Algebraic Techniques for the Optimization of Control Flow Checking

Guevara NOUBIR and Berthe Y. CHOUEIRY
Department of Computer Science
Swiss Federal Institute of Technology in Lausanne (EPFL)
{guevara.noubir | berthe.choueiry }@Qdi.epfl.ch

Abstract

In [4, 5], Leveugle addresses the problem of reducing
the overhead of on-line testing wn dedicated control-
lers. He introduces a low-overhead technique that al-
lows the detection of illegal paths in finite state machi-
nes. Based on Leveugle’s idea for detecting illegal
paths, we introduce a new simple signature function.
This signature function can be efficiently implemented
wm software. The assignment of values to the states is
carried out algebraically by matriz inversion instead of
using exhaustive search methods. We show that signa-
tures computed using MISR or checksum are particular
cases of our more general signature function. Thus,
the state assignment problem defined in [4, 5] can be
solved more efficiently.

Then, we address the problems of latency and
checking from a formal perspective and show that fin-
ding the smallest set of checking states (i.e., stales
where the static signature is compared with the run-
time signature) that induces a latency less than or equal
to a given value I is NP-hard and there exists no po-
lynomaial time algorithm that solves this problem unless
P=NP.

1. Introduction

Techniques of control flow checking are widely used
for supporting the reliability of computer systems.
They can be applied in a system at various levels
of abstraction (controller level, microprogram level,
instruction level, application level, etc.). A survey
of these techniques can be found in [4]. The basic
principle of control flow checking is to verify that the
run-time execution of a system (controller or program)
corresponds to the expected/specified behavior. The
expected behavior i1s given by the control flow graph
of the system. The verification is done as follows:
A signature function is used to compress the sequ-
ence of instructions or states that is currently being
executed; then, this signature is compared to a sta-

tic signature stored in the self-checking system. Va-
rious signature schemes are proposed in the literature
[20, 7, 16, 19, 6, 5, 17] and are mainly implemented
in hardware. The most popular signature functions
are the checksum and the polynomial division by me-
ans of a multiple input shift register (MISR). In gene-
ral, these techniques aim at improving one or more of
the following parameters: error detection coverage, er-
ror detection latency, processor performance, memory
overhead, and monitor complexity.

In [4], Leveugle addresses the problem of designing
controllers with a control flow checking ability that in-
duces a low overhead in a silicon implementation. The
idea is to assign codes to the states such that this
assignment verifies an invariant property. This pro-
perty is that all paths leading to any given state have
the same signature. Leveugle applies this technique
to control flow graphs called SC-graphs, which are the
graphs satisfying this property. He gives a procedure
for recognizing such graphs and introduces rules to re-
cast a non SC-graph into an SC-graph.

In this paper, we exploit, in a more general context,
the idea proposed by Leveugle to reduce the complexity
of the checking. Our contribution is three-fold:

1. We introduce a novel and generic algebraic signa-
ture function that can be efficiently implemented
both in hardware and software.

2. We adapt the fault detection scheme proposed by
Leveugle to software applications and provide new
and efficient algorithms for implementing it.

3. We formalize the problem of latency checking and
show that it is NP-hard.

This paper is organized as follows. In Section 2, we
review the previous work in this area. In Section 3, we
introduce our new signature function and show that
classical signature functions are a special case of the
one we propose. In Section 4, we provide algebraic
solutions to the problem of assigning values to sta-
tes. We show that this approach is more efficient

than exhaustive search and heuristic techniques used
in [4, 2]. Finally, in Section 5, we formalize the problem
of latency and examine its relationship to the comple-
xity of the checker. We show that the problem of opti-
mizing the checking is NP-hard.

2. Related work

The problem of control flow checking in a finite state
machine (FSM) has also been addressed by Robinson
and Shen [13, 14] and Escherman [2]. In [13], Robinson
and Shen propose to replace the set of rules introduced
by Leveugle (to transform a non SC-graph into an SC-
graph) by efficient algorithms. Their technique, called
graph repairing, is based on a state splitting opera-
tion. In [14], they propose a technique for assigning
codes to states that guarantees that two distinct sta-
tes have distinct codes. This technique allows to de-
duce the value of the entering signature of a state using
the value of the state code. It allows near-zero la-
tency without guaranteeing it because of the correla-
tion between the value of the state code and that of
the signature. The drawback of this technique 1s that
it may require that length of a state code be as long as
2 x log (number of states).

In [2], Escherman proposes a graph repairing techni-
que based on cutting transitions. In his scheme,
the state register 1s implemented using a multi-
functional test register (e.g., BILBO [3]). This state
register /pattern generator can be activated at run-time
to generate the next state value while the output of
the circuit is only constrained to satisfy the unique
signature condition. Thus, signature checking is not
achieved on the actual state path, which may affect
the efficiency of the fault detection procedure.

While previous work has concentrated on the impro-
vement of the technique introduced by Leveugle for
the hardware implementation of FSMs, we provide a
generalization of this technique that is applicable to
both software and hardware implementations. Altho-
ugh our contribution does not add to the power of
the techniques proposed in the literature for hardware
implementations, it provides an efficient and novel solu-
tion to software applications, such as control programs
and communication protocols. Moreover, we show that
some previously known results on MISR signatures can
more easily be obtained with our polynomial-based for-
mulation.

In fact, in this paper, we address the problem of
control flow checking in FSMs from a broader and more
general perspective than before. Our approach is broad
because the signature function is a generic algebraic
function that can be efficiently implemented both in
hardware and software. It is general, because we show

that classical signature functions, such as checksum
and MISR, are a special case of the function we pro-
pose.

The use of our technique in software applications
yields a fault detection mechanism that is more efficient
than the techniques usually used for this purpose. For
instance, the methods proposed in the literature for
fault detection in communication protocols are gene-
rally based on a replication of the FSM of the proto-
col [12, 18, 1]. In contrast to this massive replication,
the signature technique only requires an observer that
is implemented as a one-dimensional table whose size
is at most equal to the number of states in the FSM
[11, 10]. Furthermore, a computation of the signature
requires only one addition and one multiplication ope-
rations at each transition. An example of the use of
this technique in a protocol application is shown in
Appendix A.

3. A new signature scheme

The control flow graph is generally described by an
FSM. We assume that the FSM is already in the form of
an SC-graph. To insure this property, one can use the
algorithms introduced by Robinson and Shen in [13].
In this section, after recalling some basic definitions
[4], we introduce our signature function then show that
three classical signature functions (namely: checksum,
XOR, and MISR) are a special case of the one we propose.

In this paper, we adopt the following definitions:

Finite State Machine (FSM) . The system under
observation is modeled as an FSM. An FSM is a
3-tuple A = (@, X, 6); where @) denotes the set of
all possible states {Sy,...,5,}, X is the set of all
possible events {E4,..., E,}, and § denotes the
state transition function (§: Q x ¥ — @).

Figure 1. A simple ezample of an FSM.

A simple example of an FSM is shown in Fig. 1.
Fach state S; (respectively, event E;) is associated
with a value s; (respectively, e;) from the working

algebraic field F'.

Full Path. A full path P is defined as an alternate
sequence of states and events.

State path. The state path is the sequence of states
derived from the path by deleting all the events
and retaining the states in their original order.

Event path. The event path is the sub-sequence de-
rived from the path by deleting all the states and
retaining all the events in their original order.

Last. Last(P) of a path P is the last state in P.

First. First(P) of a path P is the first state in P.

Penultimate. Penultimate(P) is the last but one
state in a path.

Length. Length(P) is the length of a path P. Tt is
equal to the number of transitions in P.

Correctness. A path P is correct if and only if every
sub-sequence S; E; Sy of P satisfies 6(S;, E}) =
Sk

Legality. A state path P = Sy Sy S3 --- S, is a legal

state path if and only if for every sub-sequence
S;S; of P, there exists an event £ € ¥ such that
5(S;, E)=5;.
An event path P = (Fy Fy F3 -+ Ey) is a legal
event path if and only if, for every sub-sequence
E;E; of P, there exists three states (Sg, 51, 5m) €
Q? such that §(Sk, F;) = S; and 6(Si, Fj) = Sp,.

3.1. The polynomial signature function

In [11, 10], we propose three different signature fun-
ctions based on the evaluation of a polynomial derived
from the path. The functions that we propose exhi-
bit the following characteristics: (1) They are stepwise
computable (using Horner algorithm). (2) They
are efficiently implementable (both in hardware and
software). (3) They have a bounded aliasing probabi-
lity. (4) They exhibit a structure suited for algebraic
manipulations.

Full path signature. The full path signature
function utilizes the state and event information to
compute the signature. Thus, the states and the events
must be visible to the signature generator. Each state
or event is assigned a value that is used for computing
the signature. The signature is computed by evaluating
the path polynomial at a point xg. This procedure de-
tects incorrect paths and is well-suited for developing
and implementing self-checking programs. The poly-
nomial associated with a full path P = (Sy Fo S1 F4
. En_1 Sp) is defined as follows:

n—1
Pp(l‘) = Z(SixZ(n—i) + eixZ(n—i)—l) + s,
1=0
where: s; 1s the state value; e; is the event value; n is
the length of the state path; and x is a number from the

working Galois field F' as discussed in Section 3.4. The
full signature is defined as a function @ that associates
a number with a path P: ®(P) = Pp(xp).

State signature. The state signature is compu-
ted using only the state values. This technique is used
when the generator has access to the current state in-
formation. This signature can detect illegal state paths
but cannot detect illegal event paths. The polynomial
associated with a state path P= (Sp StSp) is de-
fined as follows:

n

Pp(z) = Zsixn_i
=0

The state signature is: ®g4q1.(P) = Pp(x0)

Event signature. The event signature is compu-
ted using only the event values. This technique is used
when the generator does not have access to the current
state information but has access to that of the event.
It is well-suited for detecting faults in communication
protocols when the checker is an external observer [10].
In this case, the event values are the types of the frames
that are exchanged during the execution of the proto-
col. The polynomial associated with an event path P=
(Fo Ey ... Ey)is defined as follows:

Pp(z) = Zn: e; a7t
1=0

The event signature is: ®eyen(P) = Pp(20)

3.2. Aliasing probability

In [9], we prove that, when errors on bits are equally
likely, the probability that two different sequences of
states have the same signature is ﬁ Furthermore,
when those sequences differe in only one state, this
probability is null.

3.3. Specialization of the polynomial signature

In this section, we show that the signatures compu-
ted by XOR’ing the state value, by checksum, and by
MISR (with internal XOR) are in fact a special case of
the signature function that we propose.

XOR signatures. When the working field is GF(2*)
and zo = 1, then the resulting signature is equivalent
to a XOR signature function.

Checksum signatures. When working in the field
G F(p) (where p is a prime number) and when zg = 1,
the signature function is equivalent to the arithmetic
checksum signature used by [15].

MISR signatures. Signatures computed using inter-
nal XOR MISR circuits that have an irreducible compa-
ction polynomial g(x), see Fig. 2, are a special case
of the signature function that we propose. The wor-
king field is an extension field GF(2*). This field is
generated by extending G'F(2) using an irreducible po-
lynomial g(#) of degree k. ¢ is taken equal to 0---010,
which we denote as 2 € GF(2*). The compaction po-
lynomial of the MISR circuit is in fact the extension
polynomial g(z).

In+1,0 In+1,1 In+1k2 In+1 k-1

axd | | |

Rn,o Rp1 Rn k-2 Rn, k-1 q

Bo By By.2 By.1

9 91 9k-2 Ok-1
Figure 2. An internal XOR MISR circuit.

Let R; ; be the content of register j at step 7 and I; ;
the j** bit of the i'” input. I; and R; are considered
as elements of the Galois field GF(2*). The MISR
equation is as follows:

Rot1 = [Rak=2,- -, B0, 0]+ Tng1,k=1, -5 Int1,0]
+Ry k—1[gk-1,- -, 0]
Rn+1 = In+1 + 2 x Rn (1)

Addition and multiplication are done in GF(2*) (i.e.,
+ is equivalent to a XOR and X is a polynomial mul-
tiplication modulo the compaction polynomial g(z)).
Thus,

I, +2L,_1+...+2°7'

n

> o (2)

i=1

R, =

Ry

This formulation shows that the MISR signature is a
special case of the signature function that we propose in
Section 3.1. Hence, the theory presented in this paper
applies also to the classical MISR signature. Moreover,
it is simpler than the classical MISR formulation and,
because of its polynomial representation, it is better
suited for algebraic manipulation.

3.4. Choice of z;

When computing the signature of a path, the state
(respectively, the event) values do not cover all the ele-
ments of the working Galois field. Consequently, the
masking probability of the signature function may be
sub-optimal. In order to obtain a good covering of the

Galois field, one has to choose z; as a primitive root
of unity. In the signature, the sum of the terms =z}
covers all the possible values of the field thus, yielding
uniformly distributed signature values.

Theorem 1 For MISR signatures, choosing zg as a pri-
mitive root of unity is equivalent to choosing a primi-
tive compaction polynomial g(z) for the MISR circuit.

Proof: Elements of GF(2*) can be interpreted as po-
lynomials of degree (k — 1). Operations in this field
are polynomial operations modulo the extension poly-
nomial g(z). The element 2 of GF(2*) is then repre-
sented as the polynomial p(z) = z. Taking 2o = 2 is a
primitive root of unity in G F(2*) is equivalent to:

Vd <2k -1,
Vd <28 — 1 and Vk(z);

z4 4+ 1 mod g(2)
A D12 k() 9(2)

This means that g(z) does not divide any polynomial
2% — 1 where d < 2% — 1, which is the definition of a
primitive polynomial. a

4. Three assignment problems

In [4, 5], Leveugle defines the state assignment
problem as the problem of computing one value per
state such that all correct paths leading to a given state
are equal. Using our signature function, this problem
can be generalized to three assignments problems. In
this section, we introduce these problems, show how to
solve them algebraically, and illustrate by an example.
The three assignments problems are listed below.

The state assignment problem. Given an FSM
A= (Q,X,9), find the values to be associated with the
states such that the state signatures of all correct paths
leading to a given state are equal.

This kind of problems arises in the design of self-
checking programs and controllers.

The event assignment problem. Given an FSM
A = (Q,X,0), find the values to be associated with
the events such that the event signatures of all correct
paths leading to a given state are equal.

This problem is relevant for event-driven systems
and for external detection of errors in communication
protocols.

The state-event assignment problem. Given an
FSM 4 = (Q,X,0), find the values to be associated
with the state and events such that the full signatures
of all correct paths leading to a given state are equal.

This problem is applicable to self-checking programs
and communication protocols.

4.1. Solving the assignment problems

In this section, we show how to solve the state as-
signment problem. Algorithms for solving the event
assignment problem and the state-event assignment
problem are similar to the one described below and
can be found in [9]. The state assignment problem is
solved in two steps: First, it is transformed into a set of
linear equations; then, the system of linear equations
is solved by matrix inversion.

Algorithm 1 System of equations (input: A; output:
System)

System + {};
If | Sy | > 0 Then
For all S; € ST
Let P; a state path | (First(P;) = So) A
(Last(P;) = So) A (Penultimate(P;) = S;);
eqni—Papare(Py) = 0;
System + System U{eqn}
For all S € @ — {So} | |57|>1
Let S; € ST and Py a state path | (First(FPy) = So)
A (Last(Py) = S) A (Penultimate(Py) = S1);
For all S; € S™ — {51}

Let P; : state path | (First(FP;) = So) A
(Last(P;) = S) A (Penultimate(FP;) = S;);
eqn<_®state(P0) = @state(Pi);
System + System U{eqn}

end

where ST, the set of antecedents of S, denotes the set

of states S; for which there exists a transition to S.
The first phase in the algorithm described above
generates |Sy | equations to guarantee that all paths
leading to the initial state Sy have the same signa-
ture. Since the initial state Sy is assigned an arbitrary
signature! 0, all paths leading to Sp have a null signa-
ture. In the second phase, for every state S different
from Sy, the algorithm selects a state S7 from S~ and
a path P, leading to S through S;. Then, for every
state S; preceding S, the algorithm generates an equ-
ation stating that the signature of a path P; leading to
S through S; is equal to the signature of Py.
Algorithm 1 generates |T|—|@Q|+ 1 equations, where
|T| denotes the number of transitions in the FSM and
|@Q| the number of states. This algorithm has a time
complexity of O(|T]). The system of linear equations
generated as output can be written as a matrix. This
matrix is generally not square. Therefore, in order to
solve the system, one has to select an invertible sub-
matrix of size |T'|—|@Q|+ 1. This operation implies that
some states (|7 —|@|+ 1) are part of the selected sub-
matrix and some others (2|Q|—|7|—1) are left out. The

1 Any arbitrary value can be chosen.

latter are called free states and are chosen using the Al-
gorithm 3 reported in Appendix B. These free states
are in fact degrees of freedom, which can be exploited
to reinforce other criteria (or constraints) such as to
reduce the hardware complexity of a controller. The
matrix inversion can be done using a Gauss elimina-
tion algorithm, which has a computational complexity
of O(n?®), where n is the size of the matrix. When
the number of equations (i.e., |T| — |@] + 1) exceeds
the number of states (i.e., |@]), the state assignment
problem cannot in general be solved unless one mo-
difies the initial FSM [4, 13, 2]. Tn addition to this
condition, the free states have to be chosen such that
every state is assigned a distinct value.

In software implementations, the state codes can be
chosen from a set of size much larger than |@|. For
instance, if the values of the free states are randomly
chosen from a set? of size |@|? (the values are coded
over 2 x log(]@]) bits), the probability of having the
same code for two different states is less than % 3, [9].
Thus, a probabilistic algorithm that randomly chooses
the values of the free states will find a solution in k
rounds with probability 1 — 2%,

In hardware implementations, the state values have
to be coded over a minimized number of bits. Ac-
cording to our formulation of the state assignment
problem, the search is restricted only to the 2|Q| —
|T'| — 1 free states, which yields a substantial reduction
of the search space.

From the discussion above, it appears that solving
the state assignment problem by using the algebraic
properties of the signature function is more efficient
than an exhaustive search carried over all the states
of the FSM. It also appears that the checking opera-
tion of the FSM requires only a one-dimensional table
instead of the two-dimensional one used for software
applications modeled using an FSM [12, 18, 1].

4.2. Example

Consider the FSM presented in Fig. 3 left. When
applied to this FSM, Algorithm 1 yields the system of
equations described below:

Q) (51 a) = Qtate(sl ngC)
(I> e(Sl a52a53c54d59b) = q)state(sl ngd)
Q) e(Sl a52a53e) (I>Qtate(Sla52a53c54c55a56b)
Q) (51 a52a53c54c55a56b)
= q)state(sl a52a53c54d59b510 a)

q)state(sl aS>aSs 657f) =0
(3)

2The technique proposed in [14] may result in a coding of the
states for a hardware implementation of the same length (i.e.,
2 X log(|@]) bits) as we require for the software implementation.

X @ event Si:

statgj, j) :
Figure 3. Left: the FSM. Right: the state coding.

Let S be the state vector (s1, s2, S3, S4, S5, Se, S7, Ss,
S9, $10). The system in (3) becomes:

A-S=0 (4)
A being the matrix:
zg — 1 0 0 0 o o o 0 0
zg% = zq zg3 zg? zq 0 0o o -1 1 0
z0d —2p2 mpt—=zy w2g® -1 242 @ 1 0 0 0
0 0 0 0 zg 1 0 0 —xg -1
23 zg? zg 0 0 0o 1 0 0

In order to solve this problem, we decompose matrix
A into two sub-matrices A; and As such that A; 1s
invertible. The states Sg, S7, Sz, S9 and S1p are chosen
as the free states using the Algorithm 3 in Appendix B.

S1 S6
S9 S7
Al S8 =+ Az S3 =0 (5)
S4 S9
S5 $10
And,
o — 1 0 1 0 0
$04 — o $03 —1 To 0
A1 = $05 — $02 $04 — X0 0 $02 To (6)
0 0 0 0 o
zo° zo? 0 0 0
0 0 0 0 0
0 0 o> 1 0
Av=|1 0 z°=1 0 0 (7)
1 0 0 —x9 —1
0 1 o 0 0

The state values s1, 89, sg, s4 and s5 can be computed
from those of sg, s7, s3, 59 and s1¢:

S1 S6
S9 S7
-1
S8 = _Al Az 53 (8)
S4 S9

(state value, state signature)

Consider the Galois field GF(19) and let zq = 3.
Note that xp is a primitive root of unity of order
18. Choosing (ss, 7, 83, S9, $10) = (1,2,0,4,7) yields
(s1, 82,88, 84,85) = (8,18,3,16,6). In fig. 3 right, we
show the resulting entering signature and the values
associated with the states of the FSM.

The checker is 1mplemented as one-dimensional
table that contains, for every state, its code and the
value of its entering signature, as shown below:

|| State Code Sgn. || || State Code Sgn. ||
S 8 0 Se 1 10
So 18 8 Sy 2 12
Sa 0 4 Sg 3 8
Sy 16 12 So 4 14
Sk 6 14 S1o 7 8

This one-dimensional table is smaller than the two-
dimensional table of states and events used by a checker
that replicates the initial FSM.

5. Checking optimization

In the previous sections, we showed how to reduce
the complexity of the signature checking procedure: a
checker needs only a one-dimensional table instead of
the two-dimensional one otherwise required. In this
section, we address the problem of further reducing the
size of the one-dimensional table while guaranteeing a
given delay for error detection.

The main idea can be summarized as follows. Let
Q. be the set of states where the current signature is
compared to the static signature of a state in the FSM.
When @. = @, this signature checking operation is
carried out at each state of the FSM. Thus, the size of
the one-dimensional signature table is equal to the size
of Q.. Restricting the checking operation to a subset
of () yields a reduction of the size of the table while
introducing some latency for fault-detection. The fault-
detection latency associated with a set Q. of states,
see Section 5.1, i1s defined as the maximum number
of transitions contained in a correct path of which at
most the root is in).. Note that this problem 1s also
of interest for the design of some high speed protocols
that have to do periodically some state exchange [8].

First, we introduce an efficient algorithm for compu-
ting the latency associated with a given set ().. Then,
we study the complexity of minimizing the size of .
that guarantees a given latency and show that it is

NP-hard.

5.1. Computing the fault-detection latency

We start with some formal definitions:

Induced graph. Given a graph G(V, E) and a set
of vertices V' € V, the graph G'(V’, E’) induced by

V' is defined as follows: Yv1,va € V';(vi,v9) € B/ &
Ja path Pin G| (First(P) = v1) A (Last(P) = va) A
(P — {First(P),Last(P)} NV’ = 0).

Induced distance. The induced distance dg\¢g: by
V' on two vertices of V' is equal to the maximal
length of a path P of G containing no vertex of
V' except of the extremities: dg\g/(vi,v2 € V') =
Max {Length(P) [(First(P) = vi) A (Last(P) = va) A
({P — {First(P),Last(P)}} NV’ = M)}.

Latency. The latency of an induced graph G’ is
defined as the maximum induced distance between
two vertices of V' minus 1: Latency(G') =
Max { deo\gr(v1,v2)|(v1,v2) € V' } — 1. Algorithm 2
computes the latency.

Algorithm 2 Latency (G(V, E), V")
Do = 0;
Dh[1] = maz(Do[i], mazjevi ner{l + Do[s]});
n « 1;
While (Dy # Dn_1) A (n < |V]) Do
Dpga[il¢=maz(Dnlil, maz;ev\viie{l + Dnli]});
n+ n+l;
If D, # Dp—1 Then Exit “CYCLE” /*infinite latency
*
/
Else Latency < maz{Dy,[i]} — 1;
Return (Latency)

end

When the graph has no cycles, D,[i] gives the maximal
length of a path P connecting v; to a vertex in V”/ such
that at most the end-vertices of P are in V’. Note that
Algorithm 2 also detects cycles in the graph G, whene-
ver the case arises. The worst-case time complexity of

this algorithm O(|V]?).

5.2. Minimizing thesize of Q.

One interesting question is to study if it is possible
to minimize the size of @), that guarantees a given va-
lue I for the latency. For this purpose, we introduce
the following optimization problem (MinQc) and the
decision problem (LCDP) associated with it.

Minimizing Q. (MinQc). Given an integer L and a
graph G(V, F), find the smallest subset V' of V such
that V' induces a graph G'(V' € V, E') of latency [less
than or equal to L.

Latency Checking Decision Problem (LCDP). Gi-
ven an integer L, a graph G(V, F), and an integer
Vinae < |V, is there a set V' such that V' € V|,
|[V'| < Vinas, and the latency of the graph G'(V’, E')
induced by V' is less than or equal to L7

In the following, we state some results related to
the computational complexity of MinQc and of LCDP;
then we outline the mathematical foundations of our
claims. The detailed proofs can be found in [9].

Lemma 1 The decision problem LCDP is in the class
NP.

Sketch of Proof: Any set V'’ that is a solution to the
problem LCDP can be checked by verifying that the
induced latency is less than or equal to L. This means
that LCDP can be solved using a non-deterministic
algorithm. Thus, the decision problem LCDP isin NP.

O

Lemma 2 The decision problem LCDP is NP-hard
by reduction from 3SAT.

The proof of this lemma is sketched in Appendix C.

Theorem 2 The decision problem LCDP is NP-
complete.

Proof: The decision problem is both in the class of
NP (see Lemma 1) and NP-hard (see Lemma 2), thus
it 1s NP-complete. a

Since we prove that the decision problem is NP-
complete, this implies that there is no polynomial time
algorithm to solve the optimization problem unless
P=NP. One way to address this difficult problem is
to use a heuristic that reduces the size of Q). while en-
suring a bounded latency L; note that the size of @, is
not guaranteed to be minimal. Such a heuristic, which
still need further refinement, can be based on the fol-
lowing steps:

1. First, since a cycle that has no vertex in @), causes
the latency to be infinite, it appears clearly that at
least one vertex in each cycle should be chosen to
bein Q.. This problem is also known to be difficult
and a heuristic can be used for this purpose.

2. Then, starting from the set of vertices in ., the
next step is to break all directed paths that have
a length greater than the maximum latency acce-
ptable. This can be done by identifying the verti-
ces that are not in @. and that are at a distance?
L from a vertex in Q.. These vertices* are put in
.. The process described in this step reiterates
until no vertex in the graph is at a distance greater
than L from a node in Q..

3When the latency of the graph is greater than L, there always
exists vertices in G at distance I because the weight of edges is
one.

4One may choose to restrict oneself to only those vertices that
are at distance I, from the largest number of vertices in Q .

6. Conclusion

In this paper, we introduced an efficient signa-
ture function based on polynomial evaluation. This
signature function can be efficiently implemented in
software. We showed that classical signature functions
known in the literature (e.g., checksum, MISR) are a
special case of the one we propose and that known re-
sults about these functions can be re-proven in a much
simpler manner. We showed that the state assignment
problem can be efficiently solved using an algebraic
matrix inversion followed by a probabilistic algorithm
for software applications or a reduced-space backtrack
search for hardware implementations). Furthermore,
we formalized the problem of optimizing the checking
while ensuring a predefined latency. Finally, we stu-
died to computational complexity of this problem and
showed that it is NP-hard.

As hanging research issues, we propose the following
improvements, which we are currently investigating:

e Define and evaluate heuristics for solving the op-
timization problem.

e State some of the criteria for the combinatorial
optimization of the controller as equations to be
solved algebraically.

e In software implementation, it may become pos-
sible to accept, for some given states, k valid signa-
tures instead of the unique one envisaged in this
paper. In this case, the techniques we presented
become applicable to a larger class of FSMs.

Acknowledgments

The authors would like to thank Dr. Leveugle and
the anonymous referees for their constructive remarks.

Appendices
A. Protocol application

The detection of execution errors in communica-
tion protocols has been addressed in the literature
[12, 18, 1], where it is assumed that errors appear as
incorrect transitions. In [11, 10], we have shown that
detecting execution errors in communication protocols
can be achieved by checking the signature of the execu-
tion path. The signature checker can be either (1) in-
ternal to the protocol or (2) external.

1. In the first case, the full path signature is used
because the checker has access to both the state
and event information.

2. In the second case, the checker has only access to
the event information, consequently only the event
path signature can be used. The signature checker
consists of a one-dimensional table of size |Q.| and

one-dimensional table containing the values of the
events.

Fig. 4 shows the application of this technique to the
FSM corresponding to a simplified version of the ISO
transport protocol of class 4.

CR'(5) CR(1)
@ I

DC(-4)

1CC(2) cC(-16)

N

Open
7
WFCC'(2)
24

N
Closed
\ DRA(3)/ o
AK(-103 -
109 @ AK'(-13) @ AK(T)
) ‘ BT(7) ‘ AKED Sg: Signature before entring|
S State Value State
: Sg Signature before N: Signature checking
S¢: - Sgnature before enteing Signaturo bet N ioign

Full signature checking Event signature checking E?ZA‘ES:“JSM checking:

Figure 4. 1SO transport protocol class 4. Left:
A solution to the state-event assignment problem
(zo = 2). Center: A solution to the event assign-
ment problem. Right: Reduced FSM of TP4 with
Q. = {Open, Closed} and L = 2.

B. Selection of free states

The following algorithm takes as input an FSM A
and determines, as output, the set of free states discus-
sed in Section 4.1. At each step, this algorithm selects
an unconstrained state, then updates the set of states
whose code (Fized-code) or signature (Fized-sgn), as a
result of this decision, can no longer be freely chosen.
The algorithm stops when no state whose code can be
freely chosen is left (i.e., Fized-code =), and it has a
time complexity of O(|T|); where |T| denotes the num-
ber of transitions in the FSM and |@| the number of
states. Note that |Free-states| = 2|Q| — |T| — 1.

When this algorithm is used in the case of FSMs
implemented in hardware, the complexity overhead of
the hardware can be reduced by making an appropriate
choice of the next state to be included in the set Free-
states. For instance, the next state can be chosen
among those that are adjacent to a state already in
Free-states or they can be chosen from the set Q..

Algorithm 3 Selection of Free States (input: A; output:
Free-states)
Free-states + {};
Fized-code + {};
Fized-sgn < {So};
While Fized-code # @ Do
Let S ¢ Fized-code;
Free-states < Free-states U {S};
Succ + Successors({S5});
While Succ ¢ Fizred-sgn Do
Fized-sgn + Fized-sgn U Succ;
Pred + Predecessors(Succ);
Fized-code < Fized-code U Pred;

Succ + Successors(Pred)
end

C. Proof of Lemma 2

For a given integer L, we show that it is possible
to transform any instance of 3SAT into an instance
of the problem LCDP. Let C' = {cy,...,¢m} be a set
of clauses on the boolean wvariables U = {uy, ... un}.
Each clause is formed of 3 literals and a literal is either
a boolean variable u; or its negation uw;. For instance,
¢e = (u; V U; V Uy) is such a clause. The problem of
3SAT is the following: “is it possible to assign values
(i.e., 0 or 1) to all the variables u; such that at least
one literal in each clause is true?”. In order to prove
that LCDP is NP-hard, one has to:

1. define a mapping from an instance of a 3SAT
problem into an instance of the LCDP problem,

2. prove that whenever the 3SAT instance can be sa-
tisfied, then the corresponding LCDP can be sol-
ved, and

3. prove that if the LCDP 1s soluble, then an assign-
ment can be found that satisfies all the clauses of
the 3SAT instance.

Figure 5. Reduction: Construction rules.

Reduction. We need to define a reduction from an
instance of 3SAT into an instance of LCDP. First,
we apply the following procedure to build a graph G
(Fig. b illustrates the steps of this procedure and Fig. 6
shows an example):

1. With each boolean variable u; we associate two
cycles Cy, and Cqgr, each of length [£] + 1. The
subgraph induced by these two cycles is called
the double-cycle® associated with the variable u;.
Fach cycle is composed of vertices v, and vy, as
follows:

5The expressions “double-cycle associated with a va-
riable” and “double-cycle associated with a literal” are used
interchangeably.

C={(@; Du, 0Ty,
(uy 073 0T}

Figure 6. Ezample: a 3SAT instance reduced into a
LCDP instance.

o Cu; = viviz - V1 Vitvit,

® Ugy = Vi1vig - 'Ui[%] Vi1V41.

2. With each clause ¢;, we associate a triangle T;, =
(¢j1,¢j2,¢j3) such that each literal of ¢; is asso-
ciated with one of the vertices of the triangle T, .
The sides of T.,; have the same length, chosen equal

L

to [5], and are oriented to form a cycle.

3. The triangle T, ,, which is associated with clause
¢j, is then connected to each of the three double-
cycles associated with the three literals of the
clause ¢;. The link is a path of length equal to
L%J + 1 and oriented from the double-cycle to-
wards the triangle. If k' (1 < k < 3) literal of
clause ¢; is:

e a positive variable u;, then the vertex c;; is
linked to the vertex w;; in the double-cycle
associated with w;,

¢ a negative variable %;, then the vertex c;; is
linked to the vertex w;7 in the double-cycle
associated with u;.

4. The integer V4, of the decision problem is taken
equal to n+2m; where n is the number of variables
of the 3SAT instance and m the number of clauses.

Note that the size of the graph generated by this pro-

cedure is linear in (n, m).

Example. In Fig. 6, we show the graph that cor-
responds to the following 3SAT instance:

C ={(@Vus V), (ur Vi3 Vi)

Sketch of Proof: Below, we outline how the proof is
constructed, the full proof can be found in [9)].

o The 3SAT instance is satisfiable = V' exists.
A clause ¢; is noted (x; Vy; V z;). If the 3SAT
instance is satisfiable, then one can built V' as
follows:
vV = {vi1|ui = 1} U {m|ul = 0}

Ifz; =1 Thene;, e
U Elselfy; =1 Thene;q,¢i3
Else ¢;a, ¢i3

The size of V' is equal to n + 2m.

e V' exists = the 3SAT instance is satisfiable.
The proof consists of showing that if there exists
a set V' such that every path P of length L + 1
has at least one vertex (different from his first end-
vertex) in V', then we can find an assignment that
satisfies all the clauses of the 3SAT instance.

— In every double-cycle associated with a va-
riable w;, {vy,, Uy, } NV’ # 0 otherwise the
latency induced by the cycle vy, vy, vy, WO-
uld be infinite.

— In every triangle, at least two vertices out of
three are in V.

Therefore |V/| > n+ 2m, but |[V'| < Vipae = n +
2m. Consequently, one and only one of v,, and
Ty, isin V’; and only two vertices of each triangle
associated with a clause are in V’. We conclude
that every variable is assigned one and only one
boolean value and every clause is satisfied by the
literal associated with the triangle which vertex is
not in V', ad

References

[1] M. Diaz, G. Juanole, and J. Courtiat. Observer- A
concept for Formal On-Line Validation of Distri-
buted Systems. IFEE Trans. on Soft. Eng.,
20(12):900-912, 1994.

[2] B. Escherman. On Combining Off-Line BIST and
On-Line Control Flow Checking. In FTCS’22
298-305, Boston, MA, 1992.

[3] B. Kénemann, J. Mucha, and G. Zwiehoff. Built-
in Logic Block Observation Techniques. In ITC,
37-41, 1979.

[4] R. Leveugle. Analyse de Signature et Test en Ligne
Integré sur Silicium. PhD thesis, Institut National
Polytechnique de Grenoble, 1990.

[5] R. Leveugle and G. Saucier. Optimized Synthe-
sis of Concurrently Checked Controllers. IEEFE
Trans. on Comp., 39:419-425, 1990.

[6] A. Mahmood and E. J. McCluskey. Concurrent
Error Detection Using Watchdog Processors - sur-
vey. IEEE Trans. on Comp., 37(2):160-174, 1988.

[7] M. Namjoo. Techniques for Concurrent Testing
of VLSI Processor Operation. In ITC| 461-468,
1982.

[8] A. N. Netravali, W. D. Roome, and K. Sab-
nani. Design and Implementation of a High-Speed
Transport Protocol. [EFEE Trans. on Comm.,
38:2010-2022, 1990.

[9] G.Noubir. Nouvelles Techniques pour la Tolérance
aur Pannes Basées sur U’Algébre des Polynéomes.
PhD thesis, Swiss Federal Inst. of Tech. in
Lausanne (EPFL), 1996. In preparation.

[10] G. Noubir, K. Vijayananda, and H. J. Nus-
sbaumer. A Robust Transport Protocol for Run-
Time Fault Detection. In Proc. ICNP’95, 164-171,
Tokyo, Japan, 1995.

[11] G. Noubir, K. Vijayananda, and P. Raja. Signa-
ture Based Technique for Fault Detection in Com-
munication Protocols. In Proc. of ISIT, page 43,
Whistler, Canada, 1995.

[12] M. Riese. Model-Based Diagnosis of Communica-
tion Protocols. PhD thesis, Swiss Federal Inst. of
Tech., Lausanne, 1993.

[13] S. H. Robinson and J. P. Shen. Evaluation and
Synthesis of Self-Monitoring State Machines. In
ICCAD’90, 276-279, 1990.

[14] S. H. Robinson and J. P. Shen. Direct Methods
for Synthesis of Self-Monitoring State Machines.
In FTCS 22, 306-315, Boston, MA, 1992.

[15] N. R. Saxena and E. J. McCluskey. Control-Flow
Checking using Watchdog assist and Extended-
Precision Checksums. In FTCS5’19, 1989.

[16] J. P. Shen and M. A. Schuette. On-line Self-
monitoring using Signatured Instruction Streams.
In ITC, 275-282, 1983.

[17] S.J. Upadhyaya and B. Ramamurthy. Concurrent
Process Monitoring with No Reference Signatures.
IEFEE Trans. on Comp., 43:475-480, 1994.

[18] C. Wang and M. Schwartz. Fault Detection with
Multiple Observers. IFEE Trans. on Networking,
1(1):48-55, 1993.

[19] K. D. Wilken and J. P. Shen. Embedded Signa-
ture Monitoring: Analysis and Technique. In ITC,
324-333, 1987.

[20] S. S. Yau and F.-C. Chen. An Approach to Con-
current Control Flow Checking. IEFEFE Trans. on
Soft. Eng., 6:126-137, 1980.

