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Abstract— Reinforcement learning (RL) is a widely used properties have not been investigated (notable exceptions

paradigm for learning control. Computing exact RL solutions is  where convergence is studied are the actor-critic algosth
generally only possible when process states and control actions in [12], [13]).

take values in a small discrete set. In practice, approximate In thi how that f iteration i istent
algorithms are necessary. In this paper, we propose an ap- N this paper, we show that fuzzy Q-iteration is consistent.

proximate, model-based Q-iteration algorithm that relies on Namely, under appropriate assumptions on the dynamics and
a fuzzy partition of the state space, and a discretization of on the reward function, it is shown that the approximate
the action space. Using assumptions on the continuity of the solution converges to the optimal solution, asymptotjcas
dynamics and of the reward function, we show that the resulting - 1o maximum distance between the cores of adjacent fuzzy
algorithm is consistent, i.e., that the optimal solution is obtained . . . .
asymptotically as the approximation accuracy increases. An set§, and the maximum dlstgnce _bet\_Neen adjacent _d|screte
experimental study indicates that a continuous reward function ~actions, decrease to 0. A discretization procedure is used
is also important for a predictable improvement in performance  to approximate the continuous (or discrete but large) actio
as the approximation accuracy increases. space. The convergence properties of fuzzy Q-iteration are
l. INTRODUCTION not gffected by thi§ disqret?;atioh procedure. Additi@mal'
the influence of discontinuities in the reward function is

Reinforcement learning (RL) is a popular paradigm fof, o tigated in a numerical example involving a seconceord
learning control, thanks to its mild assumptions on th?notion system

process (which can be nonlinear and stochastic), and bEECausThe rest of this paper is structured as follows. Section I

it can work without an eXP"C't model of the process [Mintroduces the RL problem and reviews some relevant results
[2]. An RL cpntr_oller receives a scalar reward signal aom dynamic programming. Section Ill presents fuzzy Q-
fegdback on its |!”nmed|ate perfo.rman_ce, and has to Mafaration and recalls its convergence properties. Theisons
mize the .cumulat|ve reward pbta!ned in the Iong. run. Mostrency of fuzzy Q-iteration is studied in Section IV. Sectin

RL algqnthms work by estimating value functions, i.e.,;ce5 gn example to illustrate the performance impact of
cumulative rewards as a function of the process state affl.,ntinyities in the reward function. Section VI outtine
possibly of the control action. In general, the classical Rl'rdeas for future work and concludes the paper.

algorithms only work when the state-action space of the

problem has a finite (and not too large) number of elements. II. REINFORCEMENTLEARNING

Therefore, approximate algorithms are necessary in pecti

: . In this section, the RL task is briefly introduced and its
where state-action spaces are usually large or continuous.,. S .
optimal solution is characterized [1], [2].

Two desirable properties of approximate algorithms are con . L S
vergence to a near-optimal solution and consistency, Whi%tck:]o?hsédsetra?e dsetzg('m;:g/’zg% ndsec;sclgp ,irqoecfésngi\fig f )
means asymptotical convergence to the optimal solution as P ' P '

the approximation accuracy increases unction f : X x U — X, and the reward functionp :
F . . . : . tX x U — R.I As a result of the control action;, in the
uzzy Q-iteration [3], [4] is a model-based algorithm tha ' . .
" . - statex;, at the discrete time step, the state changes to
represents value functions using a fuzzy partition of tlagest — F(zn, u). At the same time, the controller receives
space, and requires a discrete action space. The appraxim[%t;r1 ks k) k

value function is a linear combination of the parameter he |Srr(1: ?r:g[jizveyaerf?eiltggfagé JOZ P Eaikt’:;)s Vr\:(r)]tlﬁ?n e\ftl)lé?ﬁ[eifs
where the weights are the fuzzy membership values. Usi ko Y 9

results from the rich literature on RL with linear approximalgng'term effects. For simplicity, we consider in this pape

fon 13 (S5, uzzy Qeeraton s shown n (), 4] o 0 1€ St case & Sochasto fmuator, s
converge to an approximate value function that is within % )  €XP . P
: . ransitions must be considered. Our algorithm and resatts c
bound from the optimal value function. be easily extended to stochastic MDPs if the expectations ca
A number of related fuzzy approximators have been prq- y P
e evaluated exactly.

posed and applied to model-free RL, e.g., Q-learning [9], The controller chooses actions according to its policy

[10] or actor-critic algorithms [11]-[13]. However, most o ) - .
these approaches are heuristic in nature, and their thmjretX - U, using uy, = h(xk)f T_he goal Qf the coniroller is
to learn a policy that maximizes, starting from the current
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moment in time k£ = 0) and from any initial statex,, the Fuzzy Q-iteration was introduced in [3], [4] for discrete

discounted return: (or already discretized) action spaces. Here, the algorith
o) oo extended to continuous action spaces using an explictracti
R=> Frea =Y +Fplar, ux) (1) discretization procedure.
k=0 k=0 The proposed approximation scheme relies on a fuzzy

wherey € [0,1) and z1 = f(zp, uy) for & > 0. The partition of the state space, and a discretization of the

discounted return compactly represents the reward accunfiflion space. The fuzzy partition containé fuzzy sets,

lated by the controller in the long run. The learning task i§ach described by a membership function: X — [0, 1],

therefore to maximize the long-term performance, whilgronl? = 1. - -, V. A statex belongs to each sewith a degree of

using feedback about the immediate, one-step performan&embershipp;(z). In the sequel the following assumptions

One way to achieve this is by computing the optimal actior@'® made. - o

value function. Assumption 1. The fuzzy partition satisfies the follow-
An action-value function (Q-function)” : X x U — R, NG

gives the return of each state-action pair under a giveryoli 1.1. (Normalized partition) The fuzzy partition has been

b normalized, i.e.,Zf\Ll vi(z) =1, Vo e X.
> 1.2. (Normal fuzzy sets) All the fuzzy sets in the partition
Q" (@, u) = p(w,u) +Z7k’)(x’“’h($’“)) @ are normal and have singleton cores, i.e., for every
k=1 i there exists a unique:; for which o;(z;) = 1
where z1 = f(z,u) and xx11 = f(ax, h(xy)) for (consequentlyy; (x;) = 0 for all i # i by Assumption
k > 1. The optimal action-value function is defined as 1.1). The stater; is called the core (center value) of
Q* (x,u) = max;, Q"(x,u). Any policy that picks for every the i-th set.
state an action with the highest optimal Q-valké(z) = Assumption 1.1 is not restrictive, because any fuzzy par-

arg max, Q*(z,u), is optimal (it maximizes the return). tition can be normalized as long as for anythere is some

A central result in RL, upon which many algorithms rely,i such thaty;(x) > 0. Assumption 1.2 is required here for
is the Bellman optimality equation brevity in the description and analysis of the algorithnts; i

N _ . p can be relaxed using results of [5].
Q" (z,u) = p(2,u) +ymax Q*(f(z,u)v))  (3) A discrete set of action, = {u;|u; € U,j =1,..., M}

This equation can be solved using the Q-value iteratiof} chosen from the action space. The fuzzy approximator
algorithm. Let the set of all Q-functions be denoted bytores anv x M matrix of parameters, with one component
Q. Define the Q-iteration mappin@ : Q@ — Q, which 0;; corresponding to each pair of fuzzy core and discrete

computes the right-hand side of the Bellman equation fgction (Ii’“j_)' _ . . .
any Q-function: Fuzzy Q-iteration uses the classical Q-value iteration

mapping 17" (4), together with an approximation mapping
[T(Q)](x,u) = p(x,u) + v max Q(f(z,u),u') (4) and a projection mapping. The approximation mappifig
) ) ) wey ) takes as input a parametgrand outputs an approximate Q-
Using this notation, the Bellman equation (3) states tat  fynction. For every state-action pdir, u), this approximate
is a fixed point ofT, i.e., Q* = T(Q*). It is well-known Q-function is computed as follows:
that 7" is a contraction with factory < 1 in the infinity N
norm, i.e., for any pair of function® and@’, it is true that A _ _ , N
17(@) - T(@) e <71@ - Q... Q) = PO ) = 2 (0

> ! : : . 5
The Q-value iteration (Q-iteration, for short) algorithm N . ®)
o ; e with j = argmin |ju — ;]|
uses ara priori model of the task, in the form of the transition =1, M =
and reward functionsf, p. The algorithm starts from an - . . .
where]|| - ||, here as well as in the sequel, is the Euclidean

rbitrary Q-function nd in h iterati h L ) . .
arbitrary Q-function@o and in each iteratiorf updates the norm of the argument. This is a linear basis functions form.

Q-function using the formul&,,, = T(Q.). Becausel is . . o .
a contraction, it has a unique fixed point. From (3), this poin':or a fixedz, the approximator is piecewise constant over

is ", so Q-iteration converges 10" as/ — oo. each ce_II (set) in the Vo_r0n0| partition @f corrgspondlng
to the discrete set of points,. Ties in thearg min over j

[1l. Fuzzy Q-ITERATION have to be broken consistently (e.g., always in favor of the

In this section, the approximate, fuzzy Q-iteration algoSMallest index that satisfies the condition).
rithm is introduced. The state and action spaces of the MDP Th€ Projection mapping infers from a Q-function the val-
may be either continuous or discrete, but they are assumedHgs Of the approximator parameters according to the retatio
be subsets of Euclidean spaces, such that the 2-norm of the 0;; = [P(Q)]i; = Q(x,u;) (6)
states and actions is well-defined. When the state (and/or t_reﬁ_ is th lutiord h blem:
action space) is discrete, fuzzy approximation is usefldrwh Is Is the solutiory to the problem:
the numberlof di.scre.te valugs is large, making the apptinati Z [FO)] (2, u;) — Qs,u)|* =0
of exact Q-iteration impractical. i=1,...,N,j=1,....M



The (synchronousfuzzy Q-iteration algorithm starts with IV. CONSISTENCYANALYSIS
an arbitraryf,, and approximately computes the Q-iteration
mapping. This is done using the composition of the mappings This section gives our main result: the consistency of
P, T, and F: (synchronous and asynchronous) fuzzy Q-iteration is estab
0ey1 = PTF(6y) (7) lished, i.e., it is shown that the approximate solutiB(®*)
converges to the optimal Q-functia@*, asymptotically as
This composite mapping is applied iteratively urtilhas the maximum distance between the cores of adjacent fuzzy
converged. The convergence criterion is usually approtéma sets, and the maximum distance between adjacent discrete
max; ; |0et1,65 — Ori sl < €. An approximately optimal actions, decrease to O.
policy can then be computed with: Define the resolutions of the fuzzy approximator over the

x " state space, and respectively over the action space:
h(z) =wuj~, j*=arg mJaX[F(G N(z,uj) (8) P P y P

Of course, any action in thg*-th Voronoi cell of U could 0g = Iglgf;g;lﬂmN lz = =i (11)
b(?k used, but begaL_Jse_t_he algorithm estl_mates the Q-values 5, =max min |u— u;] (12)
Q*(x;,u;), there is intuitively greater confidence that- is uel j=1,..,M

optimal, rather than another action in the cell.

An asynchronous version of the algorithm can be givewherez; is the core of thei-th membership function, and
that makes more efficient use of the updates, by using the is the j-th discrete action. The goal is to show that
latest updated values of the parameteis each step of the lims, o, 5,0 F'(6*) = Q*. The following assumptions are
computation [3], [4]. made.

It is easy to show that in order to compute the maxi- Assumption 2: There exists a finitex > 0 such that,
mizations in the approximate Bellman updates of fuzzy Qregardless ofV, the fuzzy membership functions satisfy:
iteration, it suffices to consider only the discrete actidrss
discrete-action version of Q-iteration is defined as foow N

sup Z wi(@)]|z — x| < v,
rzeX i—1

[To(@))(z,u) = p(z,u) +~ max Q(f(x,u),u;) (9) -1 _
g=t-U In the end of Section IV, we show that triangular fuzzy
This result is very useful in the practical implementatiorPartitions (of the type used in the example of Section V)
of fuzzy Q-iteration. Namely,PTF can be implemented Salisfy this assumption.
as PT,F, using the fact that all the Q-functions that are Assumption 3: The dynamicsf and the reward function
considered by the fuzzy Q-iteration algorithm are of therfor p satisfy the following conditions:
F(8). The maximization oveU n th'e original T mappiNg 3 1 (Lipschitz continuity) They are Lipschitz continuous
can be_ replaced with a max!mlzatlon over the discrete set with Lipschitz constants.; and respectivelyL,:
Uy, which can be solved using enumeration for moderate
%blixghnigg(%’),no distances in need to be computed to If (2, 0) — Flaw)ll < Ly(le — al| + lu— ul)
The following results are true for the original fuzzy Q- p(z,u) — p(z,u)| < Lp([lz — zf| + |lu —ul)
iteration in [3], [4], and can be easily extended to account
for the action discretization. 3.2. The Lipschitz constant of satisfies:Ly < 1/7.
Proposition 1: The following statements are true about Lipschitz conditions similar to Assumption 3.1 are typi-
fuzzy Q-iteration. cally needed to prove consistency of approximate RL algo-

1.1. (Convergence) Fuzzy Q-iteration converges to afithms. _ _ _ _ _ _
unique, optimal parameter (both in its synchronous ~ As a first step to proving consistency, the Lipschitz conti-
and asynchronous versions). nuity of @Q* is established. This will help later on in proving

1.2. (Convergence speed) Asynchronous fuzzy Q-iteration that a fixed-point off’ P can be made arbitrarily close ©@*
converges at least as fast as synchronous fuzzy ®y increasing the resolution of the approximator. Consiste
iteration. will then follow from item 1.3 of Proposition 1.

1.3. (Suboptimality) Definee = ming ||Q* — Q|| _ where Lemma 1 (Lipschitz continuity of Q*): There exists a fi-

Q is any fixed point of the composite mappitgP” :  nite L such that under Assumption 3:

Q — Q. The convergence poirit* satisfies:

. 2 Q(z,u) — Q" (z w)| < Loz — zl| + |[u — ul)
1Q" = F(67)]l < 1_ (10) Proof: Define the seriegQ,},-, as follows:Qy = p;
The proofs rely on the fact that becauBeand F are non- Q41 = T(Qy), £ > 0. It is well known thatlim,_.., Q, =
expansions, the composite mappify'F' is a contraction Q* [1]. We show by induction thaf), is Lipschitz with the
with factory < 1 and with the unique fixed poirét*. Lipschitz constantLg, = L, Zi:o Y*Ls*. Indeed,Lg, =




L,, and:
[T(Q))(z, w) = [T(Qo)](z, w)]
= |p(w,u) + 5 max Qu( f(z, u), w') —
plz, w) — ymax Q(f(z,w),v)

<Ip(x,u) — p(z,u)| +
¥ [ max [Qe(f (2, w), w') = Qu(f(,w), )

Due to Assumption 3.1p(x, u) — p(z, u)| < L,(||z
|lu — u||). For the second term:

—z|+

¥ [max [Qe(F (), ) = Qu(f (w0
< ymax Lo, || f(z,u) — f(z, )|

=Lq, || f(z,u) — f(z,u)]
<yLq,L(l|lx — z|| + [Ju — ul|)

where we used the Lipschitz continuity &% andf There—
foré, Lay,. = Ly+7Lq.Ly = Ly+9LsL, Yoo V'L =

L Zi*})fy ¥ and the induction is complete. Taklng the
limit as ¢ — o0, it follows thatLg = L, 33, v* L ¢* which
under Assumption 3.2 is finite and equall@ 1_Lafo

Proposition 2 (Consistency): Under Assumption 2 and
Assumption 3, synchronous and asynchronous fuzzy Q-

iteration are consistent, i.dims__.o.s, 0 F (0

Proof: We will
0, where ¢ =

) =Q"
show that lims, 05,06 =
ming ||Q* - Q|| with @ any fixed

point of FP. Using Proposition 1.3, this implies that ®a,n,(z4) = max (0,

limg, —0,6,—0 [ £'(6%)
the desired result.

DefineQ = FPQ*, i.e

- Q*Hoo

= 0, which is equivalent to

Z%

Q" (w4, u;) with j = arg min [[u — |
J

This Q-function is a fixed point of FP. We now
establish an upper bound 0||1Q Q* Obviously,

|Q* (i, uj) — Q(zi,uy)| = 0 becauseQ(xi,uj) =
Q*(x;,uj). Take nowz,u such thatr # z; Vi, or u ¢ U,

and letj = argmin; [[u — u,||. Then:
|Q* (z,u) — Q(z,u)| = ‘ (z,u) anz Q" (w4, uy )
S‘Q (JJ,U)—Q (LL',’LL])“"

Q*(x,u;) = > i()Q" (i, uy)

N
| =1
(13)

BecauseZﬁV 1 ¢i(z) =1, the second term can be written:

(x,u;) —

Q" (i, uy)]

N
gZ 2 Q () — Q*(wnyu)| (14)
N

<l

=1
where the last step follows from Assumption 2, and the
Lipschitz continuity of Q* was used. Using again the
Lipschitz continuity of @*, and the definition ofd,,
|Q* (z,u) — Q*(z,u;)| < Lo|lu — uj|| < Lgd,. Using this
and (14) in (13), we find:

|Q*(z,u) — Q(x,
Therefore,|Q* — Q||

LQ||$ - .Z’l” < LQU(S

u)| < Lo(8u + v6,)
< Lg(0u+1d,), and becausé g

and v are finite,lims, o5, -0 ||Q* — QHOO = 0. Sincee <
|Q* = Q]| . lims, ~0,5,—0c = 0 and the proof is complete.
[ ]

Triangular fuzzy partitions

A simple type of fuzzy partition that satisfies Assump-
tion 1 can be obtained as follows. For each state variable
xg With d = 1,...,n, a numberN, of triangular fuzzy
membership functions are defined as follows:

Cd,2 — Xqd
¢d,1(zq) = max | 0, ——
Cd,2 — Cd,1
. Td —Cdi—1 Cdi+1 — Td
¢a.i(rq) = max [0, min ( il Tt )]
Cd,i — Cdyi—1 Cdyi+1 — Cdi
fori=2,...,Ng—1

T4 — Cd,Ny;—1 )
Cd,Ngy — Cd,Ng—1

wherecq < ... < cq,n, Is the array of cores, which com-
pletely determines the shape of the membership functions,
andxg € [cq1,cq,n,]- Adjacent functions always intersect

at a 0.5 membership level. Then, the product of each combi-
nation of (single-dimensional) membership functions dgel

a pyramidal-shaped-dimensional membership function in
the fuzzy partition ofX. Next, it is shown that this type of
fuzzy partition also satisfies Assumption 2.

For simplicity, assume that the fuzzy cores are equidistant
along each dimension ok, and the distance between two
adjacent cores is the same along every dimension. This means
that every pointz € X falls inside a hypercube, or on
the common boundary of several identical hypercubes. In
the latter case, just pick any of these hypercubes. Only
the membership functions with the cores in the corners of
the hypercube can take non-zero values, and the number of
corners is2"™ wheren is the dimension ofX. Furthermore,
the distance between any point inside the hypercube and any
of its corners is at mostd,.. Therefore, we have:

s z il

x)||x— ;]| <2"20,
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(a) Quadratic reward (16). (b) Discontinuous reward (17).

Fig. 1. A projection of the reward functions on the state spdor v = 0.

and a choice off = 2"*! indeed satisfies Assumption 2.  state inside this rectangular region, and penalizes transi
that take it outside. A projection gf on X, for u = 0, is
presented in Figure 1(b).

In this section, a numerical example is used to illustrage th  |n order to study the consistency of fuzzy Q-iteration,
practical impact of discontinuities in the reward functiom g triangular fuzzy partition with\V equidistant cores for
the consistency of the fuzzy Q-iteration algorithm. Cossid each state variable was defined, leading to a total number
the second-order motion system described by the followingf N = N? fuzzy sets. The value ofV was gradually
discrete-time dynamics: increased fron® to 41. Similarly, the action was discretized
into M equidistant values, witi/ ranging in{3,5,...,15}
(only odd values were used because the 0 action is necessary
for a good policy). Fuzzy Q-iteration was run for each
combination of N and M, and with both reward functions
The sample time i = 0.005 seconds. The position; ,  (16) and (17). The convergence threshold was sei,fo=
is bounded td—, 7], and the velocityrs j to [~167,167].  10~° to ensure the obtained parameter vector is clog# to
The control inputu, € [—10, 10]. The performance of the policies obtained with fuzzy Q-

In the first part of our experiment, RL control was usedteration is given in Figure 2. Each point in these graphs
to solve a discounted, linear quadratic regulation problencorresponds to the return of the policy, averaged over the
described by the reward function (also seen in Figure 1(a)yrid of initial statesX, = {—m, —57/6, —47/6,..., 7} X
{—167, —14m,...,167}. The returns are evaluated using

V. EXPERIMENTAL STUDY

Tpr1 = f(xp,ux) = Axg + Buy

4 [1 00040 o [0.0021 (15)
10 0.9540] 7 |0.8505

_ _ T o 2
Tt = ok, k) = —a W — wuy simulation, with a precision of).1. Whereas the reward
W = {5 0 } . w =001 (16) " functions used for Q-iteration are different, the perfonce
0 0.01 evaluation is always done with the reward (16). As explained

The discount factor was chosen= 0.95. This reward the change in the reward function preserves the qualityef th
function is smooth and has bounded support; therefore, it R9licies, so comparing policies in this fashion is meanihgf
Lipschitz. The transition function is Lipschitz with coast ~ The qualitative evolution of the performance is similar whe
Ly < max{||All,,||Bl,} = 1.0001 < 1/~. Therefore, the evaluated with (17).
problem satisfies Assumption 3. . ' . Discussion

In the second part of the experiment, a discontinuous term

was added to the reward function (16): When thg coqtinupus reward is'used, the performance
) of fuzzy Q-iteration is close to optimal folN = 10 and
P (@r, ur) = p(zk, uk) + v (f @k, uk)) — ¥ (k) remains relatively smooth thereafter — see Figures 2(a) and

small for N # 4. However, when the reward is changed to
the discontinuous (17), the performance varies signifigant
The termvy(f (zk, ur)) — ¢ (zy) is called a shaping reward as N increases — see Figure 2(b). For many values\of
[14]. It needs to have this specific form in order to preservéhe influence ofAM becomes significant. Additionally, for
the quality of the policies, in the sense that for any policynany values ofN the performance is worse than with the
h, ||Qk — Q3 . < ¢ implies @k — @3]l < e where continuous reward function — see Figure 2(d).

Q, is a Q-function under the rewaya[14]. The functiony An interesting and somewhat counterintuitive fact is that
is chosen positive in a rectangular region around the arigithe performance is not monotonous M and M. For a
Therefore, the shaping term rewards transitions that taée tgiven value of IV, the performance sometimedecreases

10 if |z < /4 and |zo] <47 (17) 2(c). Also, the influence of the number of discrete actions is
Vie) = 0 otherwise
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Fig. 2. The performance of fuzzy Q-iteration as a functiom\dfand M, for quadratic and discontinuous reward.

as M increases. Similar situations occur d¢ is kept of the performance (convergence, sub-optimality, consis-
fixed and N varies. This effect is present with both rewardtency) of the various types of linear approximators thatlman
functions, but is much more significant in Figure 2(b) thartombined with the Q-value iteration algorithm (e.g., radia
in Figure 2(a) (see also Figure 2(c)). The magnitude of thigasis functions, Kuhn triangulations, etc.). Finally, i@t
changes decreases significantly sisand M become large space approximators more powerful than Voronoi partitions
in Figures 2(a) and 2(c); this is not the case in Figure 2(bkould be investigated (e.g., approximators based on fuzzy
partitions of the action space).
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