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Abstract

Consider a directed or an undirected graph with integral edge weights from the set [−W,W ],
that does not contain negative weight cycles. In this paper, we introduce a general framework
for solving problems on such graphs using matrix multiplication. The framework is based on
the usage of Baur-Strassen’s theorem and of Strojohann’s determinant algorithm. It allows us
to give new and simple solutions to the following problems:

Finding Shortest Cycles – We give a simple Õ(Wnω) time algorithm for finding shortest cy-
cles in undirected and directed graphs. For directed graphs (and undirected graphs with non-
negative weights) this matches the time bounds obtained in 2011 by Roditty and Vassilevska-
Williams. On the other hand, no algorithm working in Õ(Wnω) time was previously known for
undirected graphs with negative weights. Furthermore our algorithm for a given directed or
undirected graph detects whether it contains a negative weight cycle within the same running
time.

Computing Diameter and Radius – We give a simple Õ(Wnω) time algorithm for comput-
ing a diameter and radius of an undirected or directed graphs. To the best of our knowledge
no algorithm with this running time was known for undirected graphs with negative weights.

Finding Minimum Weight Perfect Matchings – We present an Õ(Wnω) time algorithm
for finding minimum weight perfect matchings in undirected graphs. This resolves an open
problem posted by Sankowski in 2006, who presented such an algorithm but only in the case
of bipartite graphs.

We believe that the presented framework can find applications for solving larger spectra of re-
lated problems. As an illustrative example we apply it to the problem of computing a set of
vertices that lie on cycles of length at most t, for some t. We give a simple Õ(Wnω) time algo-
rithm for this problem that improves over the Õ(Wnωt) time algorithm given by Yuster in 2011.

In order to solve minimum weight perfect matching problem we develop a novel combinatorial
interpretation of the dual solution which sheds new light on this problem. Such a combinatorial
interpretation was not know previously, and is of independent interest.
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1 Introduction

The application of matrix multiplication to graph problems has been actively studied in recent
years. The special case of unweighted graphs is well understood. For example, Õ(nω) time al-
gorithms for finding shortest cycles [16] have been known for 35 years1. But similar results for
weighted graphs were obtained only last year, by Roditty and Vassilevska-Williams [25]. Their
algorithm works in Õ(Wnω) time, where W is the largest magnitude of an edge weight. Two sim-
ilar problems on weighted graphs where there has been considerable effort, but the full answer has
not been achieved, are diameter and perfect weighted matching. This paper introduces a general
framework that gives simple2 solutions to all three of these problems and others. In the following
unless otherwise stated, we work with graphs that contain edges with possibly negative weights but
no negative cycles. We obtain the following results.

Finding Shortest Cycles We give a simple Õ(Wnω) time algorithms for finding shortest cycles
in undirected and directed graphs. In the case of directed graphs the algorithm reduces the problem
to one determinant computation for a polynomial matrix. On the other hand, the undirected case
requires handling short 2-edge cycles in a proper way. The idea used here is an extension of the
algorithm by Sankowski contained in [27], that allowed to test whether a graph contains negative
weight cycle. For directed graphs (and undirected graphs with non-negative weights), our bounds
match the ones obtained in 2011 by Roditty and Vassilevska-Williams [25], whereas for undirected
graphs with negative weights no Õ(Wnω) time algorithm was previously know for this problem.
For all related results see Table 1 and Table 2. For undirected graphs with negative weights the
problem reduces to n computations of minimum weight perfect matchings [6].

Furthermore our algorithm for a given directed or undirected graph detects whether it contains
a negative weight cycle within the same running time.

Computing Diameter and Radius We present a simple Õ(Wnω) time algorithm for comput-
ing a diameter and radius of undirected and directed graphs. This algorithm combines determinant
computations with binary search. Since computing all pairs shortest paths suffices to find both
diameter and radius Õ(Wnω) time algorithm follows from [31] in case of undirected graphs with
non-negative weights. Moreover by generalizing the ideas of [31] used for non-negative weights by
applying random sampling one can obtain the same running time for directed graphs without neg-
ative weight cycles. However, to the best of our knowledge, all previous solutions to this problem
in undirected graphs with negative weights reduced the problem to n computations of minimum
weight perfect matchings. For other related results see Table 3 and Table 2.

Finding Minimum Weight Perfect Matchings We present an Õ(Wnω) time algorithm for
finding minimum weight perfect matchings in undirected graphs. This resolves an open problem
posted by Sankowski in 2006 [28], who presented such an algorithm but only in the case of bipartite
graphs. Some advance on this problem has been recently given by Huang and Kavitha [15], who
have shown an Õ(Wnω) time algorithm for the maximum weight matching problem. However, the

1The Õ notation ignores factors of logn and logW . Õ(nω) is the time needed for a straight-line program to
multiply two n× n matrices; ω is called matrix multiplication exponent.

2An objective sense in which our algorithms are simple is their use of algebra: The power of our algebraic
algorithms comes from black-box routines, and the algorithms themselves use only elementary algebraic ideas.
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weighted perfect matching problem is more involved and no reduction similar to the one presented
in [15] is known to work. Previously, similar reduction was given in [18] for maximum weight
bipartite matching. Nevertheless, to solve minimum weight perfect matching problem even in bi-
partite graphs one is bound to use more structured techniques. Actually, we need to develop such
a technique for general graphs. We give a novel combinatorial interpretation of the dual problem.
Such an interpretation for general matching problem was not know previously and is of significant
independent interest. For the summary of different algorithms see Table 2.

Complexity Author
O(nm+ n2 logn)
directed

Johnson (1977) [17]

O(nω) nonnegative un-
weighted

Itai and Rodeh (1977)
[16]

O(W 0.681n2.575) directed Zwick (2000) [37]
O(nm+n2 log logn) directed Pettie (2004) [24]

O(n3 log3 logn/ log2 n)
directed

Chan (2007) [4]

Õ(Wnω) directed and
nonnegative undirected

Roditty and Vassilevska-
Williams (2011) [25]

Õ(Wnω) this paper

Table 1: The complexity results for the shortest cycle
problem.

Complexity Author
O(n2m) Edmonds (1965) [5]
O(n3) Lawler (1973) [20] and

Gabow (1974) [7]
O(nm logn) Galil, Micali and

Gabow (1982) [13]
O(n(m log log log m

n
n+n logn)) Gabow, Galil and

Spencer (1984) [11]

O(n
3
4m logW ) Gabow (1985) [9]

O(n(m+ n logn)) Gabow (1990) [10]

O(
√
nα(m,n) lognm log(nW )) Gabow and Tarjan

(1991) [12]

Õ(Wnω) this paper

Table 2: The complexity results for the minimum
weight perfect matching problem. Note that first,
third, fourth and fifth results solve the more general
All Pairs Shortest Paths problem.Complexity Author

O(nm+ n2 logn) directed Johnson (1977) [17]
O(nmin(m logn, n2)) undi-
rected

Gabow (1983) [8]

Õ(Wnω) nonnegative undi-
rected

Shoshan and Zwick
(1999) [31]

O(W 0.681n2.575) directed Zwick (2000) [37]

O(n3 log3 logn/ log2 n)
directed

Chan (2007) [4]

O(Wnω) directed folklore+[31]+[37]

Õ(Wnω) this paper

Table 3: The complexity results for the diameter and
radius problem. Note that the first five results solve
the more general All Pairs Shortest Paths problem.

Complexity Author

Õ(nm) Suurballe and Tarjan (1984)
[33]

Õ(tWnω) undirected Yuster (2011) [34]

Õ(t4−ωWnω) directed Yuster (2011) [34]

Õ(Wnω) this paper

Table 4: The complexity results for the problem of
finding vertices that lie on cycles of length at most t.

1.1 The Framework

Our framework is based on two seminal results. First of all we use Storjohann’s algorithm [32] that
computes the determinant of a degree d polynomial matrix in Õ(dnω) time. All the above graph
problems can be encoded as a determinant problem on a polynomial matrix. However the determi-
nant is just one number and does not provide enough information to decode the whole solution. Here
we use the Baur-Strassen Theorem [2], which shows how to compute all partial derivatives of a func-
tion in the same asymptotic time as computing the function itself. For a simple constructive proof
please check [22]. This theorem allows us to magnify the output of the algorithm from 1 number to
n2 numbers. The algorithms obtained in this way are very simple and work in three phases: compute
the determinant of an appropriately defined matrix; apply Baur-Strassen to the result; decode the
output. Even for minimum weight matching our algorithm is simple, and computes the dual solution
in just a few lines of pseudocode. Based on these examples, we believe this framework will find appli-
cation to a wider spectrum of problems. The full version of the paper will contain a more extensive
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review of possible applications. Here we give one more illustration: a simple Õ(Wnω) time algorithm
that finds every vertex that lies on a cycle of length≤ t, for a given arbitrary t (for a directed or undi-
rected weighted graph, with negative edges allowed but no negative cycles). This improves the algo-
rithms proposed by Yuster in 2011 [34] (see Table 4; those algorithms do not allow negative edges).

The paper is organized as follows. In the next two sections we introduce needed tools and give
the main definitions. In Section 4 we introduce our framework and give algorithms for the shortest
cycle problem in directed graphs. This motivates the introduction of the framework in Section 5.
Section 6 contains the algorithm for minimum weight perfect matching problem. The next section
presents the application of our framework for computing the diameter of a graph. Section 8 intro-
duces the ideas needed to compute shortest cycles in undirected graphs with positive weights. In
Section 9 we join the ideas from all previous section to solve the shortest cycle problem and the
diameter problem in undirected graphs with negative weights. Finally, in Section 10 we apply our
framework to find the set of vertices that lie on a cycle of lenght at most t.

2 Preliminaries

Our approach is based on three main ingredients.

Linear Algebra Algorithms Storjohann [32] has made an important addition to the set of prob-
lems solvable in O(nω) arithmetic operations: the determinant and the rational system solution for
polynomial matrices.

Theorem 1 (Storjohann ’03). Let K be an arbitrary field, A ∈ K[y]n×n a polynomial matrix of
degree d, and b ∈ K[y]n×1 a polynomial vector of the same degree. Then

• rational system solution A−1b (Algorithm 5 [32]),
• determinant det(A) (Algorithm 12 [32]),

can be computed in Õ(dnω) operations in K, with high probability.

For the next section, note that both algorithms of Storjohann can be written as straight-line
programs. The randomization does not pose a problem as it is just used at the very beginning
to generate a polynomial of degree d that does not divide det(A). After this the algorithms are
deterministic. Our applications will work over a finite field (see Section 2) so there is no risk
of manipulating huge integers. Finally usage of the FFT to perform multiplication of degree nd
polynomials does not pose a problem.

Baur-Strassen Theorem Another astonishing result is the Baur-Strassen Theorem from 1983 [2,
22]. It was used to show that matrix multiplication is no harder than determinant computation
when considering algorithms that can be written as straight-line programs. Such a statement is
unexpected when you realize that matrix multiplication returns n2 numbers and determinant com-
putation just one. However it is possible to increase the number of outputs by modifying the
algorithm appropriately. Let T (f1, . . . , fk) denote the time needed to compute functions f1, . . . , fk,
all at the same given point.

Theorem 2 (Baur-Strassen ’83). For straight-line programs computing f(x1, . . . , xn),

T (f,
∂f

∂x1
, . . . ,

∂f

∂xn
) ≤ 5T (f).
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Thus we can compute all partial derivatives of a function f in the same asymptotic time as is
used to compute f . [22] shows a RAM routine to compute all n partials can be constructed in time
O(T (f)) as well.

Schwartz-Zippel Lemma Our approach is to encode a graph problem in a symbolic matrix
whose determinant is (symbolically) non-zero if and only if the problem has a solution. The
Schwartz-Zippel Lemma [36, 30] provides the non-zero test:

Corollary 3. For any prime p, if a (non-zero) multivariate polynomial of degree d over Zp is
evaluated at a random point, the probability of false zero is ≤ d/p.

We will choose primes p of size Θ(nc) for some constant c. In a RAM machine with word size
Θ(log n), arithmetic modulo p can be realized in constant time. Moreover we would like to note
that multivariate determinant expressions have been used several times in previous work, including
Kirchhoff’s Matrix-Tree Theorem, results of Tutte and Edmonds on perfect matchings, and recent
result of Björklund [3] for undirected Hamiltonicity.

3 Definitions: Graphs with Integral Weights

A weighted n-vertex graph G is a tuple G = (V,E,w,W ), where the vertex set is given by
V = {1, . . . , n}, E ⊆ V × V denotes the edge set, and the function w : E → [−W,W ] ascribes
weights to the edges. In this paper we consider both undirected and directed graphs. Hence, E
might denote either a set of unordered pairs for undirected graphs or a set of ordered pairs for
directed graphs. We define a weight of the edge set F ⊆ E to be e(F ) =

∑
e∈F w(e).

Consider a path p = v1, v2, . . . , vk of length k. The weight of this path is simply equal to the
weight of the edge set of p and denoted by by w(p). The distance from v to u in G, denoted by
distG(v, u), is equal to the minimum weight of the paths starting at v and ending in w. A path
from v to u with minimum weight is called a shortest path. If for a path p we have v1 = vk then
the path is called a cycle.

In the shortest cycle problem we are given a weighted graph G and we need to compute the
shortest (i.e., minimum weight) cycle in G. In this problem we assume that the graph contains no
negative weight cycles. There is a subtle difference between the directed and undirected versions
of the problem. The standard approach to reduce the undirected problem to directed problem by
bidirecting the edges does not work. The resulting graph can contain cycles that pass though the
same edge twice in both directions. Such cycles do not exist in the undirected graph. Moreover,
when the undirected graph contains negative edges the resulting directed graph contains negative
weight cycles, even if the undirected graph did not.

In the diameter problem we are given a weighted graph G (directed or undirected) and are asked
to find the a pair of vertices v, u ∈ V that maximizes distG(v, u). Note that here the reduction
of undirected problem to directed one by bidirecting the edges works on the in the case when the
edges are positive.

A matching M in G is a set of edges such that each vertex is incident at most one edge from
M . In a perfect matching each vertex is incident to exactly one matched edge. A minimum weight
perfect matching is a perfect matching M in a weighted undirected graph that minimizes the total
weight w(M) =

∑
e∈M w(e). Many other notions of ”optimum weighted matching” reduce to min-

imum weight perfect matching: A maximum weight perfect matching is equivalent to a minimum
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weight perfect matching for weights w′(e) := −w(e). A minimum weight cardinality k matching
(i.e., exactly k edges are to be matched) is a minimum weight perfect matching on the graph with
n − 2k articial vertices, each joined to every original vertex by a zero-weight edge. A maximum
weight matching (i.e., we want to maximize the total weight of the matched edges) is a maximum
weight perfect matching on the graph that has one artificial vertex if n is odd, plus new zero-weight
edges that make the graph complete. There is a reduction going in the other direction: we set edge
weights to w′(e) := nW + w(e). However we are interested in time bounds that are linear in W ,
so this reduction is not of interest.

4 Shortest Cycles in Directed Graphs

Let K be an arbitrary field. A symbolic polynomial p̃[y] is a multivariate polynomial over a set
of variables y ∪ X over K. We denote the set of symbolic polynomials by K̃[y] = K[y ∪ X]. We
write as well K̃ to denote the set of multivariate polynomials K[X]. A symbolic matrix polynomial
Ã[y] ∈ K̃[y]n×n is an n× n matrix whose entries are symbolic polynomials from K̃[y].

We shall use a straight-line program that evaluates det(Ã[y]) (Ã[y] ∈ K̃[y]n×n) using Storjo-
hann’s algorithm. Here the goal is to evaluate the determinant to a polynomial in one variable
y. This program is easily constructed: Start with the original straight-line program that evaluates
det(A) (A ∈ K[y]n×n) using Storjohann’s algorithm. Prepend assignment statements of the form
aijk ← ãijk, where aijk is the variable in the original program for the coefficient of yk in the en-
try Aij , and the corresponding coefficient in Ã[y] is ãijk ∈ K̃. In our applications each of these
new assignment statements uses O(1) time, so the extra time can be ignored. Also note that all
arithmetic in our straight-line programs is done in K = Zp for a chosen prime p.

We say that σ : X → K is an evaluation function. We define define p̃[y]|σ to be a one variable
polynomial in y with all variables x ∈ X substituted by σ(x).

Let us define a symbolic adjacency matrix of the weighted directed graph
−→
G = (V,E,w,W ) to

be the symbolic matrix polynomial Ã(
−→
G) such that

Ã(
−→
G)i,j =

{
xi,jy

w((i,j)) if (i, j) ∈ E,
0 otherwise,

where xi,j are unique variables corresponding to the edges of
−→
G . Hence, X is the set of all variables

xi,j . For a multi-variable polynomial q, let us denote by:

• deg∗y(q) – the degree of the smallest degree term of y in q,

• termd
y(q) – the coefficient of yd in q,

• term∗y(q) – termd
y(q) for d = deg∗y(q).

If q is the 0 polynomial, deg∗y(q) :=∞. In the following we assume that K := Zp, i.e., we work
over a finite field of order p for some prime number p.

We say that a nonempty set of disjoint cycles C in
−→
G is a cycle packing if every vertex of

−→
G

belongs to at most one cycle in C. Observe that a minimum weight cycle packing is either a shortest
cycle or a collection of shortest cycles all of weight 0.

Lemma 4. Let
−→
G be a directed weighted graph. The minimum weight of a cycle packing in

−→
G

equals deg∗y(det(Ã(
−→
G) + I) − 1). This weight is also the weight of a shortest cycle if G has no
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negative cycle. Finally for any G and any p ≥ 2, all non-zero terms in det(Ã(
−→
G) + I) are non-zero

over a finite field Zp.

Proof. By definition

det
(
Ã(
−→
G) + I

)
=
∑
p∈Γn

σ(p)

n∏
k=1

(
Ã(
−→
G) + I

)
k,pk

, (1)

where Γn is the set of n-element permutations, and σ(p) is the sign of the permutation p. A permu-
tation p defines a set of directed edges Cp = {(i, pi) : 1 ≤ i ≤ n}. This edge set corresponds to a set of
cycles given by the cycles of p. The edge set Cp includes self-loops for all i such that i = pi. Note that
p corresponds to a non-zero term in the determinant if and only if Cp contains only edges from E or
self-loops. Hence, after throwing away self-loops p can be identified with a cycle packing in G, or ∅.

Let us now compute the degree of y in the term of the determinant given by p. This term is

obtained by multiplying the elements of the matrix Ã(
−→
G)+I corresponding to the edges of Cp. The

degree of the term equals the sum of the degrees in its individual elements. These degrees encode
the weights of the edges or are zero for self-loops. So the degree of the term is the total weight of
the cycles in Cp, where self-loops have weight zero.

The term corresponding to a set of self-loops is equal to 1. Hence, det(Ã(
−→
G) + I)− 1 contains

only terms that correspond to nonempty sets of cycles. So we have proved the first assertion, i.e.,
the smallest degree of y is the smallest weight of a packings of cycles.

For the third assertion note that each monomial in (1) has coefficient ±1 as each of them
contains different variables. Hence each non-zero term is also non-zero over Zp for any p ≥ 2.

Finally for the second assertion assume
−→
G has no negative cycle. Let C be the shortest cycle

in
−→
G . It corresponds to a cycle packing of weight w(C). (The packing has a self-loop for every

v 6∈ C.) In fact this is the minimum weight cycle packing. In proof take any cycle packing. If it
contains more than one non-loop cycle discard all but one of them to get a packing of no greater
weight (since every cycle is nonnegative). By definition this weight is ≥ w(C).

Computing the Weight of the Shortest Cycle Next we apply the ideas of the previous sec-

tion to compute the weight of a shortest cycle. Since Ã(
−→
G) may have entries with negative powers

of y, we cannot use Storjohann’s result to compute its determinant. However we can multiply it
by yW to make exponents nonnegative and use this identity:

deg∗y(det(Ã(
−→
G) + I)− 1) = deg∗y(det((Ã(

−→
G) + I)yW )− ynW )− nW.

Combining this idea with the Schwartz-Zippel lemma we obtain the following algorithm.

Algorithm 1 Computes the weight of the shortest cycle in a directed graph
−→
G .

1: Generate a random substitution σ : X → Zp for a prime p of order Θ(n2).

2: Compute δ = det((Ã(
−→
G)|σ + I)yW )− ynW using Storjohann’s theorem.

3: Return deg∗y(δ)− nW .

This algorithm implies.
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Theorem 5. Let
−→
G = (V,E,w,W ) be a weighted directed graph without negative weight cycles.

The weight of the shortest cycle in
−→
G can be computed in Õ(Wnω) time, with high probability.

Note the algorithm also detects the existence of a negative cycle– it corresponds to δ < 0.

Finding a Shortest Cycle The above algorithms does not seem to give the cycle by itself. There
is, however, a straightforward way of doing it using the Baur-Strassen theorem. We say that edge

e is allowed if and only if it belongs to some shortest cycle C in
−→
G .

Lemma 6. The edge (u, v) ∈ E is allowed if and only if: ∂
∂xu,v

term∗y(det(Ã(
−→
G)+I)−1) is non-zero.

Moreover, for p ≥ 2, it is non-zero over a finite field Zp.

Proof. The above follows directly by the proof of Lemma 4. The partial derivative is non-zero if
and only if the variable xu,v exists in some smallest degree term, and so the corresponding edge
(u, v) has to lie on some shortest cycle.

Rewrite the expression of the lemma to eliminate negative powers of y:

∂

∂xu,v
term∗y(det(Ã(

−→
G) + I)− 1) =

∂

∂xu,v
term∗y(det((Ã(

−→
G) + I)yW )− ynW ).

This implies the following algorithm and theorem.

Algorithm 2 Computes a shortest cycle in a directed graph
−→
G .

1: Let ∂xf be the routine given by the Baur-Strassen Theorem to compute the matrix of partial

derivatives ∂
∂xu,v

termd
y

[
det((Ã(

−→
G) + I)yW )− ynW

]
, where d is the degree deg∗y(δ) computed

in Algorithm 1.
2: Generate a random substitution σ : X → Zp for a prime p of order Θ(n2).
3: Compute the matrix δ = ∂xf |σ.
4: Take any edge (u, v) such that δu,v 6= 0.

5: Compute the shortest path pv,u from v to u in
−→
G using [27, 35].

6: Return the cycle formed by (u, v) and pv,u.

Note that in Step 1 we are applying the Baur-Strassen Theorem to the straight-line program

for termd
y

[
det((Ã(

−→
G) + I)yW )− ynW

]
. The latter is constructed using Storjohann’s Theorem and

the modification described at the start of this section.
The shortest path computation using algorithms from [27, 35] takes Õ(Wnω) time and succeeds

with high probability, so we obtain:

Theorem 7. Let
−→
G = (V,E,w,W ) be a weighted directed graph without negative weight cycles.

The shortest cycle in
−→
G can be found in Õ(Wnω) time, with high probability.
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5 Performing Symbolic Computations

This section gives a formal description of the algebraic operations used in our algorithms. Let Ã[y]
be an n×n symbolic matrix and let σ : X → Zp be an arbitrary evaluation function. Moreover for
a prime p let f : Z̃p[y]n×n → Z̃p be a symbolic matrix function.

Theorem 8. If the result of f has degree bounded by some polynomial df (n) and f(Ã[y]|σ) is com-
putable in tf (n) time, then there exists an algorithm that in O(tf (n)) time checks whether f(Ã[y])
is symbolically non-zero over Zp with error probability ≤ df (n)/p.

Proof. The algorithm works as follows:

1. uniformly at random choose a substitution function σ : X → Zp,
2. compute f(Ã[y]|σ) in tf (n) time,
3. check whether or not this value is zero and return the result.

For the time bound note that tf (n) is obviously ≥ |X|. For the error bound if the degree of
f(Ã[y]) is d, Corollary 3 shows the probability of a false zero is ≤ d/p ≤ df (n)/p.

Theorem 9. If the result of f has degree bounded by some polynomial df (n) and f(Ã[y]|σ) is
computable by a straight-line program in tf (n) ≥ df (n) time, then there exists an algorithm that in
O(tf (n)) time checks for each x ∈ X whether or not ∂

∂xf(Ã[y]) is symbolically non-zero over Zp.
All |X| returned results are correct with total error probability ≤ df (n)|X|/p.

Proof. Assume that the Baur-Strassen theorem gives a routine to compute ∂xf := ∂
∂xf(Ã[y]) for

all x ∈ X in O(tf (n)) time. The algorithm works as follows:

1. uniformly at random choose a substitution function σ : X → Zp,
2. apply the Baur-Strassen routine to compute ∂xf |σ for all x ∈ X in O(tf (n)) time,
3. for each x ∈ X check whether or not ∂xf |σ is zero and return the result.

Obviously ∂xf has degree ≤ df (n). So Corollary 3 shows that for each x ∈ X the probability
of a false zero for ∂xf is ≤ df (n)/p. Hence the union bound shows the probability of any false zero
in |X| results is ≤ df (n)|X|/p.

The true goal is to check if a functional value is symbolically non-zero with high probability.
This is easy to do with some weak assumptions on f . Specifically assume that any value f(α) in
the range of f is a polynomial whose constant coefficients all have absolute value at most C, for
some constant C. Also assume tf (n) ≥ n+ df (n).

Now consider the setting of Theorem 8. f(α) is a non-zero polynomial iff it is a non-zero poly-
nomial over Zp for any prime p > C. In Theorem 8 take p as a prime of size Θ(n · df (n)). We get
error probability O(1/n). The time to find p is easily accounted for by the assumption on tf (n).
So for f as above, the theorem shows that in O(tf (n)) time we can check if f(Ã[y]) is symbolically
non-zero with high probability.

Next consider the setting of Theorem 9. Any value of ∂xf is a non-zero polynomial iff it is a
non-zero polynomial over Zp for any prime p > Cdf (n). In Theorem 9 take p as a prime of size
Θ(n|X|·df (n)). We get error probability O(1/n). The time is similar. So for f as above the theorem
shows that in O(tf (n)) time we can check if ∂

∂xf(Ã[y]) is symbolically non-zero with high probability.
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6 Minimum Weight Perfect Matching

This section presents an algorithm that, given an undirected graph with integral edge weights in
[0,W ], finds a minimum weight perfect matching in Õ(Wnω) time, assuming such matchings exist.

The algorithm works in three phases:

1. The first phase uses algebra to reduce the problem to connected graphs, where each edge be-
longs to some minimum weight perfect matching (Algorithm 3). Moreover for each vertex v, we
are given the value w(M(v)) – the minimum weight of a matching with exactly 2 unmatched
vertices, one of which is v (Algorithm 4). This phase uses Õ(Wnω) time and succeeds with high
probability.

2. The second phase defines a new weight w′(uv) := w(uv) + w(M(u)) + w(M(v)) for each edge
uv. It performs a simple graph search algorithm on these new edges to obtain a laminar family
of blossoms, which is the support of some optimum dual solution (Algorithm 5). Each blossom
induces a factor critical graph. This phase is deterministic and uses Õ(n2) time.

3. The last phase uses a maximum cardinality matching algorithm (for unweighted graphs), guided
by the structure of the blossoms, to obtain a minimum weight perfect matching (Lemma 20).
This phase uses Õ(nω) time and succeeds with high probability.

To elaborate on the second phase (which in our opinion is the most interesting), let A be the
set of distinct values of the weight function w′. Section 6.2 proves |A| = O(n). For α ∈ A we define
a ’threshold graph’ Gα = (V,E′), which is an unweighted undirected graph with E′ = {uv ∈ E :
w′(uv) ≤ α}. The nontrivial connected components of all the graphs Gα constitute the blossoms
of an optimum dual solution! (A connected component is nontrivial if it has more than 1 and less
than n vertices.) Our proof of this result hinges on showing there exists a special dual solution
(called balanced critical dual solution) in which it is easy to find the blossoms (Lemma 28).

Figure 1 depicts a sample graph and illustrates the steps for obtaining the laminar family of
blossoms.
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Figure 1: The matching algorithm: The far left shows an example graph. Edges without a label
weigh 0. The minimum weight of a perfect matching is 3. w(M(v)) is 2 for v ∈ {b2, c1, x, y, z}
and 1 otherwise. The middle figure shows the allowed edges (edge c1z was removed) and new edge
weights w′(uv) = w(uv) + w(M(u)) + w(M(v)); edges with w′(e) = 2 are drawn zigzag, w′(e) = 3
are dashed, and w′(e) = 4 are straight. The far right shows the laminar family induced by the
blossoms found using the threshold graphs of Algorithm 5.
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In the rest of this section we show how to obtain the set of allowed edges, i.e., edges belonging
to at least one minimum weight perfect matching and values w(M(u)) (Section 6.1). Next, in Sec-
tion 6.2 we present the standard LP formulation of the problem. We recall and extend properties
of a dual solution, in order to prove the correctness of our simple method of obtaining blossoms of
an optimum dual solution. Finally, in Section 6.3, we gather all the theorems and formally prove
correctness and bound the running time of our algorithm.

We would like to note, that the simplicity of our algorithm for contracting the set of blossoms
from the values w(M(u)) is due to the fact that the hardness is hidden in the proof of the purely
combinatorial existential lemmas from Section 6.2 and in the algorithm for finding unweighted
maximum matching problem.

6.1 Algebraic Tools

Let us define a symbolic adjacency matrix of the weighted undirected graph G = (V,E,w,W ) to
be the n× n matrix Ã(G) such that

Ã(G)i,j =


xi,jy

w(ij) if ij ∈ E and i < j,

−xj,iyw(ij) if ij ∈ E and i > j,
0 otherwise,

where xi,j are unique variables corresponding to the edges ij ∈ E of G. Karp, Upfal and Wigder-
son [19] proved that the smallest degree of y in det(Ã(G)) is twice the weight of a minimum weight
perfect matching in G. By using this line of reasoning together with results of Storjohann and
Baur-Strassen, we show how to obtain the set of edges which appear in at least one minimum
weight perfect matching.

Lemma 10. An edge ij ∈ E belongs to some minimum weight perfect matching iff

∂

∂xi,j
term∗y

[
det(Ã(G))

]
6= 0 .

Proof. By the definition of a determinant we have:

det(Ã(G)) =
∑
p∈Γn

sgn(p)

n∏
k=1

Ã(G)k,pk , (2)

where Γn is the set of n-element permutations. A permutation p defines a multiset of edges
Cp = {{i, pi} : 1 ≤ i ≤ n and i 6= pi}. This edge multiset corresponds to a cycle cover given
by the cycles of p. Reversing an odd cycle in a permutation does not change its sign, but it changes
the sign of the monomial corresponding to this permutation in the determinant. Consequently,
the polynomial det(Ã(G)) contains only monomials corresponding to even-cycle covers of G. (An
even-cycle cover has no odd cycles.) Since each even-cycle cover is easily decomposable into two
perfect matchings, and doubling a matching gives an even-cycle cover, we infer that an edge ij ∈ E
belongs to some minimum weight perfect matching in G iff it appears in some minimum degree
monomial in det(Ã(G)). The lemma follows.

Note that an even-cycle cover corresponding to a matching – i.e., every cycle has length 2 –
corresponds to a unique permutation in (2). Thus the lemma is true in any field Zp.

The combination of Lemma 10 with Theorem 9 proves the following corollary.
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Corollary 11. For a weighted undirected graph G = (V,E,w,W ) one can compute the set of edges
which belong to at least one minimum weight perfect matching in Õ(Wnω) running time, with high
probability.

Algorithm 3 Computes the set of allowed edges in the graph G.

1: Generate a random substitution σ : X → Zp for a prime p of order Θ(n2).

2: Compute d = deg∗y

[
det(Ã(G)|σ)

]
using Storjohann’s theorem.

3: Let ∂xf be the routine given by the Baur-Strassen theorem to compute the matrix of partial

derivatives ∂
∂xi,j

termd
y

[
det(Ã(G))

]
.

4: Generate a random substitution σ : X → Zp for a prime p of order Θ(n4).
5: Compute the matrix δ = ∂xf |σ.
6: Mark each edge ij, where i < j, as allowed if δi,j 6= 0.

Definition 12 (M(uv), M(u)). For a pair of vertices u, v ∈ V let M(uv) be a minimum weight
perfect matching in G \ {u, v}, i.e., G with vertices u and v removed. Similarly, for a vertex u let
M(u) be a minimum weight almost-perfect matching in the graph G \ {u}.

Note that M(u) always exists, since we assume the given graph G has a perfect matching. In
contrast M(uv) needn’t exist. In that case M(uv) is ∞.

Lemma 13. Let G = (V,E,w,W ) be a weighted undirected graph. Then deg∗y(adj(Ã(G))i,j) =
w(M) + w(M(ij)).

Proof. We have adj(Ã(G))i,j = (−1)i+j det(Ã(G)j,i). Equivalently, if we take Z̃ to be the matrix
obtained from Ã(G) by zeroing entries of the j’th row and the i’th column and setting the entry
(j, i) to 1, then adj(Ã(G))i,j = det(Z̃), and so

adj(Ã(G))i,j =
∑
p∈Γn

sgn(p)
n∏
k=1

zk,pk . (3)

The permutation p can be viewed as a set of directed cycles C covering G, where there is a cycle c
that contains the edge (j, i). (By definition (j, i) is an edge of C, even when (j, i) /∈ E(G). (j, j) is
an example. The other edges of C are in E(G).)

We claim that the terms in this adjoint correspond to even-length-cycle covers that contain a
cycle c through (j, i). In other words cycle covers that contain an odd cycle make no net contribu-
tion to (3). In proof let d be an odd cycle in C. First suppose d 6= c. Reversing its direction changes
the sign of its contribution to (3), from antisymmetry of Ã(G). So such covers do not contribute to
the adjoint. Second suppose d = c. G has an even number of vertices. Thus C has an even number
of edges, and c cannot be the unique odd cycle.

Now take any C contributing to (3). C decomposes into two matchings by taking alternate edges
from each (even) cycle. One matching, say N , is a perfect matching of G; the other is a perfect
matching of G \ {i, j}, say N(ij), plus edge (j, i). We conclude that the adjoint of (3) is 0 if N or
N(ij) does not exist. This proves the case of the lemma when M or M(ij) does not exist.

Now assume both M and M(ij) exist. The degree of any term in (3) equals the sum of the
edge weights in C (note that the weight of the edge (j, i) is considered as 0, since zj,i = 1). Take
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any term that has the smallest degree in (3). Its degree is

deg∗y(adj(Ã(G))i,j) = w(N) + w(N(ij)) ≥ w(M) + w(M(ij)).

We will complete the proof by showing

deg∗y(adj(Ã(G))i,j) ≤ w(M) + w(M(ij)).

(Obviously the two displayed inequalities show equality holds, so they imply the lemma.) The
multiset M ∪M(ij)∪ (j, i) gives an even-length-cycle cover CM of G which contains the edge (j, i).
Wlog the cycle through (j, i) is the only cycle in CM (since we can make M and M(ij) identical
on any other even cycle). We claim the monomial corresponding to CM occurs exactly once in (3).
This claim shows the monomial does not get cancelled, thus proving the desired inequality.

To prove the claim, a variable xgh appearing in any term comes from the cycle cover edge (g, h)
or (h, g). This implies that two terms with the same variables are cycle covers that differ only in
the orientation of some cycles. A cycle of CM either has length two or contains (j, i). The former
does not change when it is reversed, and the latter cannot be reversed. So no other cycle cover
corresponds to the monomial of CM .

Note that since the monomial for CM occurs exactly once, the lemma holds for any field Zp.

If M or M(ij) does not exist, the expression of the lemma equals∞. The lemma and the following
extension also hold in any field Zp.

Corollary 14. The vector of values w(M) + w(M(i)), i ∈ V equals deg∗y

(
adj(Ã(G))b

)
for b a

vector of n indeterminates b = (b1, b2, . . . , bn).

Proof. Lemma 13 shows w(M)+w(M(i)) = minj deg∗y

(
adj(Ã(G))i,j

)
. (Note that entries adj(Ã(G))i,j

corresponding to the 0 polynomial cause no problem.) The ith component of the vector adj(Ã(G))b
is
∑

j adj(Ã(G))i,jbj , and because of the indeterminates bj no terms cancel when the sum is formed.

Thus deg∗y

(
adj(Ã(G))b

)
= w(M) + w(M(i)).

This leads to the following algorithm to compute w(M(u)) for all u ∈ V (G). Let B =
{b1, . . . , bn}.

Algorithm 4 Computes the values w(M(i)) for all vertices i in the graph G.

1: Generate a random substitution σ : X ∪B → Zp for a prime p of order Θ(n3).
2: Compute w(M) = deg∗y(det(Ã(G)|σ))/2 and v = det(Ã(G)|σ)(Ã−1(G)b)|σ using Storjohann’s

theorem, where b = (b1, . . . , bn).
3: For each i ∈ V set w(M(i)) = deg∗y(vi)− w(M).

To see this algorithm is correct Statement 2 computes v =
(

adj(Ã(G))b
)
|σ. So Corollary 14

shows the algorithm is correct if there are no false zeroes. A rational expression (like those in
(Ã−1(G)b)|σ) is zero if and only if its numerator is zero and its denominator is nonzero. So we can
apply the Schwartz-Zippel Lemma to show the final products have no false zeroes (in their lowest
order term). So each deg∗y(vi) is computed correctly with high probability.
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Regarding efficiency consider the n multiplications of degree nW polynomials done to form v in
Statement 2. We only use the lowest degree term of each product (Statement 3). That term comes
from the lowest degree term in det(Ã(G)|σ and the lowest degree term in the numerator and the
denominator of (Ã−1(G)b)|σ. So we can find the smallest degree of y that corresponds to deg∗y(vi)
using O(1) additions and subtractions, without multiplying polynomials.

We conclude:

Corollary 15. Algorithm 4 computes the values w(M(u)), for all u ∈ V (G), in Õ(Wnω) time,
with high probability.

6.2 Properties of the Dual

We move on to the linear programming formulation of the minimum weight perfect matching prob-
lem given by Edmonds [5]. An odd set has odd cardinality; Ω denotes the collection of odd subsets
of V of cardinality ≥ 3.

min
∑
e∈E

w(e)xe

x(δ(v)) = 1, for all v ∈ V
x(δ(U)) ≥ 1, for all U ∈ Ω (4)

xe ≥ 0, for e ∈ E

The variables xe indicate when an edge is included in the solution. Here, δ(U) denotes all edges
uv ∈ E having |{u, v} ∩ U | = 1. We write δ(u) for δ({u}) and x(F ) for

∑
e∈F xe.

The dual problem has variables πv for each vertex v and πU for each odd set U :

max
∑
v∈V

πv +
∑
U∈Ω

πU

πu + πv +
∑

U∈Ω, uv∈δ(U)

πU ≤ w(uv) for all uv ∈ E (5)

πU ≥ 0 for all U ∈ Ω

We say that an edge e = uv is tight with respect to a dual π if equality holds in (5). A laminar
family is a set system where each pair of sets is either disjoint or one set contains the other. More-
over, a graph is factor critical if after removing each vertex the graph has a perfect matching. We
use existence of the following dual:

Lemma 16 (Edmonds ’65 [5]). There exists an optimal dual solution π : V ∪ Ω→ R, such that:

1. the set system {U ∈ Ω : πU > 0} forms a laminar family,
2. for each U ∈ Ω with πU > 0, the graph G[U ] with each set of {S ∈ Ω : S ⊂ U, πS > 0} contracted

is factor critical.

Definition 17 (critical dual, blossom). An optimum dual solution satisfying the conditions from
Lemma 16 is a critical dual solution. A set U ∈ Ω such that πU > 0 is a blossom w.r.t. π.

Blossoms of critical dual solutions have the following useful property (note the lemma below is
weight-oblivious and the only input given to the algorithm is an undirected unweighted graph, the
family of blossoms, and v).
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Lemma 18. Consider any critical dual solution and let U ∈ Ω be an arbitrary blossom. For any
vertex v ∈ U there exists a perfect matching M(U, v) in G[U \ {v}], such that for each blossom
U0 ⊆ U , |M(U, v) ∩ δ(U0)| is 0 if v ∈ U0 and 1 if v 6∈ U0. Furthermore, given the family of all
blossoms and v, one can find such a matching in Õ(|U |ω) running time, with high probability.

Proof. Let B be the set of blossoms of π properly contained in U (B might be empty); moreover
let Bmax be the set of inclusionwise maximal sets in B. Let G′ be the graph G[U ]/Bmax and let v′

be a vertex of G′ corresponding to v. (Here we use the contraction operator – if S is a family of
disjoint vertex sets, G/S denotes the graph G with each set of S contracted to a single vertex.)

Initially let M(U, v) ⊆ E be a perfect matching in G′\v′. It exists since G′ is factor critical. For
each blossom U0 ∈ Bmax, recursively find a perfect matching M0 in the graph G[U0 \ x], where x is
the single vertex of the intersection of U0 and V (M(U, v))∪ {v}. Add the edges of M0 to M(U, v).

By construction the final matching M(U, v) satisfies conditions from the lemma. For the time
bound note that the laminarity of B implies the total number of vertices in all graphs constructed
by the above procedure is O(n). The algorithms of [23, 26, 14] find a perfect matching on an
arbitrary graph of n vertices in time Õ(nω), with high probability. Hence our recursive procedure
runs in total time Õ(|U |ω).

Complementary slackness gives the following observation.

Observation 19. For any optimum dual solution:

(a) a set U ∈ Ω with πU > 0 has exactly one edge of δ(U) in any minimum weight perfect matching;
(b) an edge belonging to any minimum weight perfect matching is tight.

Lemma 20. Given a weighted undirected graph G = (V,E,w,W ) where each edge is allowed,
and the set of blossoms B of some critical dual solution, one can find a minimum weight perfect
matching in Õ(nω) time, with high probability.

Proof. Let Bmax ⊆ B be the set of inclusionwise maximal blossoms. Let graph G′ = G/Bmax. G′

has a perfect matching M0 (since Observation 19(a) shows any minimum weight perfect matching
in G contains a subset of edges forming a perfect matching in G′).

We extend M0 to a perfect matching in G by considering the blossoms of U ∈ Bmax one by
one. Let vU be the unique vertex of U that is matched by M0. Add the matching M(U, vU ) of
Lemma 18 to M0. The final set M0 is a perfect matching for G.

The time for this procedure is Õ(nω). This follows exactly as in Lemma 18, since the total
number of vertices in all graphs considered is O(n).

Finally, we prove that M is a minimum weight perfect matching in G by showing that for
each blossom U ∈ B the set M contains exactly one edge of δ(U). Consider a maximal blossom
U ∈ Bmax. When finding a perfect matching in G′ we have added exactly a single edge of δ(U) to
the set M . Moreover each edge of M(U ′, vU ′), for any maximal blossom U ′ ∈ Bmax, is contained
in U ′, and therefore the set M contains exactly one edge of δ(U). Now let us consider a blos-
som U ∈ B \ Bmax, and let U ′ ∈ Bmax be a maximal blossom containing U . If in the first phase
(finding a perfect matching in G′) we added no edge from δ(U) to the set M , then by Lemma 18
in the set M(U ′, vU ′) there is exactly one edge of δ(U), whereas for each other maximal blossom
U ′′ ∈ Bmax, U

′′ 6= U ′, in the set M(U ′′, vU ′′) there is no edge of δ(U). If, however, in the first phase
we added an edge from δ(U) to the set M , then by the choice of v′U , which is the endpoint of the
edge of δ(U) ∩M , no other edge of δ(U) is added to the set M .
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Since all the edges are allowed, by Observation 19(b) the sum of values of edges of M is equal
to the cost of the critical dual solution, which proves that M is a minimum weight perfect matching
in the graph G. Note that our algorithm does not need exact values of the dual nor even weights
of edges, since its input is only graph G and set B.

A critical dual solution gives rise to a weighted tree in a natural way:

Definition 21 (dual tree). Let π : Ω ∪ V → R be a critical dual solution, with B the set of its
blossoms. The dual tree T (π) is a rooted tree on nodes {V } ∪ B ∪ V , where V is the root, vertices
of V are leaves, blossoms of B are internal nodes and the parent-child relation in T (π) is naturally
defined inclusionwise. The weight of the edge from a node t ∈ B ∪ V to its parent is πt. The height
of the tree H(T (π)) is the weight of a longest path from the root to some leaf.

In this definition note that the last edge of a path defining H(T (π)) may have negative length.
For a tree T with weighted edges and two nodes u, v, distT (u, v) denotes the weight of the path
between u and v. The following simple lemma provides a basic tool.

Lemma 22. If π is a critical dual solution for a weighted graph G = (V,E,w,W ), any allowed
edge uv satisfies w(uv) = distT (π)(u, v).

Proof. Since uv is tight (Observation 19(b)), w(uv) = πu +πv +
∑

U∈Ω, uv∈δ(U) πU . The right-hand
side gives distT (π)(u, v) for two reasons: The edges of T (π) incident to leaves are weighted with the
singleton values of π. A blossom B of π contains exactly one endpoint of the edge uv if and only
if the path between u and v in T (π) contains the edge between B and its parent.

The next steps of our development (Lemmas 25–27) can be derived using an appropriate ver-
sion of Edmonds’ weighted matching algorithm (e.g., [29]). Here we will use a structural approach,
based on the following properties of allowed edges given by Lovász and Plummer.

Lemma 23 ([21], Lemma 5.2.1 and Theorem 5.2.2). Let G = (V,E) be an undirected connected
graph where each edge belongs to some perfect matching. Define a binary relation R ⊆ V × V by
(u, v) ∈ R if and only if G \ {u, v} has no perfect matching. Then

• R is an equivalence relation;
• each equivalence class of R is an independent set;
• for each equivalence class S of R, the graph G \ S has exactly |S| connected components, each of

which is factor critical.

We will use a special type of critical dual solution that we call ”balanced”.

Definition 24 (balanced critical dual). Let π : Ω ∪ V → R be a critical dual solution, and
let G′ be the graph G with each blossom of π contracted. π is a balanced critical dual solution if
there are two distinct vertices u, v ∈ V such that distT (π)(u, V ) = distT (π)(v, V ) = H(T (π)) and
further, G′ \ {u′, v′} has a perfect matching for u′, v′ the (distinct) vertices of G′ corresponding to
u, v, respectively.

Before proving that balanced critical dual solutions exist, we give a lemma showing why they
are useful. In particular they show how the M(v) values relate to T (π). Let M(G) be a minimum
weight perfect matching in G.
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Lemma 25. Let G = (V,E,w,W ) be an undirected connected graph with every edge in some mini-
mum weight perfect matching. Let π be a balanced critical dual solution for G. For any vertex z ∈ V ,
a minimum weight almost perfect matching in G \ z weighs w(M(G))−H(T (π))− distT (π)(z, V ).

Proof. Any almost perfect matching in G \ z weighs at least w(M(G))−H(T (π))− distT (π)(z, V ).
In proof let M1 be an arbitrary perfect matching in G \ {x, z} for any x ∈ V . For any blossom U
of π such that x, z 6∈ U , |M1 ∩ δ(U)| ≥ 1. Together with (5) this gives w(M1) ≥ ∑w∈V−x,z πw +∑

x,z /∈U πU . The right-hand side equals w(M(G))−πx−πz−
∑
{x,z}∩U 6=∅ πU , by strong duality. Since

every πU is nonnegative this quantity is at least w(M(G))−distT (π)(z, V )−distT (π)(x, V ). The defi-
nition of H(T (π)) shows the last quantity is at least w(M(G))−distT (π)(z, V )−H(T (π)) as desired.

We complete the proof by constructing an almost perfect matching in G\z of weight w(M(G))−
H(T (π)) − distT (π)(z, V ). Take G′, u, v, u′, v′ as in Definition 24. Moreover let z′ be the vertex of
G′ corresponding to z. G′ is connected, with every edge in a perfect matching, so it satisfies the
hypothesis of Lemma 23. Definition 24 shows that u′ 6Rv′. So z′ is not equivalent to at least of u
and v. W.l.o.g. assume that u′ 6Rz′. Thus G′ \ {u′, z′} has a perfect matching M0.

Next, consider each inclusionwise maximal blossom U of π one by one. Let x ∈ U be the unique
vertex of U in the set V (M0) ∪ {u, z}. Add to M0 the edges of the matching M(U, x) guaranteed
by Lemma 18.

Clearly M0 is a perfect matching in G \ {u, z}. For each blossom U of π, |M0 ∩ δ(U)| is 1
if u, z 6∈ U , and 0 if u or z belongs to U . Blossoms of the latter type are those in the path
from u to V or z to V in T (π). These two paths have disjoint edge sets, since u′ 6= z′. We get
w(M0) = w(M(G)) − distT (π)(u, V ) − distT (π)(z, V ), since every edge of M0 is allowed, i.e., tight.
Since distT (π)(u, V ) = H(T (π)) this is the desired weight.

We prove that balanced critical duals exist in two steps. The first step shows a simpler property
for critical duals actually makes them balanced. The second step shows duals with this property
exist.

Lemma 26. Let G = (V,E,w,W ) be an undirected connected graph with every edge in some
minimum weight perfect matching. A critical dual π0 is balanced if it has minimum height (i.e.,
H(T (π0)) is no larger than the height of any other critical dual).

Proof. Assume for the purpose of contradiction that π0 is not a balanced critical dual. For any
vertex v ∈ V let hv denote its height in π0, hv = distT (π0)(v, V ). Let u be the vertex of G with the
greatest height hu. Let G′ be the graph G with inclusionwise maximal blossoms of π0 contracted.
Let R be the equivalence relation of Lemma 23 for G′, and S1, . . . , Sk its equivalence classes. Let
u belong to vertex u′ of G′ and let u′ ∈ S1.

We will define a dual function π1. An element of S1 is either a maximal blossom of π0 or a
vertex of V not in any blossom; let si, 1 ≤ i ≤ |S1|, be the ith of these blossoms and vertices.
Lemma 23 shows G′ \ S1 has |S1| connected components; let Bi, 1 ≤ i ≤ |S1|, be the set of vertices
of G contracted onto the i-th connected component of G′\S1. Define π1 : Ω∪V → R to be identical
to π0 except

π1(x) =

{
π0(x)− ε x = si, 1 ≤ i ≤ |S1|
π0(x) + ε x = Bi, 1 ≤ i ≤ |S1|.

(Note that if Bi consists of more than one vertex in G′ then we are creating a new blossom.) Let
ε be any positive real no larger than the smallest value of π0(si) for a blossom si. This ensures π1

is nonnegative on blossoms.
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Figure 2: Graph G′ and the modification of the duals.

Let us verify that π1 is a critical dual. First, observe that each edge of G remains tight in π1:
Nothing changes for an edge that has both ends in the same set of S1 or some Bi. The remaining
possibility is an edge between S1 and some Bi (no edge joins 2 Bi sets or 2 sets of S1, the latter
by independence of S1). For such edges we have added and subtracted ε in the left-hand side of 5,
so it remains tight. Next observe that the blossoms of π1 form a laminar family. Lemma 23 shows
the sets Bi induce factor critical graphs. Finally π1 is an optimum dual, since its objective as π0.
Thus π1 is a critical dual.

Taking ε small enough makes π1 a critical dual with smaller height than π0, the desired contra-
diction. To see this take any vertex v ∈ V , and let v′ be the vertex of G′ that v is contracted onto.
If v′ ∈ S1, the height of v decreases as long as ε is positive. Suppose v′ /∈ S1. Lemma 23 shows
π0 would be balanced if hv = hu. Thus hv < hu. Choose ε small enough so that every such v has
distT (π1)(v) = distT (π0)(v) + ε ≤ hu − ε. Thus π1 has smaller height than π0.

Lemma 27. Let G = (V,E,w,W ) be an undirected connected graph with every edge in some min-
imum weight perfect matching. There is a critical dual π0 that has the smallest height H(T (π0)).

Proof. Lemma 16 shows a critical dual π exists. There are a finite number of laminar families on
V , i.e., a finite number of trees T (π). So it suffices to show that there is a smallest height among
all critical duals π with the same tree T = T (π).

We begin by showing that for every blossom U , there is a unique value for πx, where x is any
vertex of U or any blossom properly contained in U . We argue inductively, so assume this holds
for every blossom properly contained in U . For any edge uv we break the left-hand side of (5) into
the contributions from u and from v, by defining

πu,v = πu +
∑

U∈Ω, u={u,v}∩U

πU

and symmetrically for πv,u. So the left-hand side of (5) is πu,v + πv,u.
Take any edge uv joining two vertices u, v ∈ U . uv is on an odd cycle C contained in U . (U is fac-

tor critical, so letMu (Mv) be a perfect matching on U−u (U−v) respectively. The symmetric differ-
ence Mu⊕Mv contains an even-length path from u to v.) Each edge of C is tight. So for every edge
xy in C, the values of πx,y and πy,x are uniquely determined. If πx,y does not have any contributions
from blossoms properly contained in U then πx = πx,y has been uniquely determined. If πx,y has
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a contribution πW from a blossom W that is a maximal blossom properly contained in U then πW
has been uniquely determined. This follows since the other π values contributing to πx,y have been
determined by induction. (Note that πW has also been uniquely determined from the other edge of
C ∩ δ(W ).) If neither of these conditions apply to πx,y then all its π-values have been determined
by induction. Since any vertex u ∈ U is on an edge uv in U , this completes the inductive argument.

Next consider any edge uv not contained in a blossom of T . The previous argument shows
exactly one term in the quantity πu,v is still undetermined. If uv is in an odd cycle C the previous
argument shows that term is uniquely determined. Contract all such odd cycles as well as all blos-
soms of T . We get a bipartite graph G′. It contains at least one edge. Let S be a spanning tree of
G′. Choose a value p0 for the unknown term p at the root of S, that comes from a valid critical dual
for T . Suppose we increase p. If this increases H(T ), every value of p larger than p0 gives larger
height. Suppose this decreases H(T ). All the other unknown π-values are uniquely determined
from tightness of the edges of S. Also every edge of G′ not in S remains tight by bipartiteness.
There is a maximum value p such that every value p > p either makes the π-values invalid (because
some πU , U ∈ Ω becomes negative) or increases the height (since p contributes to the height of the
root vertex). Similarly there is a minimum value p for p. We conclude there is a unique smallest
height for a critical dual for T – it occurs when p is equal to either p or p.

As already mentioned, the last two lemmas show any undirected connected graphG = (V,E,w,W )
with all edges allowed has a balanced critical dual. We can now reach our final goal.

Lemma 28. Let G = (V,E,w,W ) be a weighted undirected connected graph where every edge is
allowed. Given all values w(M(v)) for v ∈ V , the blossoms of a balanced critical dual solution can
be found in Õ(n2) time.

Proof. Let π be a balanced critical dual solution. By Lemma 25 for each leaf node v ∈ V of T (π),
w(M(v)) = w(M(G))−H(T (π))−distT (π)(z, V ). Define new edge weights w′ : E → Z as w′(uv) =
w(M(u)) + w(M(v)) + w(uv). Consider any uv ∈ E. Since uv is tight, w(uv) = distT (π)(u, v).
Define a quantity c that is independent of uv, c = 2(w(M(G))−H(T (π))). Then

w′(uv) = w(uv) + w(M(u)) + w(M(v))

= distT (π)(u, v) + 2w(M(G))− 2H(T (π))− distT (π)(u, V )− distT (π)(v, V )

= 2(w(M(G))−H(T (π)))− 2distT (π)(lca(u, v), V )

= c− 2distT (π)(lca(u, v), V ) . (6)

Let B = lca(u, v). So B is the inclusionwise minimal blossom of π containing both u and v, or
if no such blossom exists, B is the root V of the tree T (π). For any edge uv let Buv ⊆ V be the
the set of vertices reachable from u or v by a path of edges e satisfying w′(e) ≤ w′(uv).

Claim. For any edge uv, Buv = B.

Proof of Claim. Let F ⊆ E be the set of edges of a spanning tree of G[B] (G[B] is connected since
either B = V or G[B] is factor critical). Since any edge ab ∈ F is contained in B, the node lca(a, b)
descends from lca(u, v) in T (π). Thus the path from lca(a, b) to lca(u, v) in T has nonnegative
weight. This implies w′(ab) ≤ w′(uv) by (6). Thus B ⊆ Buv.

For the opposite inclusion, consider any edge ab with a ∈ B and w′(ab) ≤ w′(uv). Since every
blossom has a strictly positive π-value, (6) implies b ∈ B. Now an easy induction shows any path
from u or v, with every edge e having w′(e) ≤ w′(uv), has every vertex in B. Thus Buv ⊆ B. ♦
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Any blossom B of π has an edge uv with B the minimal blossom containing u and v (by lam-
inarity and connectedness of B). So the claim of the lemma amounts to constructing all the sets
Buv. This is done in Õ(n2) time by Algorithm 5 below.

Algorithm 5 Given all the values w(M(u)), finds the blossoms of a balanced critical dual in the
graph G where all edges are allowed.

1: For each edge uv set w′(uv) = w(uv) + w(M(u)) + w(M(v)).
2: Let A be the set of all different values w′(uv). Let B = ∅.
3: for each α ∈ A, in increasing order, do
4: Let C be the set of connected components of the graph (V, {uv : uv ∈ E,w′(uv) ≤ α}).
5: Add the nontrivial components of C to B.
6: end for
7: return B.

6.3 The Final Algorithm

Theorem 29. Let G = (V,E,w,W ) be a weighted undirected graph containing a perfect matching.
A minimum weight perfect matching in G can be computed Õ(Wnω) time, with high probability.

Proof. First, using Corollary 11, we can remove all the edges of G which are not allowed. Clearly,
we can consider each connected component of G separately, hence w.l.o.g. we assume that G is
connected. Next, compute all the values w(M(u)) for each u ∈ V using Corollary 15. Having all
the values w(M(u)) by Lemma 28 we can find the set of blossoms B of a balanced critical dual
solution and consequently by Lemma 20 we can find a minimum weight perfect matching in G.

The full version of this paper shows how the matching algorithm can be made Las Vegas.
In some applications the second smallest perfect matching is of interest (e.g., Section 9). Its

weight is easily found, as follows. As discussed in the proof of Lemma 13, the terms in the de-
terminant of det(Ã(G)) correspond to even-cycle covers in the graph G. Each such cycle can be
decomposed into two perfect matchings. As we already observed the smallest degree term in y
in det(Ã(G)) corresponds to taking twice the minimum weight perfect matching in G. The next
smallest term gives the following.

Corollary 30. Let G = (V,E,w,W ) be a weighted undirected graph. The degree in y of a second
smallest monomial of det(Ã(G)) is equal to the weight of a minimum weight perfect matching M∗

plus the weight of a second smallest perfect matching M ′. In particular, the weight of a second
smallest perfect matching can be found in Õ(Wnω) time, with high probability.

Proof. Letting τ(M∗) denote the term corresponding to M∗ in det(Ã(G)),

w(M ′) = term∗y

[
det(Ã(G))− τ(M∗)

]
.

7 Diameter and Radius

In this section we consider the problem of computing the diameter and radius of a directed graph
without negative weight cycles. By bidirecting the edges this result can be applied to undirected
graphs with nonnegative edge weights.
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We start with definitions of the quantities of interest, plus equivalent definitions that we use to
compute these quantities. To motivate the latter note that it seems difficult to compute a given set
of distances S directly. Instead we show how to check if, for an arbitrary value c, all the distances
in S are ≤ c. For a graph G and a vertex i,

eccentricity(i) = max{distG(i, j) : j ∈ V } = min{c : (∀j)(c ≥ dist(i, j))},
radius(G) = min{eccentricty(i) : i ∈ V } = min{c : (∃i)(∀j)(c ≥ dist(i, j))},
diameter(G) = max{eccentricty(i) : i ∈ V } = min{c : (∀i, j)(c ≥ dist(i, j))}.

We use the following theorem proven in [27]3:

Lemma 31. Let
−→
G be a directed weighted graph without negative weight cycles. The weight of the

shortest path in G from i to j is given by distG(i, j) = deg∗y

(
adj
(
Ã(
−→
G) + I

)
i,j

)
. Moreover, all

non-zero terms in det
(
Ã(
−→
G)
)
i,j

are non-zero over any finite field Zp.

In order to be able to use the above lemma we first need to apply the following observation.

Corollary 32. Let c be arbitrary number from [−nW, . . . , nW ]. There exists d ≤ c such that

termd
y

[
adj
(
Ã(
−→
G) + I

)
i,j

]
6= 0 if and only if termc

y

[
adj
(
Ã(
−→
G) + I

)
i,j
·
(∑2nW

i=0 yi
)]
6= 0. This

continues to hold in any finite field.

Proof. Multiplication of a polynomial by
∑2nW

i=0 yi means that we add all lower degree terms to a
term of a given degree. Hence, if some degree term d was non-zero then all higher degree terms
become non-zero (assuming no terms get cancelled). Since 0 ≤ c−d ≤ 2nW a degree d term creates
a corresponding degree c term in the product.

Finally observe that no term drops out because of cancellations4: In the matrix Ã(
−→
G)+I, every

nonzero entry has the form xyw(x), where x is the indeterminate 6= y (or 1 in diagonal entries) and

w is a function. So every term in det(Ã(
−→
G) + I) has the exponent of y functionally dependent on

the remaining variables. This holds for an entry of the adjoint too. Thus a term (
∏
x)yc created

in the multiplication of the corollary comes from exactly one term (
∏
x)yd in the adjoint (i.e.,

d =
∑
w(x)). So there are no cancellations, in ordinary arithmetic or in Zp.

To find the diameter, we use this Corollary to perform a binary search for the lowest c such
that for all i, j ∈ V ,

termc
y

[
adj
(
Ã(
−→
G) + I

)
i,j
·
(

2nW∑
i=0

yi

)]
6= 0.

Clearly this c is the diameter. Similarly a binary search for the lowest c where the displayed
condition holds for some i with every j gives the radius.

The main problem left is how to check whether termd
y

[
adj
(
Ã(
−→
G) + I

)
i,j
·
(∑2nW

i=0 yi
)]
6= 0.

We will show how to obtain adj as a partial derivative of det. We define Z̃ to be a fully symbolic
matrix of size n× n as Z̃i,j = zi,j , where zi,j are unique variables for all i, j ∈ [1, . . . , n]. We define
σz to be an evaluation that assigns 0 to all zi,j . Now we are ready to prove the following lemma.

3In [27] the graph was defined to contain self-loops whereas here we add self-loops in the equation by taking

Ã(
−→
G) + I.
4We shall apply this principle to other matrices.
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Lemma 33.

termd
y

[
adj
(
Ã(
−→
G) + I

)
i,j

(
2nW∑
i=0

yi

)]
=

∂

∂zj,i
termd

y

[
det
(
Ã(
−→
G) + I + Z̃

)(2nW∑
i=0

yi

)] ∣∣∣∣∣
σz

.

Proof. Observe that for the fully symbolic n × n matrix Z̃ and any n × n matrix Ã not involving
any variable zi,j ,

∂

∂zj,i
det(Ã+ Z̃)|σz = adj(Ã)i,j . (7)

Thus

∂

∂zj,i
termd

y

[
det
(
Ã(
−→
G) + I + Z̃

)(2nW∑
i=0

yi

)] ∣∣∣∣∣
σz

= termd
y

[
∂

∂zj,i
det
(
Ã(
−→
G) + I + Z̃

) ∣∣∣∣∣
σz

(
2nW∑
i=0

yi

)]

= termd
y

[
adj
(
Ã(
−→
G) + I + Z̃

)
i,j

∣∣∣
σz

(
2nW∑
i=0

yi

)]
= termd

y

[
adj
(
Ã(
−→
G) + I

)
i,j

(
2nW∑
i=0

yi

)]
.

Joining the above results together with Theorem 9 and Corollary 32 we get the following algo-
rithm.

Algorithm 6 Checks whether diameter of the directed graph
−→
G is ≤ c.

1: Let ∂zf be the routine given by the Baur-Strassen theorem to compute the matrix of partial

derivatives ∂
∂zi,j

termc+nW
y

[(∑2nW
i=0 yi

)
det
(

(Ã(
−→
G) + I + Z̃)yW

)]
.

2: Generate a random substitution σ : X → Zp for a prime p of order Θ(n4). Extend it to
σ : X ∪ Z → Zp by setting σ|Z = σz.

3: Compute the matrix δ = ∂zf |σ.
4: Return true if δi,j is non-zero for all i, j ∈ V .

Note that the polynomial multiplication in Step 1 need only compute the coefficient of yc+nW

and so only uses time O(nW ). Using binary search with the above algorithm, and using a similar
algorithm for radius, we obtain:

Theorem 34. Let
−→
G = (V,E,w,W ) be a weighted directed graph without negative weight cycles.

The diameter and radius of G can be computed in Õ(Wnω) time, with high probability.

8 Shortest Cycles in Undirected Graphs

Let G = (V,E,w,W ) a weighted undirected graph. In this section we consider only the problem
of computing shortest cycles when all edges have non-negative weights. The more general case is
solved in the next section, and uses the ideas introduced here. Let us define a symbolic adjacency
matrix of the weighted undirected graph G to be the be the symbolic matrix polynomial Ã(G)

equal to Ã(
−→
G), where

−→
G is the bidirection of G.
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Lemma 35. Let G be an undirected weighted graph with no negative edges, and d ∈ [0, nW ]. Some

uv ∈ E has
[
xu,v

∂
∂xu,v

− xv,u ∂
∂xv,u

]
termd

y

[
det(Ã(G) + I)− 1

]
6= 0 iff some cycle packing of weight

d contains a component that is an oriented cycle through uv in G. Moreover, for p ≥ 2, all non-zero
terms in the above expression are non-zero over the finite field Zp.

Proof. As argued in the proof of Lemma 4 det(Ã(
−→
G)+I)−1 contains only terms that correspond to

cycle packings. Moreover, the degree of each non-zero term is equal to the total weight of the cycles
in the packing. However, because Ã(G) was constructed using bidirected graph there might be terms
containing both antiparallel edges, that correspond to bidirected edges in the undirected graph.

Next we show that a cycle packing C in G contributes to the expression of the lemma iff it con-
tains exactly one of the variables xu,v and xv,u, and hence contains a simple cycle passing through
uv. Moreover we show that in such a case the contribution of C is a product of variables corre-
sponding to C and hence the contribution of C is not cancelled out by a different cycle packing. If
C does not contain xu,v or xv,u, clearly it has zero contribution. This leaves two possibilities:

Case 1. C contains a cycle u, v, u Since
[
xu,v

∂
∂xu,v

− xv,u ∂
∂xv,u

]
xu,vxv,u = xu,vxv,u−xv,uxu,v =

0, C’s term makes no contribution.

Case 2. C contains a simple cycle C containing uv The corresponding term contains exactly

one of xu,v and xv,u say xu,v. We have
[
xu,v

∂
∂xu,v

− xv,u ∂
∂xv,u

]
xu,v = xu,v. Hence, the derivative

for this term is nonzero and is equal to the sign of permutation multiplied by the product of the
variables of the oriented edges of C.

Similarly as in undirected graphs we say that edge e is allowed if and only if it belongs to some
simple shortest cycle C in G. The above proof actually gives us a way to find allowed edges as well.

Corollary 36. Let d be smallest number in [1, nW ] such that there exists an edge uv ∈ E such

that
[
xu,v

∂
∂xu,v

− xv,u ∂
∂xv,u

]
termd

y

[
det(Ã(G) + I)− 1

]
6= 0. Then an edge uv ∈ E is allowed if and

only if when
[
xu,v

∂
∂xu,v

− xv,u ∂
∂xv,u

]
termd

y

[
det(Ã(G) + I)− 1

]
6= 0.

Computing the Weight of the Shortest Cycle Using Lemma 35 we will devise an algorithm
that will be able to check whether there exists a simple cycle in G of length shorter or equal to c.
In order to do it we need the observation similar to Corollary 32.

Corollary 37. Let c be arbitrary number from [1, nW ]. There exists d ≤ c such that[
xu,v

∂

∂xu,v
− xv,u

∂

∂xv,u

]
termd

y

[
det(Ã(G) + I)− 1

]
6= 0

if and only if
[
xu,v

∂
∂xu,v

− xv,u ∂
∂xv,u

]
termc

y

[
(det(Ã(G) + I)− 1) · (∑nW

i=0 y
i)
]
6= 0.

Using the above observation we can construct the following algorithm.
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Algorithm 7 Checks whether the shortest cycle in undirected graph G has weight ≤ c.
1: Let ∂xf be the routine given by the Baur-Strassen theorem to compute the matrix of partial

derivatives ∂
∂xu,v

termc
y

[
(
∑nW

i=0 y
i)
(

det(Ã(G) + I)− 1
)]

.

2: Generate a random substitution σ : X → Zp for a prime p of order Θ(n4).
3: Compute the matrix δ = ∂xf |σ.
4: Compute the matrix δ′ with δ′u,v = [xu,vδu,v − xv,uδv,u]

∣∣
σ
.

5: Return true if δ′ has a non-zero entry.

The correctness of the above algorithm is implied by both Theorem 8 and Theorem 9. Using
binary search with it we obtain.

Theorem 38. Let G = (V,E,w,W ) be a weighted undirected graph without negative weight edges.
The weight of the shortest simple cycle in G can be computed in Õ(Wnω) time, with high probability.

Finding the Shortest Cycle After showing how to compute the shortest cycle length it re-
mains to show how to find the cycle itself. We essentially can use the same approach as we used
for directed graphs in Section 4.

Algorithm 8 Computes the shortest cycle in undirected graph G.

1: Let c∗ be the weight of the shortest cycle computed using Theorem 38.
2: Let δ′ be the matrix computed by Algorithm 7 for c = c∗.
3: Take any edge uv such that δuv 6= 0.
4: Compute the shortest path pv,u from v to u in G \ {uv} using Dijkstra.
5: Return the cycle formed by uv and pv,u.

Theorem 39. Let G = (V,E,w,W ) be a weighted undirected graph without negative weight edges.
The shortest simple cycle in G can be found in Õ(Wnω) time, with high probability.

9 Undirected Graphs with Negative Weights

This section gives algorithms for shortest cycle and diameter in undirected graphs with possibly
negative edges but no negative weight cycles. To accomplish this we need to combine the ideas from
Sections 7 and 8 with our results for weighted matching. We will recast the results for the diameter
and shortest cycles into the language of matchings. Hence (unlike Section 8) throughout this section
the symbolic adjacency matrix Ã(G) of an undirected graph G is defined as in Section 6.1.

Diameter Let G = (V,E,w,W ) be an undirected graph with negative weights allowed, and let
E− be the set of edges with negative weights. We will define a graph G̈ that models paths in G by
almost perfect matchings. We believe the construction is essentially due to Edmonds [6].

Define the split graph G̈ = (V̈ , Ë, ẅ,W ) where

V̈ = {v1, v2 : v ∈ V } ∪ {e1, e2 : e ∈ E−},

Ë = {v1v2 : v ∈ V } ∪ {u1v2, u2v1, u1v1, u2v2 : uv ∈ E \ E−}
∪ {u1e1, u2e1, e1e2, v1e2, v2e2 : e = uv ∈ E−, u < v},
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ẅ(uivj) =


w(uv) if uv ∈ E \ E−,
w(e) if ui = e1 and vj 6= e2 and e ∈ E−,

0 otherwise.

−1

1

0

1

−1
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d1 d2
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b1 b2
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cd2
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Figure 3: An undirected graph G and its graph G̈. In G̈ zigzag edges weigh −1, dashed edges
weigh 1 and the remaining edges weigh 0. Vertices corresponding to negative edges of G are white
squares. The far right shows a matching M(a2c1) of weight −2, which corresponds to a shortest
path between a and c.

Note how a length-two path in G, say a, b, c with w(ab) ≥ 0 > w(bc) and e = bc, corresponds to a
matching in G̈ such as a1b1, b2e1, e2c1, having the same total weight. Fig.3 gives a complete example.

An important property is that we can assume n̈ = |V̈ | ≤ 4n. This follows since we can assume
|E−| < n, as otherwise the set of negative edges contains a cycle.

We will consider minimum weight perfect matchings in G̈. To use our algebraic tools we should
eliminate negative weights by setting w′(e) := ẅ(e) + W . Obviously this increases the weight of
all perfect matchings by n̈W/2 and so doesn’t change the minimum perfect matching. But to keep
things simple in the following we keep G̈ as defined above, with ẅ possibly negative.

The following observation is essentially given in [1] in Chapter 12.7 (for a larger version of our
graph).

Lemma 40. Let u, v ∈ V , let M be the minimum weight perfect matching, and let M(u2v1) be
the minimum weight almost perfect matching in G̈ that does not match v1 nor u2. If G does not
contain negative weight cycles then ẅ(M) = 0 and the shortest path weight from u to v in G is
equal to ẅ(M(u2v1)).

Note also that it is easy to detect a negative cycle in G – it corresponds to a perfect matching
in G̈ with negative weight.

By Lemma 13 we know that deg∗y(adj(Ã(G̈))u2,v1) = ẅ(M) + ẅ(M(u2v1)). Thus distG(u, v) =

deg∗y(adj(Ã(G̈))u2,v1), i.e., just as in Lemma 31, adj(Ã(G̈)) encodes the distances in G. Now we
proceed exactly as in Algorithm 6.
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Algorithm 9 Checks whether diameter of the undirected graph G with negative weights is ≤ c.
1: Let ∂zf be the routine given by the Baur-Strassen theorem to compute the matrix of partial

derivatives ∂
∂zu2,v1

termc+n̈W
y

[(∑2nW
i=0 yi

)
det
(

(Ã(G̈) + Z̃)yW
)]
, u, v ∈ V .

2: Generate a random substitution σ : X → Zp for a prime p of order Θ(n4). Extend it to
σ : X ∪ Z → Zp by setting σ|Z = σz.

3: Compute the matrix δ = ∂zf |σ.
4: Return true if δu2,v1 is non-zero for all u, v ∈ V .

Note that Ã(G̈) + Z̃ is not skew-symmetric but we still get the adjoint by (7). Similarly to
check if the radius is ≤ c, Step 4 returns true if some row of δ consists entirely of nonzeroes. Again
using binary search we obtain.

Theorem 41. Let G = (V,E,w,W ) be a weighted undirected graph without negative weight cycles.
The diameter and radius of G can be computed in Õ(Wnω) time, with high probability.

Shortest Cycles Recalling Corollary 30, it might appear that a second smallest perfect matching
in G̈ corresponds to a shortest cycle in G. But this is not true, because of cycles of length two
(e.g., u1v1, v2u2 or u2v1, v2u1). These can be handled as in Section 8, by antisymmetric derivatives
xu,v

∂
∂xu,v

− xv,u ∂
∂xv,u

. For the next lemma note that in the absence of negative cycles, any cycle
contains an edge of nonnegative weight.

Lemma 42. Let G be an undirected weighted graph with no negative cycle. For any edge uv ∈
E \E−, a shortest cycle through uv weighs term∗y

[
xu1,v2

∂
∂xu1,v2

− xu2,v1 ∂
∂xu2,v1

] (
det(Ã(G̈))

)
. This

continues to hold in any field Zp, p ≥ 2.

Proof. Let δ =
[
xu1,v2

∂
∂xu1,v2

− xu2,v1 ∂
∂xu2,v1

] (
det(Ã(G̈))

)
. Observe that in general for any vari-

ables x, y and any integers i, j, [
x
∂

∂x
− y ∂

∂y

]
xiyj = (i− j)xiyj . (8)

Hence the terms in δ are a subset of those in det(Ã(G̈)), i.e., the effect of the differentiation operator
is just to change the multiplicity of some terms, perhaps zeroing them or causing other cancellations.

Let C be a shortest cycle through uv. It gives an even-cycle cover M∗ ∪ N in G̈ with weight
w(C), where M∗ is the minimum perfect matching of G̈, M∗ = {v1v2, e1e2 : v ∈ V, e ∈ E−}, and N
is the perfect matching of G̈ containing u1v2 but not u2v1, plus representatives of the other edges
of C, plus edges x1x2 for vertices or negative edges x /∈ C. Let τ be the monomial corresponding to
this cover (e.g., τ has the term yw(C)). (8) (applied to x1

u1,v2x
0
u2,v1) shows τ is a term contributing

to δ. In fact τ is the only such term in δ involving its monomial. This again follows from (8) and
the preliminary observation (it is easy to see τ is the unique edge cover for its monomial, i.e., none
of its cycles can be reversed). We conclude term∗y(δ) ≤ w(C).

We complete the proof by showing term∗y(δ) ≥ w(C). First observe that a perfect matching M

on G̈ that contains u1v2 but not u2v1 weighs at least w(C). To prove this imagine contracting each
edge x1x2 of G̈; call the resulting vertex x. Every vertex now has degree 2 in M . We will compute
the weight of M by examining its edges in the contracted graph. An edge x1x2 ∈ M becomes a
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loop at x of weight 0. An edge xy ∈ E \ E− with x1y1, x2y2 ∈ M or x1y2, x2y1 ∈ M becomes 2
copies of xy, both with nonnegative weight. The other edges of M form cycles in the contracted
graph. Each cycle is a cycle in G and so has nonnegative weight. One of the cycles contains edge
uv, so it weighs at least w(C). Hence ẅ(M) ≥ w(C).

Consider an even-cycle cover C that contributes to δ. (8) shows i 6= j, i.e., u1v2 and u2v1 occur
with different multiplicities in C. The possibilities for {i, j} are {0, 1}, {0, 2}, and {1, 2}. C decom-
poses into 2 perfect matchings. In all three cases one of the matchings of C contains exactly 1 of
the edges u1v2, u2v1. That matching weighs at least w(C). The other matching has nonnegative
weight, so C weighs at least w(C). In other words term∗y(δ) ≥ w(C).

Using this lemma with the scheme of Algorithm 7 gives the following.

Algorithm 10 Checks whether a shortest cycle in undirected graph G with negative weights has
weight ≤ c.

1: For (i, j) = (1, 2), (2, 1), let ∂xf
i,j be the routine given by the Baur-Strassen theorem to

compute the matrix of partial derivatives ∂
∂xui,vj

termc+n̈W
y

[
(
∑n̈W

i=0 y
i)
(

det(Ã(G̈)yW )
)]

.

2: Generate a random substitution σ : X → Zp for a prime p of order Θ(n4).
3: For (i, j) = (1, 2), (2, 1) compute the matrix δi,j = ∂xf

i,j |σ.

4: Compute the matrix δ′ with δ′u,v =
[
xu1,v2δ

1,2
u,v − xu2,v1δ2,1

u,v

] ∣∣∣
σ
.

5: Return true if δ′ has a non-zero entry.

Again a binary search gives

Theorem 43. Let G = (V,E,w,W ) be a weighted undirected graph without negative weight cycles.
The weight of a shortest cycle can be computed in Õ(Wnω) time, with high probability.

Algorithm 10 with c equal to the shortest cycle weight gives an edge uv with δ′u,v 6= 0, i.e., uv is

on a shortest cycle. So a minimum weight perfect matching on G̈−u1, v2 corresponds to a shortest
cycle. Hence we can state

Theorem 44. Let G = (V,E,w,W ) be a weighted undirected graph without negative weight cycles.
A shortest cycle in G can be found in Õ(Wnω) time, with high probability. The same holds for a
shortest st-path, for any given vertices s, t.

10 Vertices Lying on Short Cycles

For undirected graphs we only need to change the output of our algorithms: For Algorithm 7 (when
there are no negative edges) or Algorithm 10 (in the general case) we find the set of vertices lying
on cycles of length ≤ c by changing the last step so that it returns {v ∈ V : ∃vu∈E δ′vu 6= 0}.

For directed graphs we apply the
∑2nW

i=0 yi multiplication technique to Algorithm 2:
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Algorithm 11 Computes the set of vertices lying on cycles of length ≤ c in directed graphs.

1: Let ∂xf be the routine given by the Baur-Strassen theorem to compute the matrix of partial

derivatives ∂
∂xu,v

termc+nW
y

[
(
∑2nW

i=0 yi)
(

det((Ã(
−→
G) + I)yW )− ynW

)]
.

2: Generate a random substitution σ : X → Zp for a prime p of order Θ(n4).
3: Compute the matrix δ = ∂xf |σ.
4: Return {v ∈ V : ∃(v,u)∈E δ(v,u) 6= 0}.

Thus we obtain:

Theorem 45. Let G be a weighted directed or undirected graph with integral weights in [−W,W ]
and no negative cycle. For any c the set of vertices lying on cycles of length ≤ c can be computed
in Õ(Wnω) time, with high probability.
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