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Abstract—Process variability is a challenging fabrication issue
impacting, mainly, the reliability and performance of chips.
Variability is already present in current technology nodes and is
expected to become even more significant in the future. In this
work, we focus on the study of performance variation in 16nm
FinFET FPGAs. We devise a comprehensive assessment method-
ology based on multiple programmable sensors with diverse
resource and delay characteristics. Additionally, we consider var-
ious voltage and temperature conditions and decouple variability
to systematic and stochastic. The experimental results on Zynq
XCZU7EV show up to 7.3% intra-die variation increasing to
9.9% for certain operating conditions. Our approach demon-
strates that logic and interconnect resources present different
variability, slightly uncorrelated, which highlights the necessity
and way towards more sophisticated mitigation methods/tools.

Index Terms—FPGA, Process Variability, Ring Oscillator

I. INTRODUCTION

The well-known trend of further transistor scaling becomes

more challenging and economically inefficient over the years

[1]–[3]. As transistors reach the fundamental atomic dimen-

sions and chip density increases, controlling process variability

becomes more arduous and leads to great deviations in the

electrical properties of transistors, such as threshold voltage

and channel length [4]. These deviations translate to variations

in maximum frequency and leakage power between suppos-

edly identical dies/chips (inter-die variability), or between

areas inside a single die/chip (intra-die variability). Process

variation is classified into two main types: systematic and

stochastic [4]–[6]. Systematic refers to deterministic, spatially

correlated variations attributed to layout effects and equipment

shifts during the manufacturing process (e.g., photoresist de-

velopment, etching) [7]. Systematic sources of variation result

in high likelihood for neighboring devices to present similar

electrical properties. In contrast, stochastic refers to uncorre-

lated, unpredictable variations occurring in atomic scale due

to stochastic fluctuations in the process (e.g., random dopant

fluctuation, line-edge roughness) [8]. With stochastic variation,

the properties of each device vary independently.

The FPGA is an appealing platform for assessing process

variability, due to its regular architecture and the ability

to program every single resource of its fabric at very low

level. This enables performing built-in-self-tests (BIST) via the

deployment of custom sensors and assessing the performance

variation across the fabric [9]–[12]. The analysis of process

variability and performance variation under different operating

conditions, i.e., voltage and temperature, plays a key role

for the implementation of methods targeting performance

enhancement. There exists a number of works in the literature

demonstrating the performance improvement by exploiting

the process variability in FPGAs, either in-the-field via fre-

quency/voltage scaling methods [13], [14] or by adapting the

computer-aided design (CAD) tools to the specifics of the

underlying chips [11], [15]–[17].

In this work, we focus on the analysis of performance

variation in commercial state-of-the-art 16nm FinFET FPGAs.

We assess the performance variation in logic and interconnect

resources and provide variability maps, which we create by

measuring custom sensors mapped across the FPGA fabric. We

present a comprehensive assessment methodology based on: i)

the employment of multiple type of sensors with diverse logic

and interconnect characteristics, ii) the decoupling of variabil-

ity into systematic and stochastic, and iii) the assessment of

variability under different voltage and temperature conditions.

In summary, the main contributions of this work are:

• The first variability analysis in the literature regarding

16nm FinFET commercial FPGAs.

• A comprehensive evaluation of performance variation

under diverse voltage and temperature conditions.

• Presentation of results demonstrating unequal variability

in logic and interconnect resources. These results high-

light the importance of multifaceted evaluation of process

variability and give insights for future implementations of

more accurate methods/tools for variability exploitation.

According to our experimental results on four identical Zynq

XCZU7EV FPGAs, we measured up to 7.3% and 8.3% intra-

and inter-die variability, which increases to 9.9% and 12%,

respectively, under particular operating conditions. Comparing

the variability maps derived by sensors of varying mixture in

logic and interconnect parts, we calculated relatively weak cor-

relation with 3.6% maximum error in performance estimation.

The structure of the paper is as follows: Section 2 presents

the related work, Section 3 describes the proposed methodol-

ogy for analyzing variability, Section 4 provides our experi-

mental results and, finally, Section 5 draws the conclusions.

II. RELATED WORK

Performance variation in commercial FPGAs has been stud-

ied by several works in the past. The most established method

relies on ring oscillator (RO) sensors. In [9] and [11], the

authors employed ROs to analyze the stochastic and systematic

intra-die process variability in 90nm Cyclone II and 65nm
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Virtex-5 FPGAs, respectively. Furthermore, in [10], [13], [18],

[19] the authors used ROs to measure the intra-die variation

in 90-28nm Spartan-3E, Virtex-4 ,Virtex-5 and Zynq FPGAs.

Another method for variability evaluation is based on

shadow registers. In [20], the authors evaluated the delay

variation of 336 logic paths on a 65nm Virtex-5 FPGA by

placing additional shadow registers alongside the main paths’

registers. To estimate the minimum delay of the respective

paths, they increase finely the clock frequency until an error

is detected in the comparison between the data of main and

shadow registers. In [21], using the method of negative-skewed

shadow registers, they evaluated the delay of three different

logic paths of a floating point adder circuit which was placed

in five different locations on two 130nm Virtex-II FPGAs.

In [12], an alternative technique is proposed for the evalua-

tion of delay variability in FPGAs. The key idea is based on the

placement of a combinatorial circuit under test (CUT) between

a launch and a sampling register. A clock generator drives

the clock of the registers and a stimuli generator provides

inputs to the CUT. While stepping up the frequency, a custom

circuit compares the output of the CUT with the data of the

sampling register to detect the occurrence of timing errors.

Consequently, the actual delay of the CUT is derived. Utilizing

this technique, they measured the delay variation of LUTs,

carry-chain units and embedded multipliers in Cyclone II and

Cyclone III FPGAs. Similarly in [22], by using the same

method they measured the intra-die delay variation of 1024

logic CUTs in 12 65nm Virtex-5 FPGAs.

Contrary to the aforementioned, the differentiating parts

of our work are: i) we study the performance variation in

16nm finFET FPGAs under various voltage and temperature

operating conditions, ii) we evaluate process variability in

a multifaceted fashion considering diverse types of RO and

interconnect sensors, iii) we analyze systematic and stochastic

variability for both logic and interconnect resources, and iv)

we perform correlation analysis on the variability results de-

rived by the different sensors demonstrating the inconsistency

in variation between the logic and interconnect resources.

III. METHODOLOGY

In this section, we describe our methodology for the analysis

of variability. We assess the performance variation of config-

urable logic blocks (CLBs) and interconnects, which are the

most prevalent resources in the FPGA fabric. The proposed

methodology is based on the generation of multiple variability

maps characterizing the silicon quality of the underlying

FPGA and the performance variation under various operat-

ing conditions (voltage, temperature). The variability maps

are extracted by monitoring multiple small sensors deployed

across the FPGA fabric. For our analysis, we employ 16nm

Zynq XCZU7EV FPGAs consisting of the Processing System

(PS) and Programmable Logic (PL) parts (Fig. 1). The PS

comprises a system of multi-core ARM CPUs (Cortex-A53,

-R5) along with an embedded GPU and variety of peripherals,

while the PL includes traditional resources of the FPGA fabric,

i.e., CLBs, RAMBs, DSPs, etc. In our case, we use the ARM

A53 CPU to control the operation of the sensors, collect their

data and forward them to an external Host PC for further

analysis.

A. Sensor Design & Network

Similar to other works [10], [13], the design of our sensors

follows the ring oscillator (RO) approach. An RO is an

asynchronous loop of N -stage inverter gates, where N is an

odd number, such that a square wave signal is generated at

the output. Upon measuring the rising edges of that generated

signal for a predefined period of time T , we can determine

the actual delay of the loop. The actual delay depends on the

electrical properties of the region where the RO is mapped

on. By placing multiple identical ROs across the FPGA fabric,

we can evaluate the speed of the corresponding regions and

hence, calculate the intra-die variability. It is essential that

all the employed ROs must be constructed by the exact same

resources (LUTs, pass-through DFFs) and routing connections

to obtain precise results. To ensure this identity, we build an

RO soft-macro block which is replicated onto multiple regions

while applying the equivalent relative physical constraints for

placement and routing. This leads to the creation of a sensor

network covering the entire FPGA fabric. Both our sensor

macro block and the sensor network are fully parametric in

terms of RO stages, number of sensors and mapping locations.
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Fig. 1: Block diagram of proposed architecture.

To measure the delay of each individual RO sensor, we use

a shared up-counter multiplexed with all the sensors of the

network. The operation of ROs is performed sequentially to

avoid potential voltage drops affecting the evaluation results.

The sensor network architecture is illustrated in Fig. 1. The

selection of a specific RO sensor for operation is specified by

the address decoder unit which controlled by the ARM CPU

via the En Address signal. Notice that the same signal is also

applied as select signal in the multiplexer driving the shared

counter. The communication between the ARM CPU with

the sensor network is realized via an AXI-Lite interface. The

operation period T where each RO remains active is calculated

by the private timer of ARM CPU and is selected to be 50 μs

as proposed by [9] to avoid self-heating phenomena [23] and

mitigate the error in the measurement process. When including

the non-ideal timer operation, the quantization issue due to

the non-aligned operation of timer and sensors [24], and the

micro-fluctuations in voltage and temperature that affect RO

operation, the overall measurement error is calculated to less
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TABLE I: STA delay of various sensor configurations.

sensor delay of logic resources delay of interconnects total (ps)
conf. LUTs DFFs Total intra-CLB inter-CLB Total

7st 1sb 707 ps 463 ps 65.4% 295 ps 325 ps 34,6% 1790

7st 2sb 707 ps 463 ps 36.3% 295 ps 1762 ps 63,7% 3227

7st inter - - - - 1437 ps 100% 1437

5st 1sb 582 ps 309 ps 67% 196 ps 244 ps 33% 1331

5st 2sb 582 ps 309 ps 37,2% 196 ps 1305 ps 62,8% 2392

5st inter - - - - 1061 ps 100% 1061

than 0.2%. To alleviate this error, we determine the RO delay

as the average value over 10 consecutive 50 μs runs.

B. Assessment Approach

Our variability assessment methodology includes i) various

sensor configurations, ii) decoupling of variability to sys-

tematic and stochastic, iii) diverse voltage and temperature

conditions. More details are given in the following paragraphs.

1) Variety of sensor configurations: Owing to the paramet-

ric implementation of our RO sensor, we utilize various config-

urations with different resource and delay characteristics. This

serves a twofold purpose. First, we need to investigate how the

derived variability results are affected by the footprint of the

sensor. Second, we need to analyze the impact of variability

on logic and interconnect resources. To do so, we utilize RO

configurations with different fraction of logic and interconnect

resources. The delay attributed to logic and interconnect

resources is specified via the custom mapping of the sensor

on the FPGA fabric by using the floorplan utility of Xilinx

Vivado tool. We clarify that the term “interconnects” in our

work refers to intra-, inter-CLB wires and switch boxes (SB).

Since the Vivado tool does not distinguish between inter-CLB

wires and SBs, we put their delays together under the same

category of inter-CLB interconnects. In Table I, we provide

details regarding sensor configurations. We employ ROs of

N=5 and N=7 stages using different routing topologies with

M=1 and M=2 SBs, named “Nst Msb”. We note that, all SB-

SB routing is based on short wire segments (direct connection

between the SB tiles) [25]. For each sensor configuration,

we distinguish the delay attributed to logic and interconnect

resources as reported by static timing analysis (STA) tool.

Notice that the configurations consisting of a single SB imply

less routing, hence the logic delay dominates the total delay,

i.e., 65,4% and 67% for 7 and 5 stages, respectively. The

opposite applies in the case of two SBs, i.e., interconnects

dominate the total delay with 63.7% and 62,8%, respectively.

An important feature of our sensors is that the configurations

having the same RO stages (e.g., 7st 1sb, 7st 2sb) share

the exact same CLB resources for a given location. Fig. 2

depicts such a case, with Wintra CLB a and Winter CLB a

being identical in both sensors. Taking advantage of our

RO feature, by subtracting the measured delays of the two

different sensors, we isolate and calculate the delay of the

remaining inter-CLB interconnects, i.e., Isb ab − Isb a. The

Isb ab and Isb a have been carefully selected to avoid any

overlap between their routing. Thus, we create extra sensors,

named 7st inter and 5st inter in Table I, which enable us to

measure the interconnects alone.
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Fig. 2: RO architectures with identical CLB resources and

different routing resources.

2) Decoupling of variability: We decouple the total mea-

sured variability into systematic and stochastic to study the

impact of each individual type separately. In presence of

variability, the delay of a path can be expressed as a random

variable following the first order canonical form [26]:

Td = TS
d + TR

d (1)

where TS
d represents the systematic part and TR

d the ran-

dom/stochastic part. For the purpose of our analysis, we model

the FPGA fabric as a X-Y grid, with each point representing a

sensor. The TS
d is spatially correlated and can be expressed as

a function of (x, y), while TR
d has no spatial correlation and

can be expressed as a random variable following a normal

distribution (0, σ2). According to the grid model [27], we

assume that all resources of a sensor have perfectly correlated

spatial variation (they are closely located, our assumption was

also verified in practice). When specifically considering the

interconnects, subtracting RO delays to derive the Nst inter
sensor results also in a random variable and is expressed as:

Tinter = TS
inter + TR

inter

=
(
TS
sb ab − TS

sb a

)
+
(
TR
sb ab − TR

sb a

)
(2)

because Tinter is generated by the subtraction of two random

variables (from Nst 2sb and Nst 1sb) describing delay paths

with systematic and stochastic parts (eq. 1). Notice that

these variables/paths have overlapped parts (identical CLB

resources, Fig. 2), but their subtraction leads to a random

variable, Tinter, derived by two independent parts (Tsb ab

and Tsb a with no physical overlap). The subtraction inside

TS
inter expresses accurately the systematic part of Tinter as

the spatial correlation of TS
sb ab and TS

sb a is assumed 1 (as

mentioned above). That is to say, directly subtracting RO

delays is sufficient for calculating TS
inter. However, when

considering the stochastic parts, since TR
inter is the difference

of two statistically independent variables, the subtraction of in-

dividual RO delays would typically follow normal distribution

(0, σ2
sb ab + σ2

sb a) and would not be correct for our analysis.

Instead, we need to derive σ2
sb ab − σ2

sb a [27]. Thus, we first

calculate the variances of Nst 2sb and Nst 1sb, indepen-

dently for each RO set, and we subtract them afterwards.

Additionally to the above analysis of the interconnects’

delay, we consider two distinct methods for the decoupling of
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TABLE II: Measured total performance variation results for nominal conditions.

Sensor device 1 (psec) device 2 (psec) device 3 (psec) device 4 (psec) inter-die
σtotal μ vs STA range/min σtotal μ vs STA range/min σtotal μ vs STA range/min σtotal μ vs STA range/min range/min

7st 1sb 11.1 1255.3 29.9% 5.51% 15.8 1227.2 31.4% 6.55% 14 1243.3 30.5% 6.15% 5.7 1216.3 32.1% 3.95% 8%

7st 2sb 19 2172.5 32.7% 5.05% 21.7 2133 33.9% 4.95% 19.7 2144.7 33.5% 4.77% 7.4 2112.7 34.5% 2.92% 7.01%

7st inter 8.9 917.2 36.2% 4.82% 6.4 905.8 37% 3.85% 6.2 901.3 37.3% 4.04% 3 896.3 37.6% 2.62% 6.44%

5st 1sb 8.2 922.4 30.7% 5.8% 11.8 901.4 32.3% 7.3% 10.4 913.3 31.4% 6.29% 4.4 893.1 32.9% 4.09% 8.31%

5st 2sb 14.1 1611.7 32.6% 5.02% 16.1 1581.4 33.9% 4.96% 14.7 1589.9 33.5% 4.82% 5.6 1566.2 34.5% 2.94% 6.93%

5st inter 6.8 689.4 35% 5.19% 4.8 680 35.9% 4.15% 4.7 676.6 36.2% 3.98% 2.4 673.1 36.6% 2.76% 6.83%

variability, as proposed in the literature: regression method [9]

and down-sampled moving average estimator (DSMA) [11].

In regression method, systematic variation is modelled by a

quadratic polynomial function of x and y, where coefficients

are computed by a least-square curve fitting algorithm. In

contrast, DSMA applies a moving average window across the

die to calculate the values for each (x, y); a 5x5 window size

was found to be the optimal according to [11] and our own

experimentation. In either methods, the residuals are utilized

to estimate the stochastic variability. We test both methods and

choose the most accurate one for our analysis.

3) Diverse operating conditions: We assess the perfor-

mance variation under different voltage and temperature oper-

ating conditions. The assessment regards all sensor configura-

tions and decoupling of variability. To perform voltage scaling,

we utilize the on-board power controller (IRPS5401M) of the

ZCU104 board to alter the supply voltage, Vccint, via the I2C

interface of Zynq PS. To modify temperature, we employ a

thermal chamber of uniform thermal distribution.

IV. VARIABILITY ANALYSIS

Following the methodology described in Section III, we per-

form the assessment of variability in four supposedly identical

Zynq XCZU7EV FPGAs. For each FPGA, we generate multi-

ple variability maps by utilizing the different sensors of Table

I. For Nst 1sb RO configurations we deploy 13200 sensors,

while for the counterparts Nst 2sb we deploy 6600 sensors

due to their larger footprint on the fabric (Fig. 2). All sensors

are uniformly placed over the fabric to sufficiently cover the

die. An example of variability map with the corresponding

floorplan view for the arbitrary selected device 1 is illustrated

in Fig. 3. The red color denotes the faster regions of the

device (smaller RO delay) while the blue color denotes the

slower regions. We observe a smooth distribution and change

of performance across the die due to systematic variation,

with a noticeable discontinuity in the middle column of our

variability map (Fig. 3b), which is explained by observing the

floorplan of the FPGA (Fig. 3a): the corresponding physical

area is utilized by I/O Banks, not considered in this work.

We begin our analysis by examining fixed nominal condi-

tions: supply voltage, Vccint = 0.85V , and junction tempera-

ture, Tj = 30°C. The values of Vccint and Tj are monitored by

Xilinx integrated system monitor (SYSMON). The measured

error in Vccint among the four devices is negligible, i.e., 0.3%.

Table II provides detailed total variability results. We report

the mean sensor delay (μ), the standard deviation (σtotal), the

difference between the STA estimation (Table I) versus the

actual mean sensor delay (vs STA), as well as the estimation

I/O Bank

ARM

(a) Floorplan (b) Variability map

Fig. 3: FPGA floorplan and variability map of sensor 5st 2sb.

(a) (b)

(c) (d)

Fig. 4: Systematic and stochastic variability maps of sensor

5st 2sb using regression (a),(b) and DSMA (c),(d) methods.

of variability expressed by the range/min metric, where

range = max −min refers to the maximum and minimum

sensor delays. The first important observation is the great

difference between the STA and the actual measured delay

of the sensors, which tends to rise as the portion of delay

attributed to interconnects increases, reaching up to 37.6%

for 7st inter. Essentially, this indicates that the STA tool

introduces more pessimism to interconnects rather than logic.

Regarding variability, the highest intra-die variation is mea-

sured with the smaller RO configuration (5st 1sb), reaching

up to 7.3%. By comparing the 7st inter and 5st 1sb sensors

which have similar mean delay (implying fair comparison), we

observe that interconnects present smaller intra-die variation

in all devices, with the difference being 0.98-3.45%. The

same applies for inter-die variability as well; inter-die variation

decreases when considering sensors with more interconnects,

however, to strongly support this statement a greater number
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Fig. 5: Correlation results and performance estimation error

between 5st 1sb (67/33) and rest sensors (logic/interconnect).
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Fig. 6: Systematic variability maps of 5st 1sb (a) and 7 inter
(b) sensors (device 1, common scale)

of devices is required. Note that Table II includes a negligible

error in the σtotal/μ of interconnects, i.e., 0.03%, due to our

approximation in the stochastic parts of variation (eq. 2),

and hence, more accurate results are derived by the separate

analysis of systematic and stochastic variability in Sec. IV-A.

A. Analysis of Systematic and Stochastic Variation

A step further in our analysis, as described in Section III-B,

we decouple the variability into systematic and stochastic

using both regression and DSMA methods. To address the

discontinuity in variability maps (Fig. 3), we empirically insert

null columns until the systematic impact on the stochastic

maps get minimized. In Fig. 4, we show the extracted sys-

tematic (Fig. 4a, 4c) and stochastic (Fig. 4b, 4d) variability

maps of device 1. Comparing the two methods, we deduce

that DSMA formulates more precisely the systematic shape

of the initial map (Fig. 3b) and highlights the random nature

of stochastic variation. Thus, in the remainder of the paper,

we continue our analysis based on the DSMA method.

Our study of systematic variation is based on correlation

analysis. We use the Pearson coefficient to correlate the

systematic variability maps derived by the different sensors.

We note that, for this calculation, the shown discontinuity in

our maps was removed manually to avoid artificial biasing and

obtain more accurate/fair correlation coefficients. In Fig. 5a,

using as reference the smaller RO sensor, 5st 1sb, we depict

how the correlation varies with respect to the other sensors.

The correlation weakens as the ratio of logic/interconnects

sensor delay decreases reaching down to 0.59 for interconnect-

only sensors. Moreover, in Fig. 5b we illustrate the maximum

difference (error) in relative performance estimation between

the various systematic variability maps. Keeping the 5st 1sb
sensor as reference, we calculate that the average error of the

entire map ranges in 0.01-1.22% and extends to 0.34-3.2%

considering particular (x, y) points on the maps. Fig. 6 depicts

the systematic variability maps of 5st 1sb and 7 inter sensors

Fig. 7: Probability distribution of stochastic variation.

TABLE III: Systematic and stochastic variability results.

Dev. Metric 7st 1sb 7st 2sb 7st inter 5st 1sb 5st 2sb 5st inter
Systematic

1
range/min

4.28% 4.05% 4.01% 4.25% 4.07% 4.12%

2 5.47% 4.11% 2.78% 5.54% 4.14% 2.83%

1-4 range/min (inter-die) 6.69% 5.73% 5.56% 6.73% 5.86% 5.69%

Stochastic
1

3σrand/μ
0.90% 0.62% 0.79% 1.04% 0.70% 0.84%

2 0.86% 0.59% 0.77% 0.98% 0.66% 0.81%

for device 1. There is a noticeable difference in their maps

denoting that interconnects (mainly wires) follow a different

process than logic components (mainly transistors). Overall,

these results demonstrate the importance of having multiple

sensors, with diverse characteristics, to accurately analyze

variability and predict the performance variation in FPGAs.

Having calculated the systematic variation, we continue with

the analysis of stochastic variation. First, we verify that the

residuals derived by the subtraction of total measured and

extracted systematic variability maps, indicating the stochastic

variation, follow a Gaussian distribution in all cases (Fig.

7). Table III shows representative systematic and stochastic

variability results. The maximum systematic variability is cal-

culated to 5.5% (range/min) while the maximum stochastic

to 1.1% (3σrand/μ). Comparing the 5st 1sb and 7st inter
sensors which have similar actual delays, we observe that

systematic variation in 7st inter is lower than 5st 1sb in

all tested devices with the difference being in the range of

0.24-2.76%. The same applies for stochastic variation, i.e.,

0.18-0.25%. Considering all sensors, our results verify that as

the footprint of the sensor increases and total delay becomes

higher, the σ2
rand increases (Fig. 7) but stochastic variation as

ratio of mean value (3σrand/μ) attenuates due to averaging

over multiple gate and interconnect delays [11].

B. Variability Under Voltage and Temperature Change

We continue the analysis of performance variation consid-

ering diverse voltage and temperature operating conditions:

Vccint in range of 0.640-0.875 V and Tj in 30-85 C°. For

each specific Vccint value, we retrieve variability maps for

different Tj with a step of ∼20 C°. Before we proceed to the

analysis of results, for better understanding, we mention the

alpha-power law model of the CMOS logic gate delay [28]:

td =
Vccint

K · (Vccint − Vth)
a (3)

where, Vccint is the supply and Vth is the threshold voltage, a
is a fitting parameter and K is a process dependent parameter.

Fig. 8 illustrates the mean sensor delay for all differ-

ent voltage-temperature combinations for representative RO
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Fig. 8: Maximum performance w.r.t. voltage and temperature.

(5st 1sb) and interconnect (7st inter) sensors in device 1.

In RO sensor (Fig. 8a), the delay decreases almost linearly

(a ≈ 1) for higher Vccint values (0.81-0.875V) and then with

a factor of a ≈ 1.2 for lower Vccint [29]. The estimation

of a is calculated by fitting models in MATLAB using

measurements with fine change of Vccint. Below a certain

Vccint value (0.72V), the temperature inversion phenomenon

occurs [30]; delay decreases with elevated Tj . The temperature

inversion point as well as the value of fitting parameter a
vary depending on the sensor configuration. In sensors with

higher portion of logic delay (greater amount of transistors),

we measure higher performance degradation and temperature

inversion manifests in higher Vccint values. Fig. 8b depicts

the case of interconnect sensor, which is composed mainly by

wires and the transistors residing in the SBs of the FPGA. In

contrast to the RO sensor, the interconnect sensor shows lower

performance degradation with voltage decrease and a higher

degradation with temperature increase; resistance of wires

becomes higher [31]. Considering all devices and sensors, the

performance degradation due to voltage ranges up to 33.9%

(7st inter) - 57.9% (7st 1sb), while the degradation due to

temperature up to 2.9% (5st 1sb) - 4.8% (5st inter).

Fig. 9 presents the intra-die systematic and stochastic per-

formance variation for the reported voltage-temperature con-

ditions. In both cases, variability increases with the decrease

of Vccint. This was expected because, according to eq. 3, as

Vccint scales down, the delay of slower transistors (higher Vth)

increases relatively higher than faster transistors (lower Vth)

thus, leading to higher variability. On the other hand, variabil-

ity decreases with the elevation of Tj : the Vth decreases almost

linearly to Tj increase [31], i.e., the Vccint–Vth increases more

for slow transistors hence, decreasing their td more (see eq.

3) than fast transistors. Considering all devices and operating

conditions, the systematic variability is increased up to 5.9%

(7st inter) - 7.3% (5st 1sb) and the stochastic variability is

increased up to 1.41% (7st inter) - 1.53% (5st 1sb). The

corresponding intra- and inter-die total variability is increased

up to 7.4-9.9% and 9.5-12%, respectively.

Fig. 10a shows the Pearson coefficients and the maximum

performance estimation error between the 5st 1sb reference

and the rest sensors for Vccint = 0.64V . In contrast to

the corresponding plots in Fig. 5 for nominal conditions

(Vccint = 0.85V ), the correlation between RO sensors remains

almost the same, however, the correlation with the interconnect

sensors has been greatly increased to 0.82 (from 0.59). The

latter is explained by the fact that, with voltage under-scaling
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Fig. 9: Systematic (a,b) and stochastic (c,d) variability as a

function of voltage and temperature.
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Fig. 10: Correlation results and performance estimation error

between 5st 1sb (67/33) and other sensors for 0.640V, 30°C.

the change in interconnect delay is attributed mainly to the

transistors residing in SBs, hence, the variability maps tend to

follow the behavior of transistors. Nevertheless, note that even

though the correlation is improved, the error in performance

estimation (Fig. 10b) is increased to 3.6% (from 3.2%).

V. CONCLUSION

In this work, we studied the performance variation in

16nm FinFET commercial FPGAs. We employed multiple

type of sensors to measure variability in logic and interconnect

resources, we analyzed the systematic and stochastic process

variability, we evaluated the impact of diverse voltage and

temperature conditions. Our experimental results showed up to

9.9% intra-die and 12% inter-die performance variation under

certain operating conditions. Moreover, we deduced that logic

and interconnect resources present different variation, with low

correlation, and a maximum error of 3.6% in performance esti-

mation. Our results highlight the importance of a multifaceted

assessment of variability in FPGAs and provide insights for

the implementation of more sophisticated mitigation methods.
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