
Consistency of Fuzzy Model-Based Reinforcement Learning

Lucian Buşoniu, Damien Ernst, Bart De Schutter, and Robert Babuška

Abstract— Reinforcement learning (RL) is a widely used
paradigm for learning control. Computing exact RL solutions is
generally only possible when process states and control actions
take values in a small discrete set. In practice, approximate
algorithms are necessary. In this paper, we propose an ap-
proximate, model-based Q-iteration algorithm that relies on
a fuzzy partition of the state space, and a discretization of
the action space. Using assumptions on the continuity of the
dynamics and of the reward function, we show that the resulting
algorithm is consistent, i.e., that the optimal solution is obtained
asymptotically as the approximation accuracy increases. An
experimental study indicates that a continuous reward function
is also important for a predictable improvement in performance
as the approximation accuracy increases.

I. I NTRODUCTION

Reinforcement learning (RL) is a popular paradigm for
learning control, thanks to its mild assumptions on the
process (which can be nonlinear and stochastic), and because
it can work without an explicit model of the process [1],
[2]. An RL controller receives a scalar reward signal as
feedback on its immediate performance, and has to maxi-
mize the cumulative reward obtained in the long run. Most
RL algorithms work by estimating value functions, i.e.,
cumulative rewards as a function of the process state and
possibly of the control action. In general, the classical RL
algorithms only work when the state-action space of the
problem has a finite (and not too large) number of elements.
Therefore, approximate algorithms are necessary in practice,
where state-action spaces are usually large or continuous.
Two desirable properties of approximate algorithms are con-
vergence to a near-optimal solution and consistency, which
means asymptotical convergence to the optimal solution as
the approximation accuracy increases.

Fuzzy Q-iteration [3], [4] is a model-based algorithm that
represents value functions using a fuzzy partition of the state
space, and requires a discrete action space. The approximate
value function is a linear combination of the parameters,
where the weights are the fuzzy membership values. Using
results from the rich literature on RL with linear approxima-
tion [1], [5]–[8], fuzzy Q-iteration was shown in [3], [4] to
converge to an approximate value function that is within a
bound from the optimal value function.

A number of related fuzzy approximators have been pro-
posed and applied to model-free RL, e.g., Q-learning [9],
[10] or actor-critic algorithms [11]–[13]. However, most of
these approaches are heuristic in nature, and their theoretical

Lucian Buşoniu, Bart De Schutter, and Robert Babuška are with the
Center for Systems and Control of the Delft University of Technol-
ogy, The Netherlands (email: i.l.busoniu@tudelft.nl, b@deschutter.info,
r.babuska@tudelft.nl). Bart De Schutter is also with the Marine and Trans-
port Technology Department of TU Delft. Damien Ernst is with Supélec,
Rennes, France (email: damien.ernst@supelec.fr).

properties have not been investigated (notable exceptions
where convergence is studied are the actor-critic algorithms
in [12], [13]).

In this paper, we show that fuzzy Q-iteration is consistent.
Namely, under appropriate assumptions on the dynamics and
on the reward function, it is shown that the approximate
solution converges to the optimal solution, asymptotically as
the maximum distance between the cores of adjacent fuzzy
sets, and the maximum distance between adjacent discrete
actions, decrease to 0. A discretization procedure is used
to approximate the continuous (or discrete but large) action
space. The convergence properties of fuzzy Q-iteration are
not affected by this discretization procedure. Additionally,
the influence of discontinuities in the reward function is
investigated in a numerical example involving a second-order
motion system.

The rest of this paper is structured as follows. Section II
introduces the RL problem and reviews some relevant results
from dynamic programming. Section III presents fuzzy Q-
iteration and recalls its convergence properties. The consis-
tency of fuzzy Q-iteration is studied in Section IV. SectionV
uses an example to illustrate the performance impact of
discontinuities in the reward function. Section VI outlines
ideas for future work and concludes the paper.

II. REINFORCEMENTLEARNING

In this section, the RL task is briefly introduced and its
optimal solution is characterized [1], [2].

Consider a deterministicMarkov decision process (MDP)
with the state spaceX, the action spaceU , the transition
function f : X × U → X, and the reward functionρ :
X × U → R.1 As a result of the control actionuk in the
statexk at the discrete time stepk, the state changes to
xk+1 = f(xk, uk). At the same time, the controller receives
the scalar reward signalrk+1 = ρ(xk, uk), which evaluates
the immediate effect of actionuk, but says nothing about its
long-term effects. For simplicity, we consider in this paper
only the deterministic case. A stochastic formulation is also
possible; in that case, expected returns under the probabilistic
transitions must be considered. Our algorithm and results can
be easily extended to stochastic MDPs if the expectations can
be evaluated exactly.

The controller chooses actions according to its policyh :
X → U , using uk = h(xk). The goal of the controller is
to learn a policy that maximizes, starting from the current

1Throughout the paper, the standard control-theoretic notation is used:x
for state,X for state space,u for control action,U for action space,f
for process (environment) dynamics. We denote reward functions by ρ, to
distinguish them from the instantaneous rewardsr and the returnR. We
denote policies byh.

moment in time (k = 0) and from any initial statex0, the
discounted return:

R =

∞∑

k=0

γkrk+1 =

∞∑

k=0

γkρ(xk, uk) (1)

where γ ∈ [0, 1) and xk+1 = f(xk, uk) for k ≥ 0. The
discounted return compactly represents the reward accumu-
lated by the controller in the long run. The learning task is
therefore to maximize the long-term performance, while only
using feedback about the immediate, one-step performance.
One way to achieve this is by computing the optimal action-
value function.

An action-value function (Q-function),Qh : X ×U → R,
gives the return of each state-action pair under a given policy
h:

Qh(x, u) = ρ(x, u) +

∞∑

k=1

γkρ(xk, h(xk)) (2)

where x1 = f(x, u) and xk+1 = f(xk, h(xk)) for
k ≥ 1. The optimal action-value function is defined as
Q∗(x, u) = maxhQ

h(x, u). Any policy that picks for every
state an action with the highest optimal Q-value:h∗(x) =
arg maxuQ

∗(x, u), is optimal (it maximizes the return).
A central result in RL, upon which many algorithms rely,

is theBellman optimality equation:

Q∗(x, u) = ρ(x, u) + γmax
u′∈U

Q∗(f(x, u), u′) (3)

This equation can be solved using the Q-value iteration
algorithm. Let the set of all Q-functions be denoted by
Q. Define the Q-iteration mappingT : Q → Q, which
computes the right-hand side of the Bellman equation for
any Q-function:

[T (Q)](x, u) = ρ(x, u) + γmax
u′∈U

Q(f(x, u), u′) (4)

Using this notation, the Bellman equation (3) states thatQ∗

is a fixed point ofT , i.e., Q∗ = T (Q∗). It is well-known
that T is a contraction with factorγ < 1 in the infinity
norm, i.e., for any pair of functionsQ andQ′, it is true that
‖T (Q) − T (Q′)‖∞ ≤ γ ‖Q−Q′‖∞.

The Q-value iteration (Q-iteration, for short) algorithm
uses ana priori model of the task, in the form of the transition
and reward functionsf , ρ. The algorithm starts from an
arbitrary Q-functionQ0 and in each iteratioǹ updates the
Q-function using the formulaQ`+1 = T (Q`). BecauseT is
a contraction, it has a unique fixed point. From (3), this point
is Q∗, so Q-iteration converges toQ∗ as `→ ∞.

III. F UZZY Q-ITERATION

In this section, the approximate, fuzzy Q-iteration algo-
rithm is introduced. The state and action spaces of the MDP
may be either continuous or discrete, but they are assumed to
be subsets of Euclidean spaces, such that the 2-norm of the
states and actions is well-defined. When the state (and / or the
action space) is discrete, fuzzy approximation is useful when
the number of discrete values is large, making the application
of exact Q-iteration impractical.

Fuzzy Q-iteration was introduced in [3], [4] for discrete
(or already discretized) action spaces. Here, the algorithm is
extended to continuous action spaces using an explicit action
discretization procedure.

The proposed approximation scheme relies on a fuzzy
partition of the state space, and a discretization of the
action space. The fuzzy partition containsN fuzzy sets,
each described by a membership functionϕi : X → [0, 1],
i = 1, . . . , N . A statex belongs to each seti with a degree of
membershipϕi(x). In the sequel the following assumptions
are made.

Assumption 1: The fuzzy partition satisfies the follow-
ing:
1.1. (Normalized partition) The fuzzy partition has been

normalized, i.e.,
∑N

i=1
ϕi(x) = 1, ∀x ∈ X.

1.2. (Normal fuzzy sets) All the fuzzy sets in the partition
are normal and have singleton cores, i.e., for every
i there exists a uniquexi for which ϕi(xi) = 1
(consequently,ϕi(xi) = 0 for all i 6= i by Assumption
1.1). The statexi is called the core (center value) of
the i-th set.

Assumption 1.1 is not restrictive, because any fuzzy par-
tition can be normalized as long as for anyx, there is some
i such thatϕi(x) > 0. Assumption 1.2 is required here for
brevity in the description and analysis of the algorithms; it
can be relaxed using results of [5].

A discrete set of actionsU0 = {uj |uj ∈ U, j = 1, . . . ,M}
is chosen from the action space. The fuzzy approximator
stores anN ×M matrix of parameters, with one component
θi,j corresponding to each pair of fuzzy core and discrete
action (xi, uj).

Fuzzy Q-iteration uses the classical Q-value iteration
mapping T (4), together with an approximation mapping
and a projection mapping. The approximation mappingF
takes as input a parameterθ and outputs an approximate Q-
function. For every state-action pair(x, u), this approximate
Q-function is computed as follows:

Q̂(x, u) = [F (θ)](x, u) =

N∑

i=1

ϕi(x)θi,j

with j = arg min
j=1,...,M

‖u− uj‖

(5)

where‖ · ‖, here as well as in the sequel, is the Euclidean
norm of the argument. This is a linear basis functions form.
For a fixedx, the approximator is piecewise constant over
each cell (set) in the Voronoi partition ofU corresponding
to the discrete set of pointsU0. Ties in thearg min over j
have to be broken consistently (e.g., always in favor of the
smallest index that satisfies the condition).

The projection mapping infers from a Q-function the val-
ues of the approximator parameters according to the relation:

θi,j = [P (Q)]i,j = Q(xi, uj) (6)

This is the solutionθ to the problem:
∑

i=1,...,N,j=1,...,M

|[F (θ)](xi, uj) −Q(xi, uj)|
2

= 0

The (synchronous)fuzzy Q-iteration algorithm starts with
an arbitraryθ0, and approximately computes the Q-iteration
mapping. This is done using the composition of the mappings
P , T , andF :

θ`+1 = PTF (θ`) (7)

This composite mapping is applied iteratively untilθ has
converged. The convergence criterion is usually approximate:
maxi,j |θ`+1,i,j − θ`,i,j | ≤ ε. An approximately optimal
policy can then be computed with:

h(x) = uj∗ , j∗ = arg max
j

[F (θ∗)](x, uj) (8)

Of course, any action in thej∗-th Voronoi cell ofU could
be used, but because the algorithm estimates the Q-values
Q∗(xi, uj), there is intuitively greater confidence thatuj∗ is
optimal, rather than another action in the cell.

An asynchronous version of the algorithm can be given
that makes more efficient use of the updates, by using the
latest updated values of the parametersθ in each step of the
computation [3], [4].

It is easy to show that in order to compute the maxi-
mizations in the approximate Bellman updates of fuzzy Q-
iteration, it suffices to consider only the discrete actions. This
discrete-action version of Q-iteration is defined as follows:

[T0(Q)](x, u) = ρ(x, u) + γ max
j=1,...,U

Q(f(x, u), uj) (9)

This result is very useful in the practical implementation
of fuzzy Q-iteration. Namely,PTF can be implemented
as PT0F , using the fact that all the Q-functions that are
considered by the fuzzy Q-iteration algorithm are of the form
F (θ). The maximization overU in the originalT mapping
can be replaced with a maximization over the discrete set
U0, which can be solved using enumeration for moderate
M . Furthermore, no distances inU need to be computed to
implementT0F (θ).

The following results are true for the original fuzzy Q-
iteration in [3], [4], and can be easily extended to account
for the action discretization.

Proposition 1: The following statements are true about
fuzzy Q-iteration.

1.1. (Convergence) Fuzzy Q-iteration converges to a
unique, optimal parameterθ∗ (both in its synchronous
and asynchronous versions).

1.2. (Convergence speed) Asynchronous fuzzy Q-iteration
converges at least as fast as synchronous fuzzy Q-
iteration.

1.3. (Suboptimality) Define ε = minQ

∥∥Q∗ −Q
∥∥
∞

where
Q is any fixed point of the composite mappingFP :
Q → Q. The convergence pointθ∗ satisfies:

‖Q∗ − F (θ∗)‖∞ ≤
2ε

1 − γ
(10)

The proofs rely on the fact that becauseP andF are non-
expansions, the composite mappingPTF is a contraction
with factor γ < 1 and with the unique fixed pointθ∗.

IV. CONSISTENCYANALYSIS

This section gives our main result: the consistency of
(synchronous and asynchronous) fuzzy Q-iteration is estab-
lished, i.e., it is shown that the approximate solutionF (θ∗)
converges to the optimal Q-functionQ∗, asymptotically as
the maximum distance between the cores of adjacent fuzzy
sets, and the maximum distance between adjacent discrete
actions, decrease to 0.

Define the resolutions of the fuzzy approximator over the
state space, and respectively over the action space:

δx = max
x∈X

min
i=1,...,N

‖x− xi‖ (11)

δu = max
u∈U

min
j=1,...,M

‖u− uj‖ (12)

wherexi is the core of thei-th membership function, and
uj is the j-th discrete action. The goal is to show that
limδx→0, δu→0 F (θ∗) = Q∗. The following assumptions are
made.

Assumption 2: There exists a finiteν > 0 such that,
regardless ofN , the fuzzy membership functions satisfy:

sup
x∈X

N∑

i=1

ϕi(x)‖x− xi‖ ≤ νδx

In the end of Section IV, we show that triangular fuzzy
partitions (of the type used in the example of Section V)
satisfy this assumption.

Assumption 3: The dynamicsf and the reward function
ρ satisfy the following conditions:

3.1. (Lipschitz continuity) They are Lipschitz continuous
with Lipschitz constantsLf and respectivelyLρ:

‖f(x, u) − f(x, u)‖ ≤ Lf (‖x− x‖ + ‖u− u‖)

|ρ(x, u) − ρ(x, u)| ≤ Lρ(‖x− x‖ + ‖u− u‖)

3.2. The Lipschitz constant off satisfies:Lf < 1/γ.
Lipschitz conditions similar to Assumption 3.1 are typi-

cally needed to prove consistency of approximate RL algo-
rithms.

As a first step to proving consistency, the Lipschitz conti-
nuity of Q∗ is established. This will help later on in proving
that a fixed-point ofFP can be made arbitrarily close toQ∗

by increasing the resolution of the approximator. Consistency
will then follow from item 1.3 of Proposition 1.

Lemma 1 (Lipschitz continuity of Q∗): There exists a fi-
nite LQ such that under Assumption 3:

|Q∗(x, u) −Q∗(x, u)| ≤ LQ(‖x− x‖ + ‖u− u‖)

Proof: Define the series{Q`}`≥0
, as follows:Q0 = ρ;

Q`+1 = T (Q`), ` ≥ 0. It is well known thatlim`→∞Q` =
Q∗ [1]. We show by induction thatQ` is Lipschitz with the
Lipschitz constantLQ`

= Lρ

∑`
k=0

γkLf
k. Indeed,LQ0

=

Lρ, and:

|[T (Q`)](x, u) − [T (Q`)](x, u)|

=
∣∣∣ρ(x, u) + γmax

u′

Q`(f(x, u), u′) −

ρ(x, u) − γmax
u′

Q`(f(x, u), u′)

∣∣∣∣

≤ |ρ(x, u) − ρ(x, u)|+

γ
∣∣∣max

u′

[Q`(f(x, u), u′) −Q`(f(x, u), u′)]
∣∣∣

Due to Assumption 3.1,|ρ(x, u) − ρ(x, u)| ≤ Lρ(‖x− x‖+
‖u− u‖). For the second term:

γ
∣∣∣max

u′

[Q`(f(x, u), u′) −Q`(f(x, u), u′)]
∣∣∣

≤ γmax
u′

LQ`
‖f(x, u) − f(x, u)‖

= γLQ`
‖f(x, u) − f(x, u)‖

≤ γLQ`
Lf (‖x− x‖ + ‖u− u‖)

where we used the Lipschitz continuity ofQ` andf . There-
fore,LQ`+1

= Lρ+γLQ`
Lf = Lρ+γLfLρ

∑`
k=0

γkLf
k =

Lρ

∑`+1

k=0
γkLf

k and the induction is complete. Taking the
limit as `→ ∞, it follows thatLQ = Lρ

∑∞

k=0
γkLf

k which
under Assumption 3.2 is finite and equal toLQ =

Lρ

1−γLf
.

Proposition 2 (Consistency): Under Assumption 2 and
Assumption 3, synchronous and asynchronous fuzzy Q-
iteration are consistent, i.e.,limδx→0,δu→0 F (θ∗) = Q∗.

Proof: We will show that limδx→0,δu→0 ε =
0, where ε = minQ

∥∥Q∗ −Q
∥∥
∞

with Q any fixed
point of FP . Using Proposition 1.3, this implies that
limδx→0,δu→0 ‖F (θ∗) −Q∗‖∞ = 0, which is equivalent to
the desired result.

DefineQ = FPQ∗, i.e.,

Q(x, u) =

N∑

i=1

ϕi(x)Q
∗(xi, uj) with j = arg min

j

‖u− uj‖

This Q-function is a fixed point ofFP . We now
establish an upper bound on

∥∥Q−Q∗
∥∥
∞

. Obviously,∣∣Q∗(xi, uj) −Q(xi, uj)
∣∣ = 0 because Q(xi, uj) =

Q∗(xi, uj). Take nowx, u such thatx 6= xi ∀i, or u /∈ U0,
and letj = arg minj ‖u− uj‖. Then:

∣∣Q∗(x, u) −Q(x, u)
∣∣ =

∣∣∣∣∣Q
∗(x, u) −

N∑

i=1

ϕi(x)Q
∗(xi, uj)

∣∣∣∣∣

≤ |Q∗(x, u) −Q∗(x, uj)|+∣∣∣∣∣Q
∗(x, uj) −

N∑

i=1

ϕi(x)Q
∗(xi, uj)

∣∣∣∣∣
(13)

Because
∑N

i=1
ϕi(x) = 1, the second term can be written:

∣∣∣∣∣

N∑

i=1

ϕi(x) [Q∗(x, uj) −Q∗(xi, uj)]

∣∣∣∣∣

≤
N∑

i=1

ϕi(x) |Q
∗(x, uj) −Q∗(xi, uj)|

≤

N∑

i=1

ϕi(x)LQ‖x− xi‖ ≤ LQνδx

(14)

where the last step follows from Assumption 2, and the
Lipschitz continuity of Q∗ was used. Using again the
Lipschitz continuity of Q∗, and the definition of δu,
|Q∗(x, u) −Q∗(x, uj)| ≤ LQ‖u − uj‖ ≤ LQδu. Using this
and (14) in (13), we find:

∣∣Q∗(x, u) −Q(x, u)
∣∣ ≤ LQ(δu + νδx)

Therefore,
∥∥Q∗ −Q

∥∥
∞

≤ LQ(δu+νδx), and becauseLQ

andν are finite,limδx→0,δu→0

∥∥Q∗ −Q
∥∥
∞

= 0. Sinceε ≤∥∥Q∗ −Q
∥∥
∞

, limδx→0,δu→0 ε = 0 and the proof is complete.

Triangular fuzzy partitions

A simple type of fuzzy partition that satisfies Assump-
tion 1 can be obtained as follows. For each state variable
xd with d = 1, . . . , n, a numberNd of triangular fuzzy
membership functions are defined as follows:

ϕd,1(xd) = max

(
0,

cd,2 − xd

cd,2 − cd,1

)

ϕd,i(xd) = max

[
0,min

(
xd − cd,i−1

cd,i − cd,i−1

,
cd,i+1 − xd

cd,i+1 − cd,i

)]

for i = 2, . . . , Nd − 1

ϕd,Nd
(xd) = max

(
0,

xd − cd,Nd−1

cd,Nd
− cd,Nd−1

)

wherecd,1 < . . . < cd,Nd
is the array of cores, which com-

pletely determines the shape of the membership functions,
and xd ∈ [cd,1, cd,Nd

]. Adjacent functions always intersect
at a 0.5 membership level. Then, the product of each combi-
nation of (single-dimensional) membership functions yields
a pyramidal-shapedn-dimensional membership function in
the fuzzy partition ofX. Next, it is shown that this type of
fuzzy partition also satisfies Assumption 2.

For simplicity, assume that the fuzzy cores are equidistant
along each dimension ofX, and the distance between two
adjacent cores is the same along every dimension. This means
that every pointx ∈ X falls inside a hypercube, or on
the common boundary of several identical hypercubes. In
the latter case, just pick any of these hypercubes. Only
the membership functions with the cores in the corners of
the hypercube can take non-zero values, and the number of
corners is2n wheren is the dimension ofX. Furthermore,
the distance between any point inside the hypercube and any
of its corners is at most2δx. Therefore, we have:

sup
x∈X

N∑

i=1

ϕi(x)‖x− xi‖ ≤ 2n 2 δx

−2
0

2

−50

0

50
−80

−60

−40

−20

0

20

x
1

x
2

ρ(
x 1,x

2,0
)

(a) Quadratic reward (16).

−2
0

2

−50

0

50
−80

−60

−40

−20

0

20

x
1

x
2

ρ(
x 1,x

2,0
)

(b) Discontinuous reward (17).

Fig. 1. A projection of the reward functions on the state space, for u = 0.

and a choice ofν = 2n+1 indeed satisfies Assumption 2.

V. EXPERIMENTAL STUDY

In this section, a numerical example is used to illustrate the
practical impact of discontinuities in the reward functionon
the consistency of the fuzzy Q-iteration algorithm. Consider
the second-order motion system described by the following
discrete-time dynamics:

xk+1 = f(xk, uk) = Axk +Buk

A =

[
1 0.0049
0 0.9540

]
, B =

[
0.0021
0.8505

]
(15)

The sample time isTs = 0.005 seconds. The positionx1,k

is bounded to[−π, π], and the velocityx2,k to [−16π, 16π].
The control inputuk ∈ [−10, 10].

In the first part of our experiment, RL control was used
to solve a discounted, linear quadratic regulation problem,
described by the reward function (also seen in Figure 1(a)):

rk+1 = ρ(xk, uk) = −xT
kWxk − wu2

k

W =

[
5 0
0 0.01

]
, w = 0.01

(16)

The discount factor was chosenγ = 0.95. This reward
function is smooth and has bounded support; therefore, it is
Lipschitz. The transition function is Lipschitz with constant
Lf ≤ max {‖A‖

2
, ‖B‖

2
} = 1.0001 < 1/γ. Therefore, the

problem satisfies Assumption 3.
In the second part of the experiment, a discontinuous term

was added to the reward function (16):

ρ′(xk, uk) = ρ(xk, uk) + γψ(f(xk, uk)) − ψ(xk)

ψ(x) =

{
10 if |x1| ≤ π/4 and |x2| ≤ 4π

0 otherwise

(17)

The termγψ(f(xk, uk))−ψ(xk) is called a shaping reward
[14]. It needs to have this specific form in order to preserve
the quality of the policies, in the sense that for any policy
h,

∥∥Qh
ρ′ −Q∗

ρ′

∥∥
∞

≤ ε implies
∥∥Qh

ρ −Q∗
ρ

∥∥
∞

≤ ε, where
Qρ is a Q-function under the rewardρ [14]. The functionψ
is chosen positive in a rectangular region around the origin.
Therefore, the shaping term rewards transitions that take the

state inside this rectangular region, and penalizes transitions
that take it outside. A projection ofρ′ on X, for u = 0, is
presented in Figure 1(b).

In order to study the consistency of fuzzy Q-iteration,
a triangular fuzzy partition withN equidistant cores for
each state variable was defined, leading to a total number
of N = N2 fuzzy sets. The value ofN was gradually
increased from3 to 41. Similarly, the action was discretized
into M equidistant values, withM ranging in{3, 5, . . . , 15}
(only odd values were used because the 0 action is necessary
for a good policy). Fuzzy Q-iteration was run for each
combination ofN andM , and with both reward functions
(16) and (17). The convergence threshold was set toεQI =
10−5 to ensure the obtained parameter vector is close toθ∗.

The performance of the policies obtained with fuzzy Q-
iteration is given in Figure 2. Each point in these graphs
corresponds to the return of the policy, averaged over the
grid of initial statesX0 = {−π,−5π/6,−4π/6, . . . , π} ×
{−16π,−14π, . . . , 16π}. The returns are evaluated using
simulation, with a precision of0.1. Whereas the reward
functions used for Q-iteration are different, the performance
evaluation is always done with the reward (16). As explained,
the change in the reward function preserves the quality of the
policies, so comparing policies in this fashion is meaningful.
The qualitative evolution of the performance is similar when
evaluated with (17).

Discussion

When the continuous reward is used, the performance
of fuzzy Q-iteration is close to optimal forN = 10 and
remains relatively smooth thereafter – see Figures 2(a) and
2(c). Also, the influence of the number of discrete actions is
small forN 6= 4. However, when the reward is changed to
the discontinuous (17), the performance varies significantly
asN increases – see Figure 2(b). For many values ofN ,
the influence ofM becomes significant. Additionally, for
many values ofN the performance is worse than with the
continuous reward function – see Figure 2(d).

An interesting and somewhat counterintuitive fact is that
the performance is not monotonous inN and M . For a
given value ofN , the performance sometimesdecreases

3 8 13 18 23 28 33 38 41

3
5

7
9

11
13

15
−400

−350

−300

−250

−200

Number of cores on each axis
Number of discrete actions

P
er

fo
rm

an
ce

(a) Quadratic reward (16).

3 8 13 18 23 28 33 38 41

3
5

7
9

11
13

15
−400

−350

−300

−250

−200

Number of cores on each axis
Number of discrete actions

P
er

fo
rm

an
ce

(b) Discontinuous reward (17); evaluation with quadratic reward.

10 14 18 22 26 30 34 38 41

3
5

7
9

11
13

15
−207

−206

−205

−204

−203

Number of cores on each axis
Number of discrete actions

P
er

fo
rm

an
ce

(c) Quadratic reward, detail.

3 8 13 18 23 28 33 38 41
−400

−350

−300

−250

−200

Number of cores on each axis

P
er

fo
rm

an
ce

Performance for Q−iteration with quadratic reward
Performance for Q−iteration with discontinuous reward

(d) Average performance overM , for varying N .

Fig. 2. The performance of fuzzy Q-iteration as a function ofN andM , for quadratic and discontinuous reward.

as M increases. Similar situations occur asM is kept
fixed andN varies. This effect is present with both reward
functions, but is much more significant in Figure 2(b) than
in Figure 2(a) (see also Figure 2(c)). The magnitude of the
changes decreases significantly asN andM become large
in Figures 2(a) and 2(c); this is not the case in Figure 2(b).

VI. CONCLUSIONS ANDFUTURE WORK

In this paper, the consistency of the approximate, fuzzy Q-
iteration algorithm was proven. A discretization procedure
was introduced to approximate the continuous (or discrete
but large) action space. Fuzzy Q-iteration was applied to a
control problem where using a smooth reward function pro-
vided more predictable performance than using discontinuous
rewards, as the accuracy increased. This shows that, at least
in some continuous-variable RL tasks, discontinuous rewards
can harm performance. Discontinuous rewards are common
practice due to the origins of RL in artificial intelligence,
where discrete-valued tasks are often considered.

The fuzzy approximator is pre-designed in our approach,
and determines the computational complexity of fuzzy Q-
iteration, as well as the accuracy of the solution. While we
considered in this paper that the membership functions were
given a priori, we suggest as a future research direction to
develop techniques that determine for a given accuracy an
approximator with a small number of membership functions.
Another useful research direction is an extensive comparison

of the performance (convergence, sub-optimality, consis-
tency) of the various types of linear approximators that canbe
combined with the Q-value iteration algorithm (e.g., radial
basis functions, Kuhn triangulations, etc.). Finally, action-
space approximators more powerful than Voronoi partitions
could be investigated (e.g., approximators based on fuzzy
partitions of the action space).

Acknowledgement: This research is financially supported
by the BSIK-ICIS project “Interactive Collaborative Infor-
mation Systems” (grant no. BSIK03024), by the NWO Van
Gogh grant VGP 79-99, and by the STW-VIDI project
DWV.6188.

REFERENCES

[1] D. P. Bertsekas,Dynamic Programming and Optimal Control, 3rd ed.
Athena Scientific, 2007, vol. 2.

[2] R. S. Sutton and A. G. Barto,Reinforcement Learning: An Introduc-
tion. MIT Press, 1998.

[3] L. Buşoniu, D. Ernst, B. De Schutter, and R. Babuška, “Fuzzy
approximation for convergent model-based reinforcement learning,”
in Proceedings 2007 IEEE International Conference on Fuzzy Systems
(FUZZ-IEEE-07), London, UK, 23–26 July 2007, pp. 968–973.

[4] ——, “Continuous-state reinforcement learning with fuzzy approxi-
mation,” in Adaptive Agents and Multi-Agent Systems III, ser. Lecture
Notes in Artificial Intelligence, K. Tuyls, A. Noẃe, Z. Guessoum, and
D. Kudenko, Eds., 2007, vol. 4865, accepted.

[5] J. N. Tsitsiklis and B. Van Roy, “Feature-based methods for large
scale dynamic programming,”Machine Learning, vol. 22, no. 1–3, pp.
59–94, 1996.

[6] G. Gordon, “Stable function approximation in dynamic programming,”
in Proceedings Twelfth International Conference on Machine Learning
(ICML-95), Tahoe City, US, 9–12 July 1995, pp. 261–268.

[7] D. Ormoneit and S. Sen, “Kernel-based reinforcement learning,”
Machine Learning, vol. 49, no. 2–3, pp. 161–178, 2002.

[8] C. Szepesv́ari and W. D. Smart, “Interpolation-based Q-learning,”
in Proceedings 21st International Conference on Machine Learning
(ICML-04), Bannf, Canada, 4–8 July 2004.

[9] P. Y. Glorennec, “Reinforcement learning: An overview,”in Pro-
ceedings European Symposium on Intelligent Techniques (ESIT-00),
Aachen, Germany, 14–15 September 2000, pp. 17–35.

[10] L. Jouffe, “Fuzzy inference system learning by reinforcement meth-
ods,” IEEE Transactions on Systems, Man, and Cybernetics—Part C:
Applications and Reviews, vol. 28, no. 3, pp. 338–355, 1998.

[11] H. R. Berenji and P. Khedkar, “Learning and tuning fuzzylogic
controllers through reinforcements,”IEEE Transactions on Neural
Networks, vol. 3, no. 5, pp. 724–740, 1992.

[12] H. R. Berenji and D. Vengerov, “A convergent actor-critic-based
FRL algorithm with application to power management of wireless
transmitters,”IEEE Transactions on Fuzzy Systems, vol. 11, no. 4, pp.
478–485, 2003.

[13] D. Vengerov, N. Bambos, and H. R. Berenji, “A fuzzy reinforcement
learning approach to power control in wireless transmitters,” IEEE
Transactions on Systems, Man, and Cybernetics—Part B: Cybernetics,
vol. 35, no. 4, pp. 768–778, 2005.

[14] A. Y. Ng, D. Harada, and S. Russell, “Policy invariance under
reward transformations: Theory and application to reward shaping,” in
Proceedings Sixteenth International Conference on Machine Learning
(ICML’99) , Bled, Slovenia, 27–30 June 1999, pp. 278–287.

