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Abstract

This paper reviews the current state of the art of require-
ments engineering (RE) research and identifies RE research
challenges for future systems. First, the paper overviews the
highlights of RE research over the past two decades; the re-
search is considered with respect to requirements technolo-
gie, including notations and methodologies, developed to
address specific RE tasks, such as elicitation, modeling, and
analysis. Such a review enables us to identify mature areas
of research, as well as areas that warrant further investiga-
tion. Next, we identify several research challenges posed by
emerging systems for the future. In order to help delineate
the scope of future RE research directions, we then identify
several strategies for performing RE research. (The spec-
trum of research strategies ranges from empirical research
to paradigm shifts.) Finally, within the context of these RE
research strategies, we identify “hot areas” of research that
address RE needs for emerging systems of the future.

1. Introduction

The success of a software system depends on how well
it fits the needs of its users and its environment [111, 114] .
Software requirements comprise these needs, and require-
ments engineering (RE) is the process by which require-
ments are elicited, modelled, analyzed, and documented.
Requirements encompass more than desired functionality
– users increasingly demand systems that are usable, re-
liable, secure, and economical, while product developers
want to be able to adapt and enhance products rapidly, in
response to changing both user’s needs and environmen-
tal conditions. As such, improving the effectiveness of
requirements-related activities requires multi-disciplinary
research, involving aspects of computer science, mathemat-
ics, engineering, human-computer interaction, and social
and cognitive sciences.

In this paper, we offer our views of the research direc-

tions in requirements engineering. In contrast to Nuseibeh
and Easterbrook’s roadmap paper from the ICSE’00 track
on the Future of Software Engineering [57] (herein referred
to as the “2000 Roadmap Paper”), which emphasized cur-
rent research in requirements engineering, this paper fo-
cuses on research directions and identifies challenging RE
problems of emerging systems of the future. We start in
Section 2 with a summary of the state of the art of RE
knowledge and research. Section 3 identifies research chal-
lenges for several future and emerging types of systems. In
Section 4, we enumerate general paradigms for conducting
research, ranging from revolutionary research to empirical
evaluation to codifying proven solutions. Section 5 high-
lights research hotspots that address the RE challenges of
emerging systems. We conclude with a summary of near-
and long-term RE research needs.

2. State of the Art of RE Research

In general, the research challenges faced by the require-
ments engineering community tend to parallel those faced
by the general software engineering community. Several
additional challenges are faced by the RE community. First,
RE artifacts and processes have to be understandable and
usable by a broader range of stakeholders than other SE
tasks. For example, RE notations and processes must satisfy
a delicate balance between formal, analyzable artifacts and
high-level (often informal), intuitive to understand artifacts.
In contrast, notations and artifacts for design, implemen-
tation, and testing are typically more formally, technically
defined and involve automated processing. Second, the in-
formation available for RE tends to be less well-defined
and more likely to change than that used for other devel-
opment tasks, which means that the information available
at the beginning of an RE process may be dramatically dif-
ferent than what is derived many iterations later. As such,
RE techniques necessarily may be more complex (involv-
ing many stages), or several RE techniques have to be com-
bined to handle such a range of information. Finally, RE



Table 1. Matrix Summarizing Research in Requirements Engineering
Research

Contributions Elicitation Modeling Analysis, Validation, Verifi-

cation

Management

Notations

Goals [18, 150]
Policies [17]
Scenarios [2, 31, 41]
Enterprise mod-
els [45]

Logics [47]
Model checking [19, 48]

–Data models [76]
Behavioral models [78, 145]
Domain descriptions [10]
Logics [47]
Anti-models [135, 144, 151]
Variability model-
ing [36, 123, 130]
Formalizations [101, 109, 141]
Nonfunctional require-
ments [26, 61]

Techniques

Identifying stakeholders [132]
Metaphors [117, 119]
Persona [9]
Contextual requirements [32,
140]
Animation [71, 97, 148]
Prototyping [43]
Inventing requirements [99]

RE reference model [64, 65,
115]
Model elaboration [147]
Viewpoints [112, 134]
Model merging [128, 143]
Model synthesis [5, 37, 92, 146,
159]
Modeling patterns [51, 85, 149]
Model composition [68]
Modeling facilitators [30, 83,
113]
Formalization heuristics [17, 60]
Methodologies [14]

Linguistic analysis [56, 129, 153]
Ontologies [81]
Checklists [154]
Consistency check-
ing [55, 70, 107]
Interaction analysis [23, 67, 125]
Obstacle analysis [96, 152]
Causal order analysis [11]
Simulation [142]
Invariant generation [79]
Model checking [25, 52, 137]
Model satisfiability [76]

Prioritization [105]
Variability Analysis [63, 93]
Requirements selection [122,
139]
Aligning Req. with COTS [91,
126]
Effort estimation [33]
Impact analysis [88]
Traceability [29, 69, 127, 131]
Stability analysis [20]
Scenario management [4]
Feature management [155]
Global RE [40]

Evaluation

Elicitation [42, 39, 94]
Negotiation [75]

Air traffic control [98, 158]
Aspects [12]
Viewpoints [53]

Security [151]
Semantic web ontologies [49]
User interfaces [15]
Inspection methods [118]

RE payoff [38, 54]
Requirements evolution [7, 95]
Risk management [59]
Cost estimation in web app. [104]
Req. reuse in automotive
software[72]

information is inherently going to be tied more tightly with
the application domain, thus potentially requiring domain-
specific expertise to be integrated with system development
information.

Before exploring future directions, we highlight previ-
ous work as a way of summarizing the state of the art of RE
knowledge and technology. This section can be viewed as
an update to the 2000 Roadmap Paper [111]. For consis-
tency, we adopt much of the terminology used in that paper.

To provide a visual map of RE research, we organize re-
search results in a matrix structure that relates each result to
the requirements problem that it addresses and to the con-
tribution it makes towards a solution – a la Zave’s proposed
scheme for classifying RE research [161]. The research
space is roughly decomposed into four categories of re-
quirements problems (elicitation, modeling, validation and
analysis, and requirements management) and three types of
research contributions (notations, techniques, and empirical
evidence). This decomposition is comparable to the top-

level decomposition in Zave’s classification scheme. The
resulting matrix is shown in Table 2.

Elicitation. Requirements elicitation comprises activities
that enable the understanding of the goals, objectives, and
motives for building a proposed software system. Elicita-
tion also identifies the requirements that the resulting sys-
tem must satisfy to be considered acceptable. The require-
ments to be elicited range from modifications to well un-
derstood problems and systems (e.g., software upgrades),
to hazy understandings of new problems being automated,
to relatively unconstrained requirements that are open to in-
vention (e.g., mass-market software). As such, most of the
research in elicitation focuses on techniques for improving
the precision, accuracy, and variety of the requirements de-
tails:

• Techniques for identifying stakeholders [132] help to
ensure that everyone who may be affected by the soft-
ware is consulted during elicitation.



• Analogical techniques, like norms, metaphors [119],
and personas [9, 34], help stakeholders to consider
more deeply and be more precise about their require-
ments.

• Observation, apprenticeship [16], ethnography [136],
and other contextual techniques [32, 140] analyze
stakeholders’ requirements with respect to a particu-
lar context and environment, to help ensure that the
eventual system is fit for use in that environment.

• Feedback techniques use models, model anima-
tions [71, 97, 148], prototypes [43], mockups, and sto-
ryboards to elicit positive and negative feedback on
early representations of the proposed system.

• Techniques for inventing requirements, like brain-
storming and creativity workshops [99], help to iden-
tify nonessential requirements that make the final prod-
uct more appealing.

Modeling. Requirements are presented in one or more
modeling notations. Requirements models are used in
a variety of ways, ranging from eliciting feedback from
stakeholders, to teasing out missing details, to document-
ing final decisions. Early-phase requirements models are
used to explore and learn about the stakeholders’ prob-
lem. Such exploratory models, like use cases, scenarios,
enterprise models, and some policy [17] and goal nota-
tions [18], tend to be informal, incomplete, and inexpen-
sive to create and maintain, so that specifiers can keep
them up-to-date as the requirements evolve. Late-phase re-
quirements models tend to be more complete, unambigu-
ous, and formal, as these models are used to communicate
the requirements to downstream developers. Each model-
ing notation is designed to elicit or record specific details
about the requirements, such as information to be main-
tained, functions on the data, responses to inputs, or con-
straints on data or behavior. Of these, scenario-based no-
tations [2, 5, 37, 41, 143, 146, 147, 159] have been the fo-
cus of much recent research – perhaps because scenarios
are easiest for practitioners and nontechnical stakeholders to
use, or perhaps because scenarios are naturally incomplete,
and so they lend themselves to lots of research problems.

In addition, there is considerable research on techniques
for creating, combining, and manipulating models.

• Modeling strategies provide guidelines for structur-
ing models. For example, RE reference models [64,
65, 115] decompose requirements-related descriptions
into the stakeholders’ requirements, the specification
of the proposed system, and assumptions made about
the system’s environment; and they establish correct-
ness criteria for verifying that the specified system will
meet the requirements. Whereas in the viewpoints ap-
proach [112, 134], each stakeholder’s requirements are
retained in separate models, and the synthesis of a

global consistent model of all stakeholders’ concerns
is delayed until conflicts can be resolved knowledge-
ably.

• The RE community has started to collect model pat-
terns [51, 85, 149] that encode common solutions to
complex modeling problems, and to develop tools [30,
83, 113] to help specifiers to apply these patterns.

• Several contributions propose model transformations
for combining or manipulating models to derive new
models. For example, model synthesis [5, 37, 92, 146,
159] and model composition [68] techniques integrate
complementary submodels into a composite model,
whereas model merging [128, 143] techniques unify
different views of the same problem. There is also
preliminary work on heuristics for formalizing natural-
language policies [17] and goal models [60].

Several of the above-mentioned projects directly address
challenges raised in the 2000 Roadmap Paper [111]. For ex-
ample, heuristics for formalizing informal models and tools
that map constrained natural-language expressions to for-
mal representations [30, 83, 113] help to bridge the gap be-
tween informal and formal requirements. The gap is also
narrowed by research on formalizing the semantics of in-
formal or semi-formal modeling notations [101, 141]. In
addition, there has been significant advances in the model-
ing and analysis of nonfunctional requirements [26] and in
establishing objective fit criteria for how well an eventual
system must achieve various nonfunctional properties [61].
On the other hand, there has been little progress on new no-
tations for modeling environment descriptions and assump-
tions [10]; instead, existing notations like functions [115],
object models (e.g., UML), operational specifications (e.g.,
Z), and constraint languages continue to be used.

Analysis, validation, and verification. Requirements
analysis assesses the quality of requirements models and
documentation. Most of the research in this area fo-
cuses on new or improved automated techniques for de-
tecting errors in models, where an “error” can be ambi-
guity [56, 81, 129, 153], inconsistency [55, 70, 107], an
unknown interaction among requirements [23, 67, 125], a
possible obstacle to requirements satisfaction [96, 152], or
missing assumptions [11].

Requirements validation ensures that models and doc-
umentation accurately represent the stakeholders’ require-
ments. Unlike the above analyses, which check soft-
ware specifications against established well-formedness cri-
teria, validation is an attempt to compare a specification
against undocumented requirements. As such, it usually
requires the direct involvement of stakeholders in review-
ing the requirements artifacts. Research in this area focuses
on improving the information provided to the stakeholder



for feedback, including animations [71, 97, 148], simula-
tions [142], and derived invariants [79].

In cases where a formal description of the stakeholders’
requirements exists, obtained perhaps by validation, veri-
fication techniques can be used to prove that the software
specification meets these requirements. Such proofs often
take the form of checking that a model satisfies some con-
straint. For example, model checking [25, 52, 137] checks
behavioral models against temporal-logic properties about
execution traces; and model satisfiability [76] checks that
there exist valid instantiations of constrained object mod-
els, and that operations on object models preserve invari-
ants. The notations listed in this column are notations that
simplify and abstract the structure of the model to be veri-
fied [19, 48], to facilitate automated verification.

Requirements management. Requirements manage-
ment is an umbrella activity that comprises a number of
activities related to the management of the project or of the
requirements phase. Such activities include traceability,
impact analysis, cost estimation, risk management, as
well as management of requirements variations. Research
in this area focuses on easing management tasks and
improving analysis techniques. For example, researchers
have proposed a number of prioritization [105], visualiza-
tion [63, 93], and analysis [122, 139] techniques to help
managers select an optimal combination of requirements to
implement – or to help project managers identify accept-
able off-the-shelf solutions [91, 126]. Other researchers
are investigating how to improve our ability to estimate
the cost [33] of implementing the selected requirements,
or the impact of new or modified requirements [88]. Of
particular interest are tools and techniques to ease, and
partially automate, the task of identifying and documenting
traceability links among requirements artifacts and between
requirements and downstream artifacts [29, 69, 127, 131].
Stability analysis [20] helps project managers to determine
the maturity and stability of the elicited requirements,
and to isolate those requirements that are most likely to
change. Lastly, the basic management of requirements has
become challenging, thus inspiring research on techniques
to organize large numbers of requirements [4] that are
globally distributed [40], and that are at different phases in
development in different product variants [155].

Evaluation. There is surprisingly little empirical research
on the effectiveness of requirements technologies. That
said, several recent case studies evaluate how well research
ideas work when applied to industrial-sized problems [75,
94, 98, 104, 158] or in industrial settings [38, 39, 59]. Ad-
ditionally, several recent research projects have been evalu-
ating how well requirements notations and techniques ap-
ply to, or can be adapted to, domain-specific problems,

such as security [151], semantic webs [49], and user in-
terfaces [15]. There have been a few comparative studies
that compare the effectiveness of competing elicitation tech-
niques [42, 53] and inspection techniques [118]. Finally,
there have also been some post-mortem analyses on how
requirements evolved in real-world systems [7, 95].

3 Research Challenges

As described above, the RE community has made sig-
nificant progress in addressing RE research challenges with
respect to today’s systems. In this section, we identify sev-
eral key challenges for future systems.

3.1. Scale

Future systems will not be limited to significant size in-
creases (such as lines of code), but scale factors will also in-
clude complexity, the level of heterogeneity, number of sen-
sors, number of decentralized decision-making nodes, etc.
Another major challenge with these large-scale systems will
be the management of these complex and numerous require-
ments, where continuous evolution of the requirements will
add another level of complexity to the management prob-
lem. An example of an emerging system exhibiting many of
these new scale factors are the emerging Ultra-Large Scale
(ULS) systems [110]. ULS systems will be used to develop
military command and control systems; ULS systems are
also likely to be a big part of automotive systems of the fu-
ture, intelligent transportation management systems, critical
infrastructure protection systems, etc.

3.2. Cyber-Physical Systems

Increasingly, computing systems interact with the phys-
ical world. Cyber-physical systems are a new genera-
tion of engineered systems that need to be highly depend-
able, efficiently produced, and capable of advanced perfor-
mance in information, computation, communication, and
control [35]. “A cyber-physical system integrates comput-
ing, communication and storage capabilities with the mon-
itoring and/or control of entities in the physical world, and
must do so dependably, safely, securely, efficiently and in
real-time. [35]” Example cyber-physical systems include
intelligent vehicle systems, automated manufacturing, crit-
ical infrastructure monitoring, disaster response, optimiza-
tion of energy consumption, and efficient agriculture [35].
High-level requirements for CPS include dependability, se-
curity, safety, efficient, and real-time operation, while being
scalable, cost-effective, and adaptive [35]. n processing de-
mands are being imposed by

The biggest factor accelerating the growth of the emerg-
ing area of dynamically adaptive systems is the increase in



volume and sophistication of sensors and sensor networks.
With this new sensor technology, scientists and practitioners
are able to use sensors to monitor critical behavior for ap-
plications such as power-grid infrastructures, bridges, and
transportation systems. These sensors will be equipped with
varying levels of computational capacity and may be placed
in locations (e.g., power transformers, nuclear reactor cores,
hazardous/toxic sites), where it may be difficult, if not im-
possible, for humans to access to update with new software
and behavior. The CPS systems will need to be able to re-
spond to unexpected conditions, thus requiring the require-
ments to continuously evolve, even during execution. As
such, traditional approaches to requirements modeling and
analysis will not be sufficient, since the requirements will
be so dynamic in nature. New RE techniques will need to
be more agile and rigorous given the critical nature of CPS
applications.

3.3. Self-Adaptive Systems

With the potential for millions of sensors at the wireless
edge of the Internet, combined with the increasing com-
plexity of computing technology, gives rise to the need
for computer systems capable of self-management. Auto-
nomic Computing [82] refers to systems that adapt, or self-
regulate, in response to changing conditions, such as hard-
ware or software failures, fend off attacks, optimize perfor-
mance, all with minimal human intervention. IBM’s origi-
nal motivation for autonomic computing was to build self-
managing capabilities into large farms of servers, thus re-
ducing the demand for specialized systems administrators
who have to manage increasingly complex computing in-
frastructure. Since the original introduction of the term, au-
tonomic computing-related techniques have been explored
for other types of applications, such as critical infrastructure
protection (e.g., power grid management, bridge monitor-
ing), CPS (e.g., automated manufacturing, autonomic net-
working [138]), public safety systems, and command and
control systems.

Depending on the type dynamic adaptation need at
run time to changing environment conditions, user needs,
and system requirements, these systems have been given
slightly different names. For example, self-healing refers
to those systems that have to adapt dynamically in response
to a system failure, fault, errors, security breaches, where
the failures are detected at run time and the failure condi-
tions and types may not be known at system development
time. In contrast, self-managing or autonomic tend to refer
to systems that have minimal human guidance during exe-
cution, and are intended to be autonomous with the ability
to adapt (at run time) to new environmental conditions and
new requirements that were not anticipated during develop-
ment time.

Three key areas of research challenges are posed by dy-
namically adaptive systems: environment and system mon-
itoring, decision-making for adaptation, and the adaptive
mechanisms. For all three areas, the biggest RE challenge
is how to handle incomplete and continuously evolving re-
quirements of the system that must respond to changing
environmental conditions, user needs, and resource con-
straints. Because many of the applications for the dynamic
adaptation are high assurance, these systems must be for-
mally analyzable for satisfying critical properties before,
during, and after adaptation. Much of the preliminary SE
research efforts for adaptive systems have focused on ar-
chitectural frameworks [58](Self-Adaptive Systems article),
programming languages, and adaptive mechanisms for dy-
namically adaptive systems [100]. RE activities largely fo-
cus on specifying and/or verifying assurance models and
properties for adaptive systems [3, 21, 86, 87, 90, 163, 164].
Most of these techniques do not explicitly address the chal-
lenges posed by incomplete information.

3.4. Security

As computing systems become ever more pervasive and
mobile, and as they increasingly automate and manage
consumer-critical processes and data, they increasingly be-
come the target of security attacks. There has been substan-
tial work on how to improve software security, in the form
of solutions and strategies to avoid vulnerabilities, to protect
systems and information, and to defend against or recover
from attacks. However, most of these solutions are threat
specific. Thus, the RE challenge with respect to secure sys-
tems is to identify potential security threats, so that design-
ers can select and employ appropriate protections. This task
involves significant study, modeling, and analysis of the en-
vironment in which the system will operate, and so far there
has been little work on domain modeling – despite the fact
that its importance was raised almost 15 years ago [77].

Moreover, there is no consensus on how security re-
quirements themselves should be documented. Is security a
nonfunctional requirement to be resolved and optimized at
design time along with other competing nonfunctional re-
quirements? Or should security requirements be realized as
functional requirements, in the manner that user interfaces
and timing deadlines are woven into behavioral specifica-
tions? These are open questions for the modeling, analyses,
and security communities to resolve.

3.5. Globalization

The trend towards globalization is motivated by the de-
sire to capitalize on global resource pools, decrease costs,
exploit a 24-hour work day, and to be geographically closer
to the end-consumer [62]. All of these factors pose sev-



eral new RE challenges. For example, elicitation and early
modeling are collaborative activities that require the con-
struction of a shared mental model of the problem and re-
quirements. There is an explicit disconnect between this
need for collaboration and distance imposed by global de-
velopment.

4. Research Strategies

In order to provide context and a better understanding of
the hot spots of RE research for the future (see Section 5),
we have identified several major research strategiess that
offer complementary approaches for conducting research.
Each of these research strategies addresses different types
of research questions and have different expectations for the
research results. These strategiess are based on a number of
different sources, including Shaw’s overview of criteria for
good research in software engineering [133], Redwine and
Riddle’s review of software technology maturation [121],
Basili’s review of research paradigms [13], and the com-
bined experience of both authors. Table 2 introduces and
briefly defines the eight research strategies that we have
identified thus far, listed in the order of increasing matu-
rity of the RE research results. Next, we describe each of
these paradigms in more detail, including examples.

Paradigm Shift. A paradigm shift dramatically changes
the way of thinking, on the order of a transformation, rev-
olutionary, or metamorphsis [89]. The change typically re-
quires some disruption (i.e., technologically may have to
apply new tecnhiques to smaller, simpler problems and then
graduate to applicability to problems, size, and scope of in-
terest) before the benefits of the paradigm shift can be per-
ceived. Typically, there are two strategies for bringing about
a paradigm shift: push and pull. A paradigm shift can be
pushed into the community when a technique is serendip-
itously discovered, where it may make major advances in
solving a problem for which it may not have been originally
intended. The world wide web is a classic example of such
a paradigm shift, where the web has significantly changed
the way society behaves for communication and delivery of
consumer services. A paradigm shift can be pulled when
there is either a real or a perceived crisis in which current
techniques are inadequate, no matter how the techniques are
extended or improved [89]. For example, at the end of the
1960’s, the area of software engineering emerged in an at-
tempt to solve the “software crisis” which referred to the
significant difficulty in writing correct, easily understood,
and machine-verifiable computer software [46]. Key factors
contributing to the crisis include the complexity of software
and the constant change of requirements, user expectations,
operating conditions, etc. The identification of the crisis led

to the development of structured programming, software de-
velopment methodologies and processes.

Leverage other disciplines. In order to leverage another
discipline, it is critical for a researcher to see the analogoous
relationships between the two disciplines. The US National
Science Foundation has solicited proposals to significantly
advance (versus making incremental progress) the “Science
of Design” discipline [106], where the most recent solici-
tation explicitly encourages research proposals that imports
or adapts from other design fields, such as engineering, bi-
ology, architecture, economics, and the arts. Examples in-
clude Cleanroom Software Engineering [103], where the
term and general idea for the term “cleanroom’ was from
the electronics domain. A physically clean room is needed
for the fabrication of hardware in order to prevent the in-
troduction of defects; the analogy in software was to have
a well-defined, incremental process for planning, specify-
ing, designing, verifying, coding, and testing software to
achieve certifiable zero-defect software.

Leverage technology. Advances in computing and re-
lated fields can be used to make progress in requirements
engineering. For example, the field of model checking was
originally developed for use in hardware and protocol ver-
ification [28, 58]. The success of using model checking
for hardware has catalyzed an entire area of research fo-
cusing on model checking software systems. In contrast to
model checking hardware, where models are typically well-
defined and stable, software models are generally more dif-
ficult to specify due to vague and changing requirements.

Evolutionary. The antithesis of a paradigm shift would
be evolutionary research that improves on existing tech-
nologies [73]. Although the research challenges listed in
the previous section identify a number of new problems that
the RE community will be called upon to address, most
new software developed in the near future will resemble
the types of systems being developed today. As such, the
software community will continue to benefit from improve-
ments to current requirements technologies, which were
created to solve the problems that today’s practitioners face.

In many ways, evolutionary research is about mov-
ing research technologies down the research-paradigm lad-
der. Existing notations and techniques can be expanded,
adapted, or generalized to address problems raised in differ-
ent software domains. Methodological support, modelling
patterns, and analysis strategies can ease the transfer of cur-
rent technologies from early adopters to ordinary practition-
ers. Empirical research can identify the problems and con-
texts for which a technology is most effective, and can indi-
cate aspects that could be further improved.



Research Strategy Definition

Paradigm Shift: Dramatically change the way of thinking, on the order of a transformation, revolutionary, or meta-
morphsis [89]. The change typically requires some disruption before the benefits of the paradigm shift
can be perceived.

Leverage other

disciplines:

Make advances in one discipline by leveraging and recasting techniques from another discipline.

Leverage

technological

advances:

Current technological advances are leveraged to enable progress for a particular discipline.

Evolutionary: This research strategy takes an existing techniques and improves one or more dimensions of the ap-
proach to obtain an improved version; this strategy is perhaps one of the most commonly applied.

Domain-specific: This approach develops a technique that is narrowly applicable to a specific domain.
Empirical: This strategy proposes a model/approach, develops statistical or qualitative metrics to assess the ap-

proach, then applies the approach to case studies, performs assessments according to the metrics, vali-
dates the approach, and then repeats the process [13]. The research is typically in the form of single or
longitudinal case studies, applying the technique to concrete data.

Engineering: This research strategy starts with an existing solution, proposes improvements, such as making the
approach more systematic, practically usable, amenable to automation, and more analyzable [13].

Generalization: This approaches take a narrowly defined technique and generalizes it to apply to a broader class of
problems or data.

Table 2. Enumeration of research paradigms

Domain-specific. Typically, the more specialized the ap-
plication domain, the more likely there will be software
engineering techniques developed to address the special
needs. For example, starting with model-driven develop-
ment (MDD) techniques [102], Motorola has specialized
MDD for the telecommunications domain [156] and devel-
oped a proprietary MDA and supporting tools to generate
the production-level code for many of their handheld de-
vices. Question: How can general RE techniques be spe-
cialized or customized for a specific application domain?

Empirical. Empirical research typically involves two
complementary approaches. The first is to compare simi-
lar techniques against standard criteria (e.g., completeness,
correctness, consistency, non-ambiguity, feasibility, trace-
ability) [44, 24, 42, 53, 118]. The second type of empirical
research focuses on demonstrating how techniques can be
used for real systems, thereby measuring effectiveness of a
given RE technique [13, 75, 94, 98, 104, 158, 38, 39, 59].

Engineering. A surprising number of research problems
arise in the course of trying to apply requirements tech-
nologies in the practice of RE. Engineering as a research
paradigm looks at how to simplify and codify RE knowl-
edge and techniques so that they are readily adopted by
practitioners and taught to undergraduates. For example,
visual formalisms [47, 50, 66, 78] ease the task of cre-
ating and reviewing precise specifications. Specification
patterns [51, 85, 149, 84] not only help specifiers to cre-

ate models, via instantiation and adaptation, but they also
offer some level of uniformity and repeatability of such
models. Methodologies and processes provide guidance
on how to solve requirements problems from start to fin-
ish [120, 124]. Heuristics and strategies offer advice on
how to use particular elicitation [6], modeling [17, 60], ver-
ification [80], or management technologies. One of the best
known engineering-style research projects was David Par-
nas et al.’s case study that applied state-of-the-art software
engineering practices to (re)develop the engineering arti-
facts and code for the U.S. A-7 naval aircraft; this work led
to research results in tabular specifications [78], hierarchical
module structures, abstract interfaces, and new inspection
strategies [116].

Generalization. Some domain-specific or organization-
specific techniques have been generalized to be more
broadly applicable. For example, feature interaction anal-
ysis started with the telephony area [160, 68], but is now
branching into other areas, such as web services [157] and
middleware [162].

5. RE Research Hotpots

This section overviews RE research hotspots in the
context of the research challenges of emerging systems
overviewed in Section 3. The hotspots are roughly orga-
nized according to the research strategies presented in Sec-
tion 4.



5.1. Paradigm Shifts for ULS Systems

Many of the RE challenges facing current systems are
significantly magnified these large-scale systems. Require-
ments will come from many different stakeholders, perhaps
presented at varying levels of abstraction, and involve mul-
tiple disciplines (e.g., sensors, scientific computation, artifi-
cial intelligence, etc.). New techniques are needed to com-
pose these potentially vastly different types of requirements
into a single coherent story. Detecting and resolving feature
interactions and conflicts will pose a grand challenge to the
RE community.

Preliminary activities have begun to address some of
these challenges, while further recognizing the importance
that RE will play in the successful development and evo-
lution of these emerging systems. For example, a 60th
anniversary issue of IEEE Computer [74] overviewed the
achievements and future prospects for software engineer-
ing. Two of the articles ( [74], Broy and Jackson) identified
research challenges posed by “software-intensive systems
(SIS)” from the design of embedded systems and verifi-
cation perspectives, respectively. Developing requirements
engineering techniques to manage the scale effectively is
critical in designing future SIS, for both modeling and ver-
ification purposes. Some progress in these areas include
Broy and his group’s work on several aspects of manag-
ing requirements for complex, software-intensive embed-
ded systems, including the development of the AutoRaid
requirements engineering tool [74] (p. 72), based on well-
defined modeling theories to help manage complex require-
ments for software-intensive embedded systems.

In order to address requirements engineering needs for
emerging systems, such as ULS, dynamically adaptive, and
cyberphysical, while providing security and assurance re-
quires the RE community to address three major challenges.
First, new notations and techniques are needed to support
the development of new abstractions. In addition, innova-
tive decomposition strategies, simpler composition opera-
tors, and more automation of RE tasks are all needed to
address the requirements of these types of systems. A con-
straint on these techniques and notations will be the need to
support uncertainty and variability in the information avail-
able during the requirements engineering process, which
will not be limited to the early lifetime of the system. In-
stead, the systems of the future will be continuously evolv-
ing, thus requirements engineering will be needed before
and after deployment, as well as potentially even during ex-
ecution. These new systems will require a different perspec-
tive on what level of information should be modeled, in con-
trast to the traditional approach to modeling requirements,
which typically focus on low-level functional information.
New logics may need to be explored that go beyond the tra-
ditional two valued logics to represent the uncertainty and

continuous variability. In addition, new underlying compu-
tational models may need to be developed to reason about
and validate the integration of discrete and continuous sys-
tems behavior.

Second, given the fact that many of the future emerging
systems will be used in critical applications, such as intelli-
gent transportation systems, financial systems, medical care
systems, military command and control, etc., security and
high assurance will be essential. The big challenge will be
the need to alter the view and expectations for the notions
of correctness and acceptability. That is, new techniques are
needed that can model and even support analysis of systems
information with incomplete information, varying levels of
abstractions, incomplete or partial information. These crite-
ria might be based on new types logic. These notations and
analysis tools should be accessible to the typical RE analyst.

Finally, techniques need to be developed that enable RE
tasks to be more prescriptive and systematic with infor-
mation that is less well-defined and continuously evolving.
The analogy is whether the same level of maturity for RE
can be achieved that the design field has achieved with ar-
chitectural styles for designs, design patterns, and design
transformations. One step towards this objective is the no-
tion of requirements reuse, which was raised in the 2000
Roadmap Paper, but has received little attention. One way
to tackle complexity and size is to attempt to reuse exist-
ing requirements that may have tightly or loosely defined
refinements for design and code. It may be possible to iden-
tify some number of patterns or units of reusable require-
ments for particular domains or particular types of applica-
tions. Each requirement pattern must come with standard
pattern fields, such as context, problem addressed, conse-
quences, properties, etc. The automotive industry has ex-
pressed interest in using “generic, reusable requirements”
for the complex automotive systems. Work with specifica-
tion patterns [51, 84] and object analysis patterns [85] are
recent attempts at reusable requirements-level information.

5.2. Biologically-Inspired Computing

A common challenge to the ULS, adaptive, and cyber-
physical systems is the need to respond to unanticipated
changes in the environment, new user needs, unexpected
failures, security threats, etc. With the current technology,
it is impossible to predict or specify the requirements for
target systems needed to respond to these changing, even
unanticipated operating conditions. As such, one key area
to investigate is how techniques from other disciplines, such
as biology, can be used to discover the requirements for the
adaptive systems. as ULS, cyber-physical, and dynamically
adaptive systems. In essence, techniques are needed to pre-
view the possible target systems that should replace a run-
ning system in response to unexpected conditions to keep



the system in an acceptable, consistent state.
Given the ability that natural organisms have to respond

to adverse and unexpected conditions, research has been
performed to explore how biologically-inspired approaches
can be used to address the challenges posed by dynamically
adaptive systems. Biomimetics comprises those techniques
that attempt to imitate or simulate the behavior of natural
organisms. For example, Sutcliffe and Maiden’s work [1]
with establishing a domain theory for RE draws heavily
from cognitive science and the human use of analogical
reasoning. The NASA ANTS (Autonomous Nano Technol-
ogy Swarm) project involves large collections (i.e., swarms)
of mission-independent small, autonomous, self-similar,
reconfigurable robot-like entities can collectively perform
mission-specific tasks [27], such space exploration, includ-
ing planetary surfaces. The general objective is to under-
stand and then mimic the behavior of social insect colonies
that can perform relatively sophisticated tasks based on ef-
ficient social interaction and coordination. Evolutionary
computation, such as the use of genetic algorithms, uses an
evolutionary process to produce desired behavior. Sutcliffe
et al. [108] used genetic algorithms to select an optimal set
of components that satisfy a number of fitness criteria for
reliability requirements.

In contrast to the biomemitic and evolutionary comput-
ing approaches where either behavior in nature is being im-
itated or the possible sets of behavior are known in advance,
respectively, new work at Michigan State University is ex-
ploring how digital evolution techniques can be extended to
provide a biologically-driven evolution process to discover
new, unanticipated behavior and thus, new requirements for
potential target systems of dynamically adaptive systems.

5.3. Roundtrip Requirements Engineering

For systems that require complex decision-making logic,
such as dynamically adaptive systems, cyber-physical sys-
tems, ULS systems, it will be necessary to have intelligent
decision-making subsystems based on large volumes of het-
erogeneous sensor data. Most of these systems will require
some type of feedback loop to enable the system to dynam-
ically evolve to changing conditions. Techniques from ar-
eas like machine learning, data mining, probablistic reason-
ing, and control theory can all be leveraged to help discover,
evolve, and analyze the requirements for these challenges.
For example, control theory has been applied to improve
testing [8] by computing the level of effort needed to reduce
the number of effors and decrease schedule overruns under
changing environment conditions. These results are then
fed back through the control loop at specific variable points
to identify appropriate changes to improve the overall re-
sults. Control theory has also been used to predict and avert
constraint violations of an adaptive system [22]; memory

overflow is an example constraint that undergoes prediction
analysis and alternative software components are selected
to avert the constraint violation. How can these techniques
be extended to establish a feedback loop from early to late
requirements.

5.4. Empirical RE Research: Partnerships
between Research and Practice

5.5. Engineering Cyber-Physical Systems

The cyber-physical systems require not only innovative
techniques to specify the requirements of heterogeneous
systems working on discrete and continuous scales, but
these techniques must be integrated into a systematic pro-
cess with sufficiently well-defined steps. Furthermore most
of the RE techniques must be amenable to significant au-
tomation in order to be scalable to the size and complexity.

One particlar area that is actively being pursued for CPS
is how to more effectively leverage commercial off the shelf
(COTS) components [35], as a means to move towards an
engineering process for developing CPSs. But the soft-
ware development field is not yet sufficiently mature to sup-
port such a direction. Specifically, formally verifiable com-
ponents that can serve as the building blocks of CPS are
needed. These components will likely need to be defined in
terms of different granularities depending on level of use
(e.g., application, network, middleware). These compo-
nents should be more easily certifiable as COTS for reuse.
In order to make them more accessbile, these components
should be indexable by behavior specifications, which be-
comes an RE challenge for developing easy to use specifi-
cation languages that are amenable to automated process-
ing for syntactic and semantic-based retrieval techniques.
What requirements factors will determine whether it is bet-
ter to use COTS or to design/implement from scratch? New
methodologies are needed to integrate the specification of
system components with discrete and continuous behavior.

The physical world brings not only information delivered
on a continuous scale (in contrast to the discrete data pro-
cessed by traditional computing software), but we are also
faced with new extremes in terms of size, ranging from nano
to monolithic (such as gas turbine engines for jet planes),
leading to multi-scale and and multi-level complexity for
the systems. (Many of these challenges will overlap with
the general scale challenges.)

5.6. RE Challenges Posed by Globalization

Interestingly, this area of research has been largely pro-
moted by industrial needs – global software development
is a reality in full swing. In order to maximize the ben-
efits and ensure positive long term effects, it is imper-
ative for global-centric SE techniques to be developed.



Furthermore because many of the downstream develop-
ment efforts, such as coding and testing are done glob-
ally, requirements engineering, including knowledge man-
agement [62] (p. 18), is one of the key areas of need. Bhat
et al have proposed a framework focusing on a people-
process-technology paradigm that describe best practices
for goals, culture, processes, and responsibility, all of which
are shared across the entire global organization [62]. Sinha
et al have developed an Eclipse-based tool for distributed
requirements engineering collaboration [62].

Globalization poses two broad classes of challenges to
the RE research community. First, what new RE techniques
are needed to enable effective distributed RE. We need RE
research to produce techniques to facilitate and manage
distributed requirements elicitation, distributed modeling,
distributed requirements negotiation/agreement, and man-
agement of distributed teams (not just geographically dis-
tributed, but distributed in terms of time zone, culture, and
language).

Second, new or extended RE techniques are needed to
support outsourcing for downstream development activi-
ties. Sspecifically, techniques are needed that enable re-
quirements engineers to easily construct complete and un-
ambiguous specifications. These specifications need to be
understandable by general practitioners, versus specifica-
tion language experts.

6. Conclusions
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[55] G. Engels, J. M. Küster, R. Heckel, and L. Groenewegen.
A methodology for specifying and analyzing consistency
of object-oriented behavioral models. In Proc. of SIGSOFT
Found. on Soft. Eng. (FSE), pages 186–195, 2001.

[56] A. Fantechi, S. Gnesi, G. Lami, and A. Maccari. Appli-
cation of linguistic techniques for use case analysis. In
Proc. of the IEEE Int. Req. Eng. Conf. (RE), pages 157–
164, 2002.

[57] A. Finkelstein, editor. The Future of Software Engineering.
Proc. of the Int. Conf. on Soft. Eng. (ICSE), 2000.

[58] Future of Software Engineering. IEEE Computer Society,
2007.

[59] B. Freimut, S. Hartkopf, P. Kaiser, J. Kontio, and W. Kob-
itzsch. An industrial case study of implementing software
risk management. In Proc. of SIGSOFT Found. on Soft.
Eng. (FSE), pages 277–287, 2001.

[60] A. Fuxman, L. Liu, M. Pistore, M. Roveri, and J. Mylopou-
los. Specifying and analyzing early requirements: Some
experimental results. In Proc. of the IEEE Int. Req. Eng.
Conf. (RE), pages 105–114, 2003.



[61] T. Gilb. Competitive Engineering: A Handbook for Sys-
tem Engineering, Requirements Engineering, and Software
Engineering using Planguage. Butterworth-Heinemann,
2005.

[62] IEEE Software, volume 23, 2006. Special Issue on Global
Software Development.

[63] B. Gonzalez-Baixauli, J. C. S. do Prado Leite, and J. My-
lopoulos. Visual variability analysis for goal models. In
Proc. of the IEEE Int. Req. Eng. Conf. (RE), pages 198–
207, 2004.

[64] C. A. Gunter, E. L. Gunter, M. Jackson, and P. Zave. A
reference model for requirements and specifications. IEEE
Soft., 17(3):37–43, 2000.

[65] J. Hall and L. Rapanotti. A reference model for require-
ments engineering. In Proc. of the IEEE Int. Req. Eng.
Conf. (RE), pages 181–187, 2003.

[66] D. Harel. Statecharts: A visual formalism for complex sys-
tems. Sci. Comp. Prog., 8(3):231–274, 1987.

[67] J. H. Hausmann, R. Heckel, and G. Taentzer. Detection
of conflicting functional requirements in a use case-driven
approach. In Proc. of the Int. Conf. on Soft. Eng. (ICSE),
pages 105–115, 2002.

[68] J. D. Hay and J. M. Atlee. Composing features and resolv-
ing interactions. In Proc. of SIGSOFT Found. on Soft. Eng.
(FSE), pages 110–119, 2000.

[69] J. H. Hayes, A. Dekhtyar, and S. K. Sundaram. Advanc-
ing candidate link generation for requirements tracing: The
study of methods. IEEE Trans. on Soft. Eng., 32(1):4–19,
2006.

[70] C. L. Heitmeyer, R. D. Jeffords, and B. G. Labaw. Au-
tomated consistency checking of requirements specifica-
tions. ACM Trans. on Soft. Eng. & Meth., 5(3):231–261,
1996.

[71] C. L. Heitmeyer, J. Kirby, B. G. Labaw, and R. Bharadwaj.
SCR*: A toolset for specifying and analyzing software re-
quirements. In Comp. Aid. Verf., pages 526–531, 1998.

[72] N. Heumesser and F. Houdek. Towards systematic recy-
cling of systems requirements. In Proc. of the Int. Conf. on
Soft. Eng. (ICSE), pages 512–519, 2003.

[73] IEEE. 1993-present. Consider the history of RE confer-
ences, starting with 1993.

[74] Software engineering: Past and future. IEEE Computer,
39(10), October 2006.

[75] H. In, T. Rodgers, M. Deutsch, and B. Boehm. Applying
winwin to quality requirements: A case study. In Proc. of
the Int. Conf. on Soft. Eng. (ICSE), pages 555–564, 2001.

[76] D. Jackson. Software Abstractions: Logic, Language, and
Analysis. MIT Press, 2006.

[77] M. Jackson and P. Zave. Domain descriptions. In Proc. of
the IEEE Int. Req. Eng. Conf. (RE), pages 54–64, 1993.

[78] R. Janicki, D. L. Parnas, and J. Zucker. Tabular representa-
tions in relational documents. Relational methods in com-
puter science, pages 184–196, 1997.

[79] R. Jeffords and C. Heitmeyer. Automatic generation of
state invariants from requirements specifications. In Proc.
of SIGSOFT Found. on Soft. Eng. (FSE), pages 56–69,
1998.

[80] R. D. Jeffords and C. L. Heitmeyer. A strategy for ef-
ficiently verifying requirements. In Proc. of SIGSOFT
Found. on Soft. Eng. (FSE), pages 28–37, 2003.

[81] H. Kaiya and M. Saeki. Using domain ontology as do-
main knowledge for requirements elicitation. In Proc. of
the IEEE Int. Req. Eng. Conf. (RE), pages 186–195, 2006.

[82] J. O. Kephart and D. M. Chess. The vision of autonomic
computing. Computer, 36(1):41–50, 2003.

[83] S. Konrad and B. H. Cheng. Facilitating the construction
of specification pattern-based properties. In Proc. of the
IEEE Int. Req. Eng. Conf. (RE), pages 329–338, 2005.

[84] S. Konrad and B. H. C. Cheng. Real-time specification pat-
terns. In Proceedings of the International Conference on
Software Engineering (ICSE05), pages 372–381, St Louis,
MO, USA, May 2005.

[85] S. Konrad, B. H. C. Cheng, and L. A. Campbell. Object
analysis patterns for embedded systems. IEEE Trans. on
Soft. Eng., 30(12):970–992, 2004.

[86] J. Kramer and J. Magee. The evolving philosophers prob-
lem: Dynamic change management. IEEE Trans. Softw.
Eng., 16(11):1293–1306, 1990.

[87] J. Kramer and J. Magee. Analysing dynamic change
in software architectures: a case study. In Proc. of
4th IEEE International Conference on Configuratble Dis-
tributed Systems, Annapolis, May 1998.

[88] S. Krishnamurthi, M. C. Tschantz, L. A. Meyerovich,
and K. Fisler. Verification and change-impact analysis of
access-control policies. In Proc. of the Int. Conf. on Soft.
Eng. (ICSE), pages 196–205, 2005.

[89] T. Kuhn. chapter The Nature and Necessity of Scientific
Revolutions. University of Chicago Press, 1962. Book
chapter transcribed by Andy Blunden in 1998; proofed and
corrected March 2005.

[90] S. Kulkarni and K. Biyani. Correctness of component-
based adaptation. In Proceedings of the International Sym-
posium on Component-based Software Engineering, May
2004.

[91] S. Lauesen. Cots tenders and integration requirements. In
Proc. of the IEEE Int. Req. Eng. Conf. (RE), pages 166–
175, 2004.

[92] E. Letier and A. van Lamsweerde. Deriving operational
software specifications from system goals. In Proc. of SIG-
SOFT Found. on Soft. Eng. (FSE), pages 119–128, 2002.

[93] S. Liaskos, Alexei, Y. Yu, E. Yu, and J. Mylopoulos. On
goal-based variability acquisition and analysis. In Proc. of
the IEEE Int. Req. Eng. Conf. (RE), pages 76–85, 2006.

[94] W. J. Lloyd, M. B. Rosson, and J. D. Arthur. Effectiveness
of elicitation techniques in distributed requirements engi-
neering. In Proc. of the IEEE Int. Req. Eng. Conf. (RE),
pages 311–318, 2002.

[95] R. Lutz and I. C. Mikulski. Operational anomalies as a
cause of safety-critical requirements evolution. J. of Sys.
and Soft., pages 155–161, 2003.

[96] R. Lutz, A. Patterson-Hine, S. Nelson, C. R. Frost, D. Tal,
and R. Harris. Using obstacle analysis to identify contin-
gency requirements on an unpiloted aerial vehicle. Req.
Eng. J., 12(1):41–54, 2006.

[97] J. Magee, N. Pryce, D. Giannakopoulou, and J. Kramer.
Graphical animation of behavior models. In Proc. of the
Int. Conf. on Soft. Eng. (ICSE), pages 499–508, 2000.

[98] N. Maiden and S. Robertson. Developing use cases and
scenarios in the requirements process. In Proc. of the Int.
Conf. on Soft. Eng. (ICSE), pages 561–570, 2005.



[99] N. Maiden and S. Robertson. Integrating creativity into re-
quirements processes: Experiences with an air traffic man-
agement system. In Proc. of the IEEE Int. Req. Eng. Conf.
(RE), pages 105–116, 2005.

[100] P. K. McKinley, S. M. Sadjadi, E. P. Kasten, and B. H. C.
Cheng. Composing adaptive software. IEEE Computer,
37(7):56–64, 2004.

[101] W. E. McUmber and B. H. Cheng. A general framework
for formalizing uml with formal languages. In Proc. of the
Int. Conf. on Soft. Eng. (ICSE), pages 433–442, 2001.

[102]
[103] H. Mills, M. Dyer, and R. Linger. Cleanroom software

engineering. IEEE Software, 4(5), September 1987.
[104] D. L. Moody, G. Sindre, T. Brasethvik, and A. Solvberg.

Evaluating the quality of information models: Empirical
testing of a conceptual model quality framework. In Proc.
of the Int. Conf. on Soft. Eng. (ICSE), pages 295–307,
2003.

[105] A. Moreira, A. Rashid, and J. Araujo. Multi-dimensional
separation of concerns in requirements engineering. In
Proc. of the IEEE Int. Req. Eng. Conf. (RE), pages 285–
296, 2005.

[106] National Science Foundation. Program solicitation, nsf-
07-505, science of design program, 2006.

[107] C. Nentwich, W. Emmerich, A. Finkelstein, and E. Ellmer.
Flexible consistency checking. ACM Trans. on Soft. Eng.
& Meth., 12(1):28–63, 2003.

[108] R. Neville, A. Sutcliffe, and W.-C. Chang. Optimizing sys-
tem requirements with genetic algorithms. In IEEE World
Congress on Computational Intelligence, pages 495–499,
May 2002.

[109] J. Niu, J. Atlee, and N. Day. Template semantics for model-
based systems. IEEE Trans. on Soft. Eng., 29(10):866–882,
2003.

[110] L. Northrup, P. Feiler, R. P. Gabriel, J. Goodenough,
R. Linger, T. Longstaff, R. Kazman, M. Klein, D. Schmidt,
K. Sullivan, and K. Wallnau. Ultra-Large-Scale Systems:
The Software Challenge of the Future. Software Engineer-
ing Institute, Carnegie Mellon, 2006.

[111] B. Nuseibeh and S. Easterbrook. Requirements engineer-
ing: a roadmap. In Proc. of the Int. Conf. on Soft. Eng.
(ICSE), pages 35–46, 2000.

[112] B. Nuseibeh, J. Kramer, and A. Finkelstein. Viewpoints:
meaningful relationships are difficult! In Proc. of the Int.
Conf. on Soft. Eng. (ICSE), pages 676–683, 2003.

[113] S. P. Overmyer, B. Lavoie, and O. Rambow. Conceptual
modeling through linguistic analysis using lida. In Proc. of
the Int. Conf. on Soft. Eng. (ICSE), pages 401–410, 2001.

[114] D. L. Parnas. Software engineering programmes are not
computer science programmes. Ann. Soft. Eng., 6(1):19–
37, 1999.

[115] D. L. Parnas and J. Madey. Functional documents for com-
puter systems. Sci. of Comp. Prog., 25(1):41–61, 1995.

[116] D. L. Parnas and D. M. Weiss. Active design reviews: prin-
ciples and practices. J. Sys. Soft., 7(4):259–265, 1987.

[117] Y. Pisan. Extending requirement specifications using anal-
ogy. In Proc. of the Int. Conf. on Soft. Eng. (ICSE), pages
70–76, 2000.

[118] A. Porter and L. Votta. Comparing detection methods
for software requirements inspections: A replication us-
ing professional subjects. Empir. Soft. Eng., 3(4):355–379,
1998.

[119] C. Potts. Metaphors of intent. In Proc. of the IEEE Int.
Req. Eng. Conf. (RE), pages 31–39, 2001.

[120] C. Potts, K. Takahashi, and A. Antón. Inquiry-based re-
quirements analysis. IEEE Soft., 11(2):21–32, 1994.

[121] S. T. Redwine, Jr. and W. E. Riddle. Software technology
maturation. In IEEE International Conference on Software
Engineering, pages 1989–200, May 1985.

[122] R. Regnell, L. Karlsson, and M. Host. An analytical model
for requirements selection quality evaluation in product
software development. In Proc. of the IEEE Int. Req. Eng.
Conf. (RE), pages 254–263, 2003.

[123] M.-O. Reiser and M. Weber. Managing highly complex
product families with multi-level feature trees. In Proc. of
the IEEE Int. Req. Eng. Conf. (RE), pages 146–155, 2006.

[124] S. Robertson and J. Robertson. Mastering the Require-
ments Process. Addison-Wesley, 1999.

[125] W. N. Robinson, S. D. Pawlowski, and V. Volkov. Re-
quirements interaction management. ACM Comp. Sur.,
35(2):132–190, 2003.

[126] C. Rolland and N. Prakash. Matching erp system function-
ality to customer requirements. In Proc. of the IEEE Int.
Req. Eng. Conf. (RE), pages 66–75, 2001.

[127] M. Sabetzadeh and S. Easterbrook. Traceability in view-
point merging: a model management perspective. In Proc.
of the Int. Work. on Trace. in Emerg. Forms of Soft. Eng.,
pages 44–49, 2005.

[128] M. Sabetzadeh and S. Easterbrook. View merging in the
presence of incompleteness and inconsistency. Req. Eng.
J., 11(3):174–193, 2006.

[129] P. Sawyer, P. Rayson, and K. Cosh. Shallow knowledge as
an aid to deep understanding in early phase requirements
engineering. IEEE Trans. on Soft. Eng., 31(11):969–981,
2005.

[130] K. Schmid. The product line mapping approach to defining
and structuring product portfolios. In Proc. of the IEEE Int.
Req. Eng. Conf. (RE), pages 219–226, 2002.

[131] R. Settimi, E. Berezhanskaya, O. BenKhadra, S. Christina,
and J. Cleland-Huang. Goal-centric traceability for manag-
ing non-functional requirements. In Proc. of the Int. Conf.
on Soft. Eng. (ICSE), pages 362–371, 2005.

[132] H. Sharp, A. Finkelstein, and G. Galal. Stakeholder identi-
fication in the requirements engineering process. In Proc.
of the 10th Int. Work. on Datab. & Exp. Sys. Appl., pages
387–391, 1999.

[133] M. Shaw. What makes good research in software engineer-
ing? International Journal of Software Tools for Technol-
ogy Transfer, 4(1):1–7, 2002.

[134] A. Silva. Requirements, domain and specifications: A
viewpoint-based approach to requirements engineering. In
Proc. of the Int. Conf. on Soft. Eng. (ICSE), pages 94–104,
2002.

[135] G. Sindre and A. Opdahl. Templates for misuse case de-
scription. In Proc. of the Int. Work. on Req. Eng,: Found,
for Soft. Qual., pages 125–136, 2001.



[136] I. Sommerville, T. Rodden, P. Sawyer, R. Bentley, and
M. Twidale. Integrating ethnography into the requirements
engineering process. In Proc. of the IEEE Int. Req. Eng.
Conf. (RE), pages 165–181, 1993.

[137] T. Sreemani and J. M. Atlee. Feasibility of model checking
software requirements. In Conf. on Comp. Ass., pages 77–
88. National Institute of Standards and Technology, 1996.

[138] J. Strassner. Autonomics: A critical and innovative compo-
nent of seamless mobility. Motorola Technology Position
Paper.

[139] A. Sutcliffe, W.-C. Chang, and R. Neville. Evolutionary
requirements analysis. In Proc. of the IEEE Int. Req. Eng.
Conf. (RE), pages 264–273, 2003.

[140] A. Sutcliffe, S. Fickas, and M. M. Sohlberg. Pc-re a
method for personal and context requirements engineering
with some experience. Req. Eng. J., 11(3):1–17, 2006.

[141] A. Taleghani and J. M. Atlee. Semantic variations among
uml statemachines. In ACM/IEEE Int. Conf. on Model
Driven Eng. Lang. and Sys., pages 245–259, 2006.

[142] J. M. Thompson, M. P. E. Heimdahl, and S. P. Miller.
Specification-based prototyping for embedded systems. In
Proc. of SIGSOFT Found. on Soft. Eng. (FSE), pages 163–
179, 1999.

[143] S. Uchitel and M. Chechik. Merging partial behavioural
models. In Proc. of SIGSOFT Found. on Soft. Eng. (FSE),
pages 43–52, 2004.

[144] S. Uchitel, J. Kramer, and J. Magee. Negative scenarios for
implied scenario elicitation. In Proc. of SIGSOFT Found.
on Soft. Eng. (FSE), pages 109–118, 2002.

[145] S. Uchitel, J. Kramer, and J. Magee. Behaviour model elab-
oration using partial labelled transition systems. In Proc. of
SIGSOFT Found. on Soft. Eng. (FSE), pages 19–27, 2003.

[146] S. Uchitel, J. Kramer, and J. Magee. Synthesis of behav-
ioral models from scenarios. IEEE Trans. on Soft. Eng.,
29(2):99–115, 2003.

[147] S. Uchitel, J. Kramer, and J. Magee. Incremental elabo-
ration of scenario-based specifications and behavior mod-
els using implied scenarios. ACM Trans. on Soft. Eng. &
Meth., 13(1):37–85, 2004.

[148] H. T. Van, A. van Lamsweerde, P. Massonet, and C. Pon-
sard. Goal-oriented requirements animation. In Proc. of
the IEEE Int. Req. Eng. Conf. (RE), pages 218–228, 2004.

[149] W. M. P. van der Aalst, A. H. M. ter Hofstede, B. Kie-
puszewski, and A. P. Barros. Workflow patterns. Dis-
tributed and Parallel Databases, 14(1):5–51, 2003.

[150] A. van Lamsweerde. Goal-oriented requirements engineer-
ing: a guided tour. In Proc. of the IEEE Int. Req. Eng. Conf.
(RE), pages 249–263, 2001.

[151] A. van Lamsweerde. Elaborating security requirements by
construction of intentional anti-models. In Proc. of the Int.
Conf. on Soft. Eng. (ICSE), pages 148–157, 2004.

[152] A. van Lamsweerde and E. Letier. Handling obstacles in
goal-oriented requirements engineering. IEEE Trans. on
Soft. Eng., 26(10):978–1005, 2000.

[153] K. S. Wasson. A case study in systematic improvement of
language for requirements. In Proc. of the IEEE Int. Req.
Eng. Conf. (RE), pages 6–15, 2006.

[154] K. S. Wasson, K. N. Schmid, R. R. Lutz, and J. C. Knight.
Using occurrence properties of defect report data to im-
prove requirements. In Proc. of the IEEE Int. Req. Eng.
Conf. (RE), pages 253–262, 2005.

[155] M. Weber and J. Weisbrod. Requirements engineering in
automotive development experiences and challenges. In
Proc. of the IEEE Int. Req. Eng. Conf. (RE), pages 331–
340, 2002.

[156] F. Weil. Hardware/software integration through modeling
and automatic code generation. Presentation at USC Cen-
ter for Software Engineering, Annual Research Review,
2006.

[157] M. Weiss and B. Esfandiari. On feature interactions among
web services. In ICWS ’04: Proceedings of the IEEE Inter-
national Conference on Web Services (ICWS’04), page 88,
Washington, DC, USA, 2004. IEEE Computer Society.

[158] J. Whittle, J. Saboo, and R. Kwan. From scenarios to code:
An air traffic control case study. In Proc. of the Int. Conf.
on Soft. Eng. (ICSE), pages 490–497, 2003.

[159] J. Whittle and J. Schumann. Gnerating statechart designs
from scenarios. In Proc. of the Int. Conf. on Soft. Eng.
(ICSE), pages 314–323, 2000.

[160] P. Zave. Feature interactions and formal specifications in
telecommunications. Computer, 26(8):20–29, 1993.

[161] P. Zave. Classification of research efforts in requirements
engineering. ACM Comp. Sur., 29(4):315–321, 1997.

[162] C. Zhang and H.-A. Jacobsen. Resolving feature convolu-
tion in middleware systems. SIGPLAN Not., 39(10):188–
205, 2004.

[163] J. Zhang and B. H. C. Cheng. Specifying adaptation se-
mantics. In WADS ’05: Proceedings of the 2005 workshop
on Architecting dependable systems, pages 1–7, St. Louis,
Missouri, May 2005. ACM Press.

[164] J. Zhang and B. H. C. Cheng. Model-based development
of dynamically adaptive software. In Proceedings of Inter-
national Conference on Software Engineering (ICSE’06),
Shanghai,China, May 2006.


