate of the transmission. The proposed coalition
formation algorithm allows the tasks and the UAVs to take local
selfish decisions to join or leave a coalition, based on the achieved
benefit, in terms of effective throughput, and the cost in terms of
delay. Simulation results show how the proposed algorithm allows
the UAVs and tasks to self-organize into independent coalitions,
while improving the performance, in terms of average player (UAV
or task) payoff, of at least 61.96% relatively to a scheme that
allocates nearby tasks equally among UAVs.

I. INTRODUCTION

Next generation wireless networks will present a highly

complex and dynamic environment. This is mainly due to the

recent emergence of large-scale, distributed and heterogeneous

communication systems which are continuously increasing in

size, traffic, applications, services, etc. For maintaining a sat-

isfactory operation of such networks, there is a constant need

for dynamically optimizing their performance, monitoring their

operation and reconfiguring their topology. Due to the ubiquitous

nature of such wireless networks, it is inherent to have self-

organizing autonomous nodes (agents), that can service these

networks at different levels such as data collection, monitoring,

optimization, management, maintenance, among others [1–4].

These nodes belong to the authority maintaining the network,

and must be able to survey large scale networks, and perform

very specific tasks at different points in time, in a distributed and
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autonomous manner, with very little reliance on any centralized

authority [1], [2].

While the use of such autonomous agents has been thor-

oughly investigated in robotics, control systems or software

engineering, research models that tackle the use of such agents

in wireless communication networks are rare. However, the need

for such nodes in wireless networks has become of noticeable

importance as many next generation networks are self-adapting

[1–4]. The main existing contributions in this area, within

wireless networking, are focused on deploying unmanned aerial

vehicles (UAVs) which can act as autonomous agents (nodes)

in the network. In fact, in the past decade, UAVs have played

a prominent role as self-deploying autonomous nodes that can

efficiently perform pre-assigned tasks in numerous applications.

With the emergence of small “mini-UAVs” (MUAVs) that offer

advantages in flexibility and cost [5], the usage scenarios for

UAVs have significantly increased. In wireless networks, there

has been several contributions that tackle the use of UAVs in

connectivity improvement [6], routing [7], [8], and medium

access control [9].

Mainly, these contributions focus on centralized solutions for

specific problems such as finding the optimal locations for the

deployment of UAVs or devising efficient routing algorithms in

ad hoc networks in the presence of one or more UAVs. Hence,

in existing work, the tasks that the UAVs must accomplish are

pre-assigned and pre-determined. In contrast, many applications

require agents, such as UAVs, to autonomously perform specific

tasks that are randomly generated and are not pre-assigned. In

such applications, the objective is to provide algorithms that

allow the agents to share the tasks among each other with little

dependence on centralized entities. Several research activities

studied this task allocation problem among autonomous agents,

mainly in either robotics control [10–12], or software systems

[13], [14]. However, most of these models are unsuitable for

task allocation problems in the context of wireless networks due

to various reasons: (i)- The task allocation problems studied in

existing literature are mainly tailored for military operations or

software engineering, (ii)- the tasks are generally considered as

abstract entities with very simple characteristics, and (iii)- the

existing models do not consider any wireless communication

networks aspect such as the characteristics of the wireless

channel, the presence of data traffic, the need for wireless data

transmission, or other wireless-specific aspects.

The main contribution of this paper is to propose a novel



wireless communication-oriented model for the problem of task

allocation among a number of autonomous agents such as UAVs.

The proposed model considers a number of UAVs that are

required to collect data from randomly located tasks. Each

task represents a source of data, i.e., a queue with a Poisson

arrival of packets, that the UAVs must collect and transmit

via a wireless link to a central receiver. This formulation is

deemed suitable to model several problems in next generation

networks such as video surveillance in wireless networks, self-

deployment of mobile relays in IEEE 802.16j networks, data

collection in ad hoc networks, wireless monitoring of randomly

located sites, and many other applications. For allocating the

tasks, we introduce a novel framework from coalitional game

theory, known as hedonic coalition formation. Albeit hedonic

games have been widely used in game theory, to the best of

our knowledge, no existing work utilized this framework in a

communication or wireless environment. Thus, we model the

task allocation problem as a hedonic coalition formation game

between the UAVs and the tasks, and we propose an algorithm

for forming coalitions. Each formed coalition is modeled as a

polling system consisting of a number of UAVs, designated as

collectors, which act as a single server that moves continuously

between the different tasks (queues) present in the coalition,

gathering and transmitting the collected packets to a common

receiver. Further, within each coalition, some UAVs can act as

relays for improving the packet success rate during the wireless

transmission. For forming coalitions, the UAVs and tasks can

autonomously make a decision to join or leave a coalition

based on well defined individual preference relations. These

preferences are based on a coalition value function that takes

into account the benefits received from servicing a task, in terms

of effective throughput (data collected), as well as the cost in

terms of the polling system delay incurred from the time needed

for servicing all the tasks in a coalition. Simulation results show

how the proposed algorithm allows the network to self-organize,

while ensuring a performance improvement of at least 61.96%,

in terms of average player (task or UAV) payoff, compared to a

scheme that assigns nearby tasks equally among the UAVs.

The remainder of this paper is organized as follows: Sec-

tion II presents and motivates the proposed system model. In

Section III, we model the task allocation problem as a hedonic

coalition formation game, we discuss its key properties and we

propose an algorithm for coalition formation. Simulation results

are presented, discussed and analyzed in Section IV. Finally,

conclusions are drawn in Section V.

II. SYSTEM MODEL

Consider a network consisting of M agents, e.g., UAVs, that

belong to a single operator and are controlled by a central base

station, e.g., command center. The UAVs are required to service

T tasks that are randomly located in the geographic area around

the base station (BS). We denote the set of UAVs, and tasks

by M = {1, . . . ,M}, and T = {1, . . . , T}, respectively. We

assume that, in general, the number of tasks is larger than the

number of UAVs, hence, M > T . The main motivation behind

this assumption is that, for most networks, the number of UAVs

is generally small due to cost factors for example. Each task

i ∈ T represents an M/D/1 queueing system1, whereby packets

of constant size B are generated using a Poisson arrival with

an average arrival rate of λi. Hence, in the proposed model, we

consider different classes of tasks each having its corresponding

λi. These tasks can represent a group of mobile devices that

require servicing, data generated from video surveillance, data

that must be collected by the UAVs, or any other source of packet

data. For servicing a task, each UAV is required to move to the

task location, collect the data, and transmit it using a wireless

link to the centralized base station. Each UAV i ∈ M offers

a link transmission capacity of µi, in packets/sec, with which

the UAV can service the data from any of the tasks. Hence, the

quantity 1
µi

would represent the well known service time for a

single packet that is being serviced by a UAV i. The UAV which

is collecting the data from a task is referred to as collector. In

addition, each UAV i ∈ M can transmit the data to the receiver

with a maximum transmit power of Pi = P̃ , assumed the same

for all UAVs (without loss of the generality for the analysis in

the remainder of this paper).

The proposed model allows each task to be serviced by

multiple UAVs, and also, each UAV (or group of UAVs) to

service multiple tasks. Whenever a task is serviced by multiple

UAVs, each UAV can act as either a collector or a relay. Any

group of UAVs that act together for data collection from the

same task, can be seen as a single collector with improved link

transmission capacity. In this context, given a group of UAVs

G ⊆ M that are acting as collectors for a task i ∈ T , the total

link transmission capacity with which task i is being serviced

with by G can be given by

µi
G =

∑

j∈G

µj , (1)

For forming a single collector, multiple UAVs can easily coordi-

nate the data extraction, and then transmission from every task,

so as to allow a larger link transmission capacity for the serviced

task as per (1). Moreover, the transmission of the packets by

the UAVs from a task i ∈ T to the central receiver is subject

to packet loss due to the fading on the wireless channel. In

this regard, in addition to acting as collectors, some UAVs may

act as relays for a task. For doing so, we assume that one or

more UAVs position themselves at equal distances from the

task (given that the task is already being served by at least

one collector), and hence, the collectors transmit the data to the

receiver through multi-hop UAVs, improving the probability of

successful transmission. In this context, in Rayleigh fading, the

probability of successful transmission of a packet of size B from

the collectors present at a task i ∈ T through a path of m UAVs,

Qi = {i1, . . . , im}, where i1 = i is the task being serviced, im
is the BS, and any other ih ∈ Qi is a relay-UAV, can be given

by

Pri,BS =

m−1
∏

h=1

PrB
ihih+1

(2)

1Other types of queues, e.g., M/M/1, can also be considered without loss of
generality in the coalition formation process proposed in the remainder of this
paper.



Fig. 1. An illustrative example of the proposed model for task allocation in
wireless networks.

where Prihih+1
is the the probability of successful transmission

of a single bit from a UAV ih to a UAV (or the BS) ih+1 and

can be given by the probability of maintaining the SNR at the

receiver above a target level γ0 as follows [15]

Pri,ih+1
= exp

(

−
σ2γ0(Dih,ih+1

)α

κP̃

)

(3)

where σ2 is the Gaussian noise, κ is a path loss constant, α is

the path loss exponent, Dih,ih+1
is the distance between nodes

ih and ih+1, and P̃ is the maximum transmit power of UAV ih.

For servicing a number of tasks C ⊆ T , a group of UAVs

G ⊆ M (collectors and relays) can sequentially move from one

task to the other in C with a constant velocity ν. The UAVs

stop at each task, with the collectors collecting and transmitting

the packets using the relays (if any). The collectors would move

from one task to the other, only if all the packets in queue in

the current task have been transmitted to the receiver. With this

proposed model, the final network will consist of groups of tasks

serviced by groups of UAVs, continuously. An illustration of this

model is shown in Figure 1.

Consequently, given this proposed model, the main objective

is to provide an algorithm for distributing the tasks between the

UAVs, given the operation of the UAVs previously described

and shown in Figure 1. For this purpose, the following sections

formulate a game theoretic approach for autonomously forming

a network similar to that of Figure 1.

III. UAVS TASK ALLOCATION AS A HEDONIC COALITION

FORMATION GAME

In this section, we formulate the proposed task allocation

problem as a hedonic coalition formation game with an under-

lying transferable utility, and we propose a distributed algorithm

for forming the coalition using concepts from hedonic games.

A. Initial Coalitional Game Formulation

By inspecting Figure 1, one can clearly see that the task

allocation problem among the UAVs can be mapped into the

problem of the formation of coalitions. In this regard, coalitional

game theory [16, Ch. 9] provides a suitable analytical tool for

studying the formation of cooperative groups, i.e., coalitions,

among a number of players. For the proposed model, the

coalitional game is played between the UAVs and the tasks.

Hence, the players set for the proposed task allocation coalitional

game is denoted by N , and contains both UAVs and tasks, i.e.,

N = M∪ T . In the remainder of this paper, we use the term

player to denote either a task or a UAV.

For any coalition S ⊆ N containing a number of UAVs and

a number of tasks, the UAVs belonging to this coalition can

structure themselves into collectors and relays. Subsequently,

as explained in the previous section, within each coalition, the

collector-UAVs will move from one task to the other, stopping

at each task, and transmitting all the packets available in the

queue to the central receiver, through the relay-UAVs (if any).

This proposed task servicing scheme can be mapped to a well-

known concept that is ubiquitous in computer systems, which

is the concept of a polling system [17]. In a polling system, a

single server moves between multiple queues in order to extract

the packets from each queue, in a sequential manner. Models

pertaining to polling systems have been widely developed in

various disciplines ranging from computer systems to communi-

cation networks, and different strategies for servicing the queues

exist [17–20]. For the proposed model, we map every coalition

S to a polling system with exhaustive strategy and deterministic

switchover times. For instance, the collectors of every coalition

in our model can be seen as a server that is servicing the tasks

(queues) sequentially, in a cyclic manner, i.e., after servicing

the last task in a coalition S ⊆ N , the collectors of S return to

the first task in S that they previously visited hence repeating

their route continuously. Further, whenever the collectors stop

at any task i ∈ S, they collect and transmit the data present at

this task until the queue is empty. This method of allowing the

server to service a queue until emptying the queue is known as

the exhaustive strategy for a polling system, which is applied in

every coalition of our model. Moreover, the time for the server

to move from one queue to the other is known as the switchover

time. In our model, for any coalition S, once the queue at a

task i ∈ S is emptied, the collectors and relays in a coalition

move from task i to the next task j ∈ S with a constant velocity

ν, hence incurring a switchover time θi,j . The switchover time

in our model corresponds to the time it takes for all the UAVs

(collectors and relays) to move from one task to the next, which,

assuming all UAVs start their mobility at the same time, maps

to the time needed for the farthest UAV to move from one task

to the next. Hence, given the geometry of Figure 1, it can be

easily seen that within a given coalition S, the switchover time

between two tasks will correspond to the constant time it takes

for one of the collectors to move from one of the tasks to the

next.

Having modeled every coalition S ⊆ N as a polling system,

we investigate the average delay incurred per coalition. In fact,

for polling systems, finding exact expressions for the delay at



every queue is a highly complicated task, and hence, no general

closed form expressions for the delay at every queue in a polling

system can be found [17], [18]2. In this regard, a key criterion

used for the analysis of the delay incurred by a polling system

is the pseudo-conservation law which provides closed form

expressions for weighted sum of the means of the waiting times

at the queues [17], [18]. For providing the pseudo-conservation

law for a coalition S ⊆ N composed of a number of UAVs and

a number of tasks, we make the following definitions. First, for

each task i ∈ S with an average arrival rate of λi, and served

by a number of collectors with a link transmission capacity of

µi
S∩M (as given by (1)), we define ρi = λi

µi
S∩M

. Further, we

define ρS ,
∑

i∈S∩T ρi. Given these definitions, for a coalition

S, the pseudo-conservation law is given by [18] (taking into

account that our switchover and service times are deterministic)

∑

i∈S∩T

ρiW̄i = ρS

∑

i∈S∩T
ρi

µi
S∩M

2(1 − ρS)
+ ρS

θ2
S

2

+
θS

2(1 − ρS)

[

ρ2
S −

∑

i∈S∩T

ρ2
i

]

(4)

where W̄i is the mean waiting time at task i and θS =
∑|S∩T |

h=1 θih,ih+1
is the sum of the switchover times given a

path of tasks {i1, . . . , i|S∩T |} followed by the UAVs, with

ih ∈ S∩T , ∀ h ∈ {1, . . . , |S∩T |} and i|S∩T |+1 = i1. Further,

for any coalition S that must form in the system, the following

condition must hold,

ρS < 1. (5)

This condition is a requirement for the stability of any polling

system [17–20] and thus, must be satisfied for any coalition

that will form in the proposed model. Otherwise, the system is

considered unstable and the delay is considered as infinite (as

demonstrated in the next sections, in our case, a coalition where

ρS ≥ 1 will never form).

For a coalition S, the UAVs must determine the order in

which the tasks in S are visited, i.e., the path {i1, . . . , i|S∩T |}
which is an ordering over the set of tasks in S given by S ∩ T .

Naturally, the UAVs must select the path that minimizes the total

switchover time for one round of data collection. This problem

is mapped into the traveling salesman problem [21], where a

salesman, i.e., the UAVs, is required to minimize the time of

visiting a series of cities, i.e., tasks. It is widely known that

the solution for the traveling salesman problem is NP-complete

[21], and hence there has been numerous heuristic algorithms for

finding an acceptable near-optimal solution. One of the simplest

of such algorithms is the nearest neighbor algorithm (also known

as the greedy algorithm) [21]. In this algorithm, starting from

a given city the salesman chooses the closet city as his next

visit. Using the nearest neighbor algorithm, the ordering of the

cities which minimizes the overall route is selected. The nearest

neighbor algorithm is sub-optimal, however, it can quickly find

a near-optimal solution (in most cases) and its computational

complexity is small (linear in the number of cities) [21], hence

2Note that, some approximations exist for polling systems under heavy traffic
or large switchover times [18], but in our problem, they are not suitable as we
require a more general delay expression.

making it suitable for complicated problems such as the task al-

location problem we are considering. Therefore, in the proposed

model, for every coalition S, the UAVs can easily work out the

nearest neighbor route for the tasks, and operate according to it.

Having modeled each coalition as a polling system, the

pseudo-conservation law in (4) allows to evaluate the cost,

in terms of average waiting time (or delay), from forming a

particular coalition. However, for every coalition, there is a

benefit, in terms of the average effective throughput that the

coalition is able to achieve. The average effective throughput

for a coalition S is given by

LS =
∑

i∈S∩T

λi · Pri,BS (6)

with Pri,BS given by (2). Through (4) and (6), one can easily

see that, adding more collectors reduces the delay, while adding

more relays improves the effective throughput, hence each UAV

role (collector or relay) possesses its own benefit for a coalition.

A suitable criterion for characterizing the utility in networks

where there is a trade off between the throughput and the delay

is the concept of system power which is defined as the ratio

of some power of the throughput and the delay (or a power of

the delay) [22]. Hence, the concept of power is an attractive

notion that allows to capture the fundamental trade off between

throughput and delay in the proposed task allocation model.

Power has been used thoroughly in literature in applications that

are sensitive to throughput as well as delay [23–25]. Mainly, for

the proposed game, the utility of every coalition S is evaluated

using a coalitional value function based on the power concept

from [25] as follows

v(S) =







δ
L

β

S

(
∑

i∈S∩T
ρiW̄i)(1−β) if ρS < 1 & |S| > 1

0 otherwise
(7)

where β ∈ (0, 1) is a throughput-delay trade off parameter. The

term δ represents the price per unit power that the network offers

to coalition S. In this sense, the utility function in (7) represents

the total revenue achieved by a coalition S, given the network

power that coalition S generates. For coalitions that consist of a

single UAV or a single task, i.e., coalitions of size 1, the utility

assigned is 0 due to the fact that such coalitions generate no

benefit for their member. Further, any coalition where condition

(5) is not satisfied is also given a zero utility, since, in this case,

the polling system that the coalition represents is unstable, and

hence having an infinite delay.

Consequently, given the set of players N , and the value

function given in (7), we define a coalitional game (N , v) with

transferable utility (TU). The utility in (7) represents the amount

of money or revenue received by a coalition, and hence, this

amount can be arbitrarily apportioned between the coalition

members, which justifies the TU nature of the game. For dividing

this utility between the players, we adopt the equal fair allocation

rule, whereby the payoff of any player i ∈ S, denoted by xS
i is

simply given by

xS
i =

v(S)

|S|
. (8)



The payoff xS
i represents the amount of revenue that player i ∈

S receives from the total revenue v(S) that coalition S generates.

Although in traditional coalitional games, the allocation rule may

have a strong impact on the game’s solution, for the proposed

game, other allocation rules can be used with little impact on the

analysis that is presented in the rest of the paper due to the nature

and class of the proposed game which is quite different from

traditional coalitional games. In fact, as clearly seen from (4)

and (7), whenever the number of tasks in a coalition increases,

the total delay increases, hence reducing the utility from forming

a coalition. Further, in a coalition where the number of tasks is

large, the condition of stability for the polling system, as given

by (5), can be easily violated due to heavy traffic incoming

from a large number of tasks, thus, yielding a zero utility as per

(7). Hence, forming coalitions between the tasks and the UAVs

entails a cost that can limit the size of a coalition. In this regard,

traditional solution concepts for TU games, such as the core [16],

may not be applicable. In fact, in order for the core to exist,

as a solution concept, a TU coalitional game must ensure that

the grand coalition, i.e., the coalition of all players will form.

However, as seen in Figure 1 and corroborated by the utility

in (7), in general, due to the cost for coalition formation, the

grand coalition will not form. Instead, independent and disjoint

coalitions appear in the network as a result of the task allocation

process. In this regard, the proposed game is classified as a

coalition formation game [26–30], and the objective is to find

an algorithm that allows to form the coalition structure, instead

of finding only a solution concept, such as the core, which aims

mainly at stabilizing a grand coalition.

B. Task Allocation as a Hedonic Coalition Formation Game

As already mentioned, the proposed task allocation model

entails the formation of disjoint coalitions, and hence the pro-

posed game is classified as a coalition formation game. In

fact, coalition formation has been a topic of high interest in

game theory [26–30]. Notably, in [28–30], a class of coalition

formation games known as hedonic coalition formation games

is investigated. This class of games entails several interesting

properties that can be applied, not only in economics such as in

[28–30], but also in wireless networks as we will demonstrate in

this paper. The two key requirements for classifying a coalitional

game as a hedonic game are [28]

1) The payoff of any player depends solely on the members

of the coalition to which the player belongs, and

2) the coalitions form as a result of the preferences of the

players over their possible coalitions’ set.

These two conditions characterize the framework of hedonic

games. Mainly, the term hedonic pertains to the first condition

above, whereby the payoff of any player i, in a hedonic game,

must depend only on the identity of the players in the coalition to

which player i belongs, with no dependence on the other players.

For the second condition, in the remainder of this section, we

will formally define how the preferences of the players over the

coalitions can be used for the formation process. Hereafter, we

refer to the above requirements as the hedonic conditions.

Prior to investigating the application of hedonic games in the

proposed model, we introduce some definitions, taken from [28].

Definition 1: A coalition structure or a coalition partition

is defined as the set Π = {S1, . . . , Sl} which partitions the

players set N , i.e., ∀ k , Sk ⊆ N are disjoint coalitions such

that ∪l
k=1Sk = N (an example of a partition Π is shown in

Figure 1).

Definition 2: Given a partition Π of N , for every player i ∈
N we denote by SΠ(i), the coalition Sk ∈ Π, such that i ∈ Sk.

In a hedonic game setting, each player must build preferences

over its own set of possible coalitions. In other words, each

player must be able to compare the coalitions, and order them

based on which coalition the player prefers being a member

of. For evaluating these preferences of the players over the

coalitions, we define the concept of a preference relation or order

as follows [28]

Definition 3: For any player i ∈ N , a preference relation or

order ºi is defined as a complete, reflexive and transitive binary

relation over the set of all coalitions that player i can possibly

form, i.e., the set {Sk ⊆ N : i ∈ Sk}.

Consequently, for a player i ∈ N , given two coalitions S1 ⊆ N
and, S2 ⊆ N such that i ∈ S1 and i ∈ S2, S1 ºi S2 indicates

that player i prefers to be part of coalition S1, over being part

of coalition S2, or at least, i prefers both coalitions equally.

Further, using the asymmetric counterpart of ºi, denoted by

≻i, S1 ≻i S2, indicates that player i strictly prefers being a

member of S1 over being a member of S2. For every application,

an adequate preference relation ºi can be defined to allow the

players to quantify their preferences. The preference relation

can be a function of many parameters, such as the payoffs that

the players receive from each coalition, the weight each player

gives to other players, and so on. Given the set of players N ,

and a preference relation ºi for every player i ∈ N , a hedonic

coalition formation game is formally defined as follows [28].

Definition 4: A hedonic coalition formation game is a coali-

tional game that satisfies the two hedonic conditions previously

prescribed, and is defined by the pair (N ,≻) where N is the

set of players, and ≻ is a profile of preferences, i.e., preference

relations, (º1, . . . ,ºN ) defined for every player in N .

Having laid out and defined the main components of hedonic

coalition formation games, we utilize this framework in order

to provide a suitable solution for the task allocation problem

proposed in Section II. For instance, the proposed task allocation

problem is easily modeled as a (N ,≻) hedonic game, where

N is the set of UAVs and tasks previously defined, and ≻
is a profile of preferences that we will shortly define. First

and foremost, clearly, for the proposed game model, given a

network partition Π of N , the payoff of any player i, depends

only on the identity of the members of the coalition to which

i belongs. In other words, the payoff of any player i depends

solely on the players in the coalition SΠ(i) (easily seen through

the formulation of Section III-A). Hence, our game verifies the

first hedonic condition.

Furthermore, for modeling the task allocation problem as a

hedonic coalition formation game, the preference relations of the

players must be clearly defined. In this regard, we define two

types of preference relations, a first type suited for indicating the

preferences of the UAVs, and a second type suited for the tasks.

Subsequently, for evaluating the preferences of any UAV i ∈ M,



we define the following operation (this preference relation is

common for all UAVs, hence we denote it by ºi = ºM, ∀i ∈
M)

S2 ºM S1 ⇔ u(S2) ≥ u(S1) (9)

where S1 ⊆ N and S2 ⊆ N are any two coalitions that contain

UAV i, i.e., i ∈ S1 and i ∈ S2 and u : 2N → R is a preference

function defined over the real line as follows

u(S) =











∞, if S = SΠ(i) & S \ {i} ⊆ T ;

0, if S ∈ h(i);

xS
i . otherwise,

(10)

where Π is the current coalition partition which is in place in the

game, xS
i is the payoff received by player i from any division

of the value function among the players in coalition S such as

the equal fair division given in (8), and h(i) is the history set

of player i. The history set h(i) simply contains coalitions that

player i was a part of in past instances, prior to the formation of

the current partition Π. Note that, using the defined preference

relation, the players can compare any two coalitions S1 and S2

independently of whether these two coalitions belong to Π or

not.

The main rationale behind the preference function u is as

follows. Any UAV i that is the sole UAV servicing tasks in

its current coalition S = SΠ(i), i.e., S ∩M = {i}, assigns an

infinite preference value to S. This is mainly due to the fact that

no UAV has an incentive to leave any group of tasks previously

assigned to it unattended, as the presence of this UAV is crucial

for the operation of these tasks. Hence, the maximum preference

is always given to the current coalition, if this current coalition

does not contain other UAVs. Further, no UAV has any incentive

to re-visit a coalition that it has left previously, and hence, the

UAVs assign a preference value of 0 for any coalition in their

history. Finally, for all the other cases, the preference relation

is easily generated by the UAVs by comparing the value of

the payoffs they receive from the two coalitions S1 and S2.

In summary, between two coalitions S1 and S2, a UAV i prefers

the coalition that gives the better payoff, given that the UAV is

not alone in its current coalition, and the coalition with a better

payoff is not in the history of UAV i.

For the preferences of the tasks, an analogous approach can be

taken. Formally, for evaluating the preferences of any task j ∈
T , we define the following operation (this preference relation is

common for all tasks, hence we denote it by ºj = ºT , ∀j ∈ T )

S2 ºT S1 ⇔ w(S2) ≥ w(S1) (11)

with the tasks’ preference function w defined as follows

w(S) =

{

0, if S ∈ h(i);

xS
i , otherwise.

(12)

The preferences of the tasks are easily captured using the

function w. Simply, each task prefers the coalition that provides

the larger payoff xS
i unless this coalition was already visited

previously and left. In that case, the preference function of

the tasks assigns a preference value of 0 for any coalition

that the task visited and left in the past. Using this preference

relation, every task can evaluate its preferences over the possible

coalitions that the task can form.

Consequently, the proposed task allocation model verifies both

hedonic conditions, and hence, the problem is easily mapped into

a (N ,≻) hedonic coalition formation game, with the preference

relations given by (9) and (11) which are also dependent on

the underlying TU coalitional game described in Section III-A.

Having formulated the problem as a hedonic game, the final

task is to provide a distributed algorithm, based on the defined

preferences, for forming the coalitions.

C. Hedonic Coalition Formation Algorithm

In the previous subsection, we modeled the task allocation

problem as a hedonic coalition formation game. Having laid

out the main building blocks, the remaining objective is to

propose an algorithm for forming the coalitions. While literature

that studies the characteristics of existing partitions in hedonic

games, such as in [28–30], is abundant, the problem of forming

the coalitions both in the hedonic and non-hedonic setting is a

challenging problem [26]. In this paper, we propose an algorithm

for coalition formation that allows the players to make selfish

decisions as to which coalitions they decide to join at any point

in time. The proposed algorithm will exploit the concepts of the

hedonic game model formulated in the previous section.

In this regard, for forming coalitions between the tasks and

the UAVs, we propose the following rule for coalition formation

Definition 5: Switch Rule - given a partition Π =
{S1, . . . , Sl} of the set of players (UAVs and tasks) N , a

player i decides to leave its current coalition SΠ(i) = Sm,

for some m ∈ {1, . . . , l} and join another coalition Sk ∈
Π∪{∅}, Sk 6= SΠ(i), if and only if Sk ∪{i} ≻i SΠ(i). Hence,

{Sm, Sk} → {Sm \ {i}, Sk ∪ {i}}.

Through a single switch rule made by any player i, any current

partition Π of N is transformed into Π′ = Π \ {Sm, Sk} ∪
{Sm \{i}, Sk ∪{i}}. In simple terms, for every partition Π, the

switch rule provides a mechanism through which any player,

task or UAV, can leave its current coalition SΠ(i), and join

another coalition Sk ∈ Π, given that the new coalition Sk ∪ {i}
is strictly preferred over SΠ(i) (through any preference relation

that i is using). Independent of the preference relations selected,

the switch rule can be seen as a selfish decision made by a player,

to move from its current coalition to a new coalition, regardless

of the effect of this move on the other players. Furthermore,

we consider that, whenever a player decides to switch from one

coalition to another, the player can maintain a history set h(i),
which is the set of coalitions that player i belonged to prior to

making a switch decision. Hence, given a partition Π, whenever

a player i decides to leave coalition Sm ∈ Π to join a different

coalition, coalition Sm is automatically stored by player i in its

history set h(i) (hence the history constitutes the coalitions that

a player i left in the past).

Consequently, we propose a coalition formation algorithm

composed of three main phases: task discovery, hedonic coalition

formation, and data collection. In the first phase, the central

command discovers the tasks that require servicing and informs

the UAVs of the locations and characteristics of the tasks (e.g.

the arrival rates), hence the UAVs have knowledge of the initial



partition Πinitial. Once the UAVs are aware of the tasks, they

can interact with each other (and with the tasks), for performing

coalition formation. Hence, the second phase of the algorithm

is the hedonic coalition formation phase. In this phase, all

the players (tasks and UAVs), investigate the possibility of

performing a switch operation. In this context, every player (task

or UAV) has a knowledge of the current structure (depending

on the nature of the tasks, they may know the structure through

the UAVs, without any need to communicate with other tasks).

Given the current structure, each player investigates its top

preference, and decides to perform a switch operation, if possible

through (9) and (11) for the UAVs and tasks respectively. We

consider that, the order in which the players make their switch

operations is random, but sequential. For any UAV, a switch

operation is easily performed as the UAV can leave its current

coalition and join the new coalition, if (9) is satisfied. For the

tasks, any task that finds out a possibility to switch, can request

the nearest UAV to perform this switch on its behalf (if the

nature of the task forbids it to act autonomously). In this regard,

through an inter-UAV communication link, the UAV selected by

the task requests to exchange the concerned task with the new

coalition that the task had selected. Following the formation of

the coalitions, the last phase of the algorithm entails the actual

data collection by the UAVs. In this phase, the UAVs move from

one task to the other, in their respective coalitions, collecting the

data and transmitting it to the central receiver, similar to a polling

system, as explained in Sections II and III-A. A summary of the

proposed algorithm is shown in Table I.

The proposed algorithm can be easily implemented in a

distributed way, since, as already explained, the switch operation

can be performed by the tasks or the UAVs independently of any

centralized entity (although the tasks may require interaction

with the closest UAV). The only information required is the

location of the tasks, which can be broadcasted by the central

command center at the beginning of all time. Further, note that,

for determining whether a UAV acts as a collector or relay within

any coalition, the players can easily compute the configuration

that maximizes the utility in (7). As the number of UAVs is

generally small, this computation is straight forward, and has

low complexity.

IV. SIMULATION RESULTS AND ANALYSIS

For simulations, the following network is set up: The central

BS (command center) is placed at the origin of a 4 km ×4 km

square area with the tasks randomly appearing in the area around

the BS. The path loss parameters are set to α = 3 and κ = 1,

the target SNR is set to γ0 = 10 dB, the pricing factor is set

to δ = 1, and the noise variance σ2 = −120 dBm. All packets

are considered of size 256 bits (typical IP packet size). The

UAVs are considered having a constant velocity of ν = 60 km/h,

a transmit power of P̃ = 100 mW, and a transmission link

capacity of µ = 768 kbps (assumed the same for all UAVs).

Further, we consider two classes of tasks in the network. A first

class that can be mapped to voice services having an arrival

rate of λ1 = 32 kbps, and a second class that can be mapped

to video services, such as the widely known Quarter Common

Intermediate Format (QCIF) format [31], having an arrival rate

TABLE I

THE PROPOSED HEDONIC COALITION FORMATION ALGORITHM FOR TASK

ALLOCATION IN WIRELESS NETWORKS.

Initial State

The network is partitioned by Πinitial = {S1, . . . , Sk}.

At the beginning of all time Πinitial = N = M∪T with no tasks being

serviced by any UAV.

Three phases for the proposed hedonic coalition formation algorithm

Phase I - Task Discovery:

The central BS informs the UAVs of the initial network partition Πinitial.

Phase II - Hedonic Coalition Formation:

In this phase, hedonic coalition formation occurs.

repeat

For every player i ∈ N , given a current partition Πcurrent

(in the first round Πcurrent = Πinitial).

a) Player i investigates possible switch operations using

the preferences given, respectively, by (9) and (11) for the

UAVs and tasks.

b) Player i performs the switch operation that maximizes

its payoff as follows:

b.1) Player i updates its history h(i) by adding

coalition SΠcurrent
(i), before leaving it.

b.2) Player i leaves its current coalition SΠcurrent
(i).

b.3) Player i joins the new coalition that maximizes

its payoff.

until convergence to a final partition Πfinal.

Phase III - Data collection

a) The network is partitioned using Πfinal.

b) The UAVs in each coalition Sk ∈ Πfinal continuously perform

the following operations, i.e., act as a polling system with

exhaustive strategy and switchover times:

b.1) Visit a first task in their respective coalitions.

b.2) The collector-UAVs collect the data from the task that is

being visited.

b.3) The collector-UAVs transmit the data using wireless links

to the BS either directly, or through other relay-UAVs.

b.4) Once the queue of the current is empty, visit the next task.

The order in which the tasks are visited is determined by the nearest

neighbor solution to the traveling salesman problem (Section III-A).

The third phase is continuously repeated and performed by all UAVs

in Πfinal.

λ2 = 128 kbps. Tasks belonging to each class are generated

with equal probability. The trade off parameter β is set to 0.7,

to indicate services that are reasonably delay tolerant.

In Figure 2, we assess the performance of the proposed

hedonic coalition formation algorithm, in terms of the average

payoff (revenue) per player (UAV or task) for a network having

M = 5 UAVs, as the number of tasks increases. The results are

averaged over the random positions of the tasks (each task can

belong to one of the two classes previously mentioned with equal

probability). In this figure, we compare the performance with an

algorithm that assigns the tasks equally among the UAVs (i.e. an

equal group of neighboring tasks are assigned for every UAV).

Figure 2 shows that the performance of both algorithms is apt to

decrease as the number of tasks increases. This is mainly due to

the fact that, for networks having a larger number of tasks, the

delay incurred per coalition, and thus per user increases. This

increase in the delay is not only due to the increase in the number

of tasks, but also to the increase in the distance that the UAVs

need to travel within their corresponding coalitions (increase

in switchover times). However, it is clear that the proposed

algorithm outperforms the equal allocation at all network sizes.
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Fig. 2. Performance assessment, in terms of average player (UAV or task) payoff
(revenue), of the proposed hedonic coalition formation algorithm compared to
an algorithm that allocates the neighboring tasks equally among the UAVs as
the number of tasks increases for M = 5 UAVs.

This performance improvement decreases with the increase in

the number of tasks, but the improvement, in terms of average

payoff, yielded by the proposed algorithm is no less than 61.96%
better than the equal allocation (at T = 25). The reduction in

the performance gap between the two algorithms stems from the

fact that, as more tasks exist in the network, for a fixed number

of UAVs, the possibility of forming large coalitions, through the

proposed hedonic coalition formation algorithm is reduced, and

hence the structure becomes closer to equal allocation.

In Figure 3, we show a snapshot of the final network parti-

tion reached through the proposed hedonic coalition formation

algorithm for a network of M = 5 UAVs and T = 10 randomly

located tasks. In this figure, tasks 1, 3, and 8 belong to the

QCIF video class, while the remaining tasks belong to the voice

class. Through Figure 3, it is shown how the UAVs and tasks

can agree on a partition whereby a number of UAVs service a

group of nearby tasks. For the network of Figure 3, the tasks are

distributed into three coalitions, two of which (coalitions S1 and

S3) are served by a single collector-UAV. In contrast, coalition

S2 is served by two collectors and one relay. The UAVs in

coalition 2 divided their roles depending on the achieved utility.

For instance, having two collectors and one relay provides a

utility of coalition is S2 is v(S2) = 51.48 while having three

collectors yields a utility of v(S2) = 10.92 , and having one

collector and two relays yields a utility of v(S2) = 44.39 .

Clearly, the case of two collectors and one relay maximizes the

utility and is agreed upon between the players. Finally, it must

be noted that, the coalitions in Figure 3 are dynamic, in the

sense that, within each coalition, the UAVs move from one task

to the other, collecting and transmitting data to the . The order

in which the UAVs visit the tasks, as indicated in Figure 3,

is generated using a nearest neighbor solution for the traveling

salesman problem (see Section III-A).

Finally, in Figure 3, we show the average coalition size

resulting from the proposed algorithm as the number of tasks
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Fig. 3. A snapshot of a final coalition structure resulting from the proposed
hedonic coalition formation algorithm for a network of M = 5 UAVs and
T = 10 tasks.

T increases, for a network of M = 5 UAVs and randomly

deployed tasks. The results are compared with the equal allo-

cation algorithm. In this figure, we note that, as the number of

tasks increases, the average coalition size for both algorithms

increases. For the proposed algorithm, this is an immediate

result of the fact that, as the number of tasks increases the

probability of forming larger coalitions is higher. Further, at all

network sizes, the proposed algorithm yields larger coalitions

than the equal allocation algorithm. This result implies that,

by allowing the players (tasks and UAVs) to selfishly select

their coalitions, through the proposed algorithm, the players

have an incentive to structure themselves in relatively large

coalitions. In a nutshell, through hedonic coalition formation,

the resulting topology, generally consists of a small number of

large coalitions, rather than a large number of small coalitions.

V. CONCLUSIONS

In this paper, we proposed a novel model for task allo-

cation among a number of agents, such as unmanned aerial

vehicles (UAVs) in a wireless communication network. In the

proposed model, a number of UAVs are required to service

several tasks, randomly located in a given area. Each task

represents a queue of packets that require collection and wireless

transmission to a centralized receiver by the UAVs. The task

allocation problem is modeled as a hedonic coalition formation

game between the UAVs and the tasks that interact in order to

form disjoint coalitions. Each formed coalition is mapped to a

polling system which consists of a number of UAVs continuously

collecting packets from a number of tasks. Within a coalition, the

UAVs can act either as collectors that move between the different

tasks present in the coalition for collecting the packet data,

or relays for improving the wireless transmission of the data

packets. For forming the coalitions, we propose an algorithm that

allows the players (tasks or UAVs) to join or leave the coalitions

based on their preferences which capture the trade off between
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Fig. 4. Average coalition size yielded by the proposed hedonic coalition
formation algorithm and an algorithm that allocates the neighboring tasks equally
among the UAVs, as a function of the number of tasks T for a network of 5
UAVs.

the effective throughput and the delay achieved by the coalition.

Simulation results show how the proposed algorithm allows the

UAVs and tasks to self-organize into independent coalitions,

while improving the performance, in terms of average player

(UAV or task) payoff, of at least 61.96% relatively to a scheme

that allocates nearby tasks equally among UAVs. In a nutshell,

by combining concepts from wireless networks, queueing theory

and novel concepts from coalitional game theory, we proposed

a new model for task allocation among autonomous agents in

communication networks which is well suited for many practical

applications such as surveillance, monitoring, or data collection

in wireless networks.
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