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Abstract

In the Survivable Network Design Problem (SNDP) the goal
is to find a minimum cost subset of edges that satisfies a
given set of pairwise connectivity requirements among the
vertices. This general network design framework has been
studied extensively and is tied to the development of major
algorithmic techniques. For the edge-connectivity version
of the problem, a 2-approximation algorithm is known for
arbitrary pairwise connectivity requirements. However, no
non-trivial algorithms are known for its vertex connectivity
counterpart. In fact, even highly restricted special cases of
the vertex connectivity version remain poorly understood.

We study the single-source k-vertex connectivity version of
SNDP. We are given a graph G(V,E) with a subset T of
terminals and a source vertex s, and the goal is to find
a minimum cost subset of edges ensuring that every ter-
minal is k-vertex connected to s. Our main result is an
O(k log n)-approximation algorithm for this problem; this
improves upon the recent 2O(k2) log4 n-approximation. Our
algorithm is based on an intuitive rerouting scheme. The
analysis relies on a structural result that may be of indepen-
dent interest: we show that any solution can be decomposed
into a disjoint collection of multiple-legged spiders, which
are then used to re-route flow from terminals to the source
via other terminals.

We also obtain the first non-trivial approximation algorithm
for the vertex-cost version of the same problem, achieving
an O(k7 log2 n)-approximation.

1. Introduction

In the Survivable Network Design problem (SNDP) we are
given a graph G = (V,E) with costs on edges and integral
connectivity requirements ru,v ≥ 0 for all u, v ∈ V . The
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goal is to find a minimum-cost subset E′ ⊆ E of edges,
such that every pair u, v of vertices has at least ru,v disjoint
paths connecting them in the graph induced by E′. There
are two basic versions of SNDP: in the edge connectivity
version (EC-SNDP), the ru,v paths connecting u and v are
required to be edge disjoint, while in the vertex connectivity
version (VC-SNDP) they are required to be vertex disjoint.
We denote by n the number of vertices in the graph, and by
k the largest connectivity requirement, k = maxu,v {ru,v}.

This general framework is very versatile, and several classi-
cal optimization problems, such as minimum spanning tree
and minimum Steiner tree are captured as special cases of
SNDP. Consequently, the problem has received consider-
able attention, and in fact the study of SNDP is linked to
the development of several fundamental paradigms in al-
gorithm design. Agrawal, Klein and Ravi [1] showed a 2-
approximation algorithm for the restricted version of SNDP
where ru,v ∈ {0, 1} for all u, v (notice that for this case
VC-SNDP and EC-SNDP are equivalent). This result is
among the first applications of the primal-dual paradigm
to approximation algorithms, and this approach was later
successfully used to design algorithms for higher connec-
tivity values for EC-SNDP [18, 16], eventually leading to
an O(log k)-approximation [17]. The best current approx-
imation ratio of 2 is achieved by an iterative LP-rounding
algorithm due to Jain [19]. Both the primal-dual schema
and the iterative rounding technique have been extensively
used in approximation algorithm design.

It is not hard to see that EC-SNDP can be cast as a special
case of VC-SNDP. Despite the fact that the edge version has
been extensively studied and is well understood today, little
is known about VC-SNDP. To the best of our knowledge, no
approximation algorithm is known for this problem, outside
for the trivial algorithm, that finds, for each u, v ∈ V , the
cheapest collection of ru,v vertex disjoint paths and outputs
the union of these paths. On the hardness side, Kortsarz
et. al. [22] showed that, in sharp contrast to the edge con-
nectivity version, VC-SNDP is hard to approximate up to
2log1−ε n factor for any ε > 0, when k is polynomially large



in n. This has been recently improved by Chakraborty et.
al. [7] to a kε-hardness of approximation for all k > k0,
where ε, k0 are fixed constants. The restricted special case
where all connectivity requirements ru,v ∈ {0, 1, 2} was
shown to have a 2-approximation algorithm by Fleischer et.
al. [13]. Their algorithm is based on an application of the
iterative rounding technique of Jain [19] to the set-pair LP-
relaxation of Frank and Jordan [14]. Our current lack of un-
derstanding of VC-SNDP is perhaps best highlighted by the
following state of affairs. When each connectivity require-
ment ru,v ∈ {0, 3}, the best known approximation factor is
polynomially large while nothing more than APX-hardness
is known on the hardness side.

In this paper we focus on the single-source version of VC-
SNDP, where we are given a set T ⊆ V of terminals and
a special vertex s ∈ V \ T called the source. The only
non-zero connectivity requirements are between the termi-
nals and the source, i.e., rs,t > 0 for all t ∈ T and all other
requirements are 0. When rs,t = k for all t ∈ T , we re-
fer the problem as the single-source k-vertex connectivity
problem.

Even for this restricted case of VC-SNDP, little has been
known until recently. A trivial O(n) approximation can be
achieved by connecting each terminal t ∈ T to the source
by cheapest collection of k vertex disjoint paths, that can be
found via min-cost flow computations. Until recently, even
for constant values of k ≥ 3, only an O(n)-approximation
was known with no super-constant hardness bounds. On
the other hand, the current best inapproximability factor of
Ω(log n), due to Kortsarz et. al. [22], only holds when
k is polynomially large in n. Only recently, Chakraborty
et. al. [7] obtained the first non-trivial approximation ra-
tios for k ≥ 3; they give an 2O(k2) log4 n-approximation
algorithm for single-source k-vertex connectivity. Concur-
rently and independently of this work, Chekuri and Ko-
rula [8], building on the ideas in [7], have recently given an
O(kO(k) log n)-approximation algorithm for single-source
k-vertex connectivity. Their approach is based on analyzing
the dual of the natural LP relaxation for the problem. They
also obtain a similar approximation guarantee for the more
general single-source rent-or-buy network design problem.

We also study the vertex-cost variation of VC-SNDP where
the costs are on vertices instead of edges. Specifically, the
goal is to find a minimum-cost subset V ′ ⊆ V of ver-
tices, such that in the graph induced by V ′, for every pair
u, v ∈ V of vertices there are ru,v vertex disjoint paths con-
necting u to v. We focus again on the single-source ver-
sion. When k = 1 the problem becomes equivalent to the
node-weighted Steiner tree problem, for which O(log n)-
approximation is known [21]. On the other hand, even this
special case can be shown to be Ω(log n)-hard by a reduc-
tion from Set Cover problem [25, 12]. It is interesting that

even for k = 1 the edge and the vertex weighted versions
exhibit such different behavior.

Related Work We note that for some special cases of
VC-SNDP better algorithms are known. The k-vertex con-
nected spanning subgraph problem, a special case of VC-
SNDP where for all u, v ∈ V ru,v = k, has been stud-
ied extensively. Cheriyan et al. [5, 6] gave an O(log k)-
approximation algorithm for this case when k ≤

√
n/6,

and an O(
√
n/ε)-approximation algorithm for k ≤ (1 −

ε)n. For large k, Kortsarz and Nutov [24] improved
the preceding bound to an O(ln k · min{

√
k, n

n−k ln k})-
approximation. Fakcharoenphol and Laekhanukit [11] im-
proved it to an O(log n log k)-approximation, and further
obtained an O(log2 k)-approximation for k < n/2. The
iterative rounding technique has been used to give a 2-
approximation for arbitrary rij values for a variant of VC-
SNDP known as the element connectivity problem [13, 6].
Frank and Tardos [15] gave a polynomial time algorithm
for finding a minimum cost k-outconnected subdigraph of
a directed graph. This result has been used to obtain a
2-approximation algorithm for single-source k-vertex con-
nectivity when T contains all vertices in G except the
source, and the costs form a metric [20]. Better approxi-
mation ratios have also been obtained for variants of vertex-
connectivity problems assuming uniform cost or metric cost
on the edges (see, for example, [20, 23, 4]).

Our Results Our main result is stated below.

Theorem 1 There is a randomized polynomial time
O(k log n)-approximation algorithm for the edge cost ver-
sion of single-source k-vertex connectivity.

This result improves upon the 2O(k2) log4 n-approximation
by Chakraborty et. al. [7]. Our algorithm and its analysis
relies on a new result about the structure of solutions for
single-source k-vertex connectivity.

For the vertex cost version we obtain a similar result, albeit
with somewhat weaker ratios.

Theorem 2 There is a randomized polynomial time
O(k7 log2 n)-approximation algorithm for the vertex cost
version of single-source k-vertex connectivity.

To the best of our knowledge, no non-trivial approximation
algorithm was previously known for the vertex cost version.

The subset k-connectivity problem is a special case of VC-
SNDP, where we are given a subset T ⊆ V of terminals,
and connectivity requirements are rt,t′ = k for all t, t′ ∈ T ,
with all other requirements being 0. Any α-approximation
algorithm for the single source k-vertex connectivity prob-
lem can be converted into a kα-approximation algorithm for
subset k-connectivity problem, in both edge and vertex cost
scenarios (see e.g. Theorem 7 in [7]). It is also easy to see



that an α-approximation algorithm for the single-source k-
vertex connectivity implies a kα-approximation for single-
source VC-SNDP, where rt,s ∈ {0, 1, ..., k} can be arbi-
trary, in both edge cost and vertex cost scenarios. We thus
obtain the following results:

Theorem 3 In the edge cost model, there is a randomized
polynomial time O(k2 log n)-approximation algorithm for
both single-source VC-SNDP and the subset k-connectivity
problem. In the vertex cost model, there is a randomized
polynomial time O(k8 log2 n)-approximation algorithm for
both single-source VC-SNDP and the subset k-connectivity
problem.

Techniques It is easy to obtain an O(|T |)-approximation
for both edge and vertex cost versions of single-source k-
vertex connectivity: for each terminal t ∈ T , find minimum
cost k vertex disjoint paths connecting t to s and output the
union of all such paths for all t ∈ T . The worst case sce-
nario for such an algorithm is when the same edge is used
by many terminals when connecting to the source in the op-
timal solution. Since the algorithm connects each one of
the terminals to the source separately, without considering
possible sharing of edges by the terminals, we may end up
paying |T | times the cost of the optimal solution. However,
if edges are heavily shared by the terminals in the optimal
solution (when connecting to the source), the solution in-
duces high connectivity among the terminals. This observa-
tion motivates our algorithm. We compute, for each termi-
nal t ∈ T , the cheapest collection of k vertex disjoint paths
connecting t to vertices in (T ∪ {s}) \ {t}. Let E(t) be the
set of edges participating in these paths. We identify a large
subset T ′ of terminals, such that every t ∈ T ′ is k-vertex
connected to (T ∪{s}) \T ′ by edges in E(t), and solve the
problem recursively on T \ T ′.

The heart of the analysis lies in proving that total cost of
edges in sets E(t), t ∈ T is bounded by O(k · OPT). The
main ingredient of our proof is a prefix decomposition the-
orem, which may be of independent interest. Consider an
optimal solution OPT, and for each terminal t ∈ T , letB(t)
be a k-tuple of vertex disjoint paths connecting t to s. A
path p is said to be a prefix of f ∈ B(t) iff p is a sub-path of
f containing t. We show that we can define, for each t ∈ T
and f ∈ B(t) a prefix p(f) of f , such that the resulting set
of prefixes forms a collection of “spiders”. The internal ver-
tices of different spiders are disjoint, and each spider has at
least two legs, while every leg of a spider originates at a dis-
tinct terminal. Notice that in general it is not hard to define
prefix p(f) for each path f so that the set of prefixes forms
a collection of internally disjoint spiders, as long as we al-
low one-legged spiders. However it is crucial for us that the
spiders have at least two legs, since we use them to con-
nect terminals to one another. This requirement makes the
task of prefix decomposition more challenging, and it is not

even clear a priori why such a decomposition should exist.
The resulting spiders provide a convenient way of connect-
ing the terminals to one another, which can be thought of
as re-routing the flow from a terminal t ∈ T to s via other
terminals. Since the spiders do not share any edges, the cost
of this re-routing is close to the cost of the optimal solution.

This approach allows us to obtain an O(k log n)-
approximation for the edge cost version. In order to obtain
an approximation algorithm for the vertex cost version, we
start with the prefix decomposition theorem again. How-
ever, since the costs are now on vertices, we cannot use the
spiders to construct the k-tuples of paths connecting each
terminal t to (T ∪ {s}) \ {t}. The reason is that a spi-
der may have many legs, and each path re-routed through
the spider will use the vertex that serves as the spider head.
Therefore, if we find the k-tuple of paths connecting each
terminal t to (T ∪{s})\{t} separately, we may end up pay-
ing very high cost. Instead, the spider decomposition the-
orem allows us to write a strong linear program. We then
round a fractional solution to this LP to obtain the desired
collection of vertices that k-vertex connects each terminal t
to (T ∪ {s}) \ {t}, and whose cost is close to OPT.

Organization: Section 2 formally defines the single-
source k-vertex connectivity problem, and introduces some
notation that we use throughout the paper. In Sections 3
and 5, we study the problem in the edge cost model and
vertex cost model, establishing Theorems 1 and 2, respec-
tively. The proof of both these results relies on a structural
result that we refer to as the Prefix Decomposition theorem,
and establish in Section 4. We conclude with some future
directions in Section 6.

2. Preliminaries

In the single-source k-vertex connectivity problem, we are
given a graph G(V,E), a source s, a subset T ⊆ V of ter-
minals, and an integer k. In the edge-cost version, we are
given a cost function c on edges, and the goal is to find a
minimum cost subset E′ of edges such that each terminal t
is k-vertex connected to s in the graph induced by the edges
in E′. In the vertex-cost version, we are given a cost func-
tion c on vertices, and the goal is to find a minimum cost
subset V ′ of vertices, such that in the graph induced by V ′

every terminal t is k-vertex connected to source s. For any
subset T ′ of terminals, we denote by T ′+ = T ′ ∪ {s}.

Let T ′ ⊆ T be any subset of terminals. We say that a ter-
minal t is weakly k-connected to set T ′+ \ {t} if there exist
k internally vertex-disjoint paths from t to T ′+ \ {t}. We
say that terminal t is strongly k-connected to set T ′+ \ {t}
if there exist k internally vertex-disjoint paths from t to
T ′+ \ {t} such that each terminal in (T ′ \ {t}) is an end-



point of at most one such path. Note that if t is strongly
k-connected to (T ′ \ {t}) ∪ {s}, then if we delete any sub-
setX ⊆ V \{s, t} of size at most (k−1), terminal t remains
connected by a path to some vertex in T ′ ∪ {s}.

The cost function c can be naturally extended to subsets of
edges (vertices) in the edge cost (vertex cost) model. More-
over, given a collection of paths P , slightly abusing the no-
tation, we will use c(P ) to denote the sum of the costs of
edges (vertices) on P in edge cost (vertex cost) model. Fi-
nally, we will use OPT to denote both an optimal solution
as well as its cost.

3. Single-Source VC-SNDP with Edge Costs

In this section we sketch the proof of Theorem 1. Our al-
gorithm and its analysis are based on establishing the fol-
lowing property. For each terminal t, let Et be any mini-
mum cost subset of edges, such that in the graph induced
by Et, t is strongly k-connected to the set T+ \ {t}. Then∑
t∈T c(Et) = O(k · OPT). Note that the bound on∑
t∈T c(Et) holds without accounting for any sharing of

edges among the solutions that strongly k-connect the ter-
minals. We will show that this separability property nat-
urally lends itself to a recursive algorithm for solving the
single-source k-vertex connectivity problem.

3.1. Algorithm Description

The algorithm consists of the following three steps:

1. If |T | ≤ 10k: for each terminal t ∈ T , find a minimum
cost subset Et ⊆ E of edges, such that t is k-vertex
connected to the source s in the graph Gt = (V,Et).
Stop and output ∪t∈TEt. Otherwise: for each terminal
t ∈ T , find a minimum cost subset Et ⊆ E of edges,
such that t is strongly k-connected to the set T+ \ {t}
in the graphGt = (V,Et). LetB(t) denote the set of k
vertex disjoint paths strongly connecting t to T+ \ {t}
realized by the edges in Et, and let Γ =

∑
t∈T c(Et).

2. Identify a subset T ′ ⊆ T of size
⌈
|T |

4(k+1)

⌉
such that

(a) for each t ∈ T ′, the paths in B(t) terminate only
on vertices in T+ \ T ′, and (b)

∑
t∈T ′ c(Et) ≤ Γ/2k.

Define E′ = ∪t∈T ′Et.

3. Recursively solve the problem on the set T ′′ = T \ T ′
of terminals. LetE′′ be the set of edges in the recursive
solution. Output E′ ∪ E′′ as the final solution.

Step (1) can be implemented by performing a standard min-
cost max flow computation for each terminal t. Step (3)
is a straightforward recursive computation. We now de-
scribe the implementation of step (2). We construct a graph

H(VH , EH) with a vertex vt for each terminal t. A vertex
vt is connected in H to all vertices vt′ such that a path in
B(t) ends at terminal t′. It is readily seen that for any sub-
set U ⊆ VH , the graph induced by vertices in U contains a
vertex of degree at most 2k. This allows us to compute in
polynomial-time a coloring of H with 2k + 1 colors. We
now mark all vertices vt such that c(Et) ≤ 2Γ

|T | . By the pi-
geonhole principle, there exists a color class that contains at
least |T |

4(k+1) marked vertices. Let T ′ be an arbitrary subset

of
⌈
|T |

4(k+1)

⌉
terminals corresponding to the marked vertices

in this color class. Clearly,
∑
t∈T ′ c(Et) ≤ Γ/2k.

3.2. Cost and Feasibility Analysis

A straightforward induction on the recursion depth allows
us to prove the following lemma.

Lemma 3.1 The algorithm outputs a feasible solution for
the single-source k-vertex connectivity.

Proof: We prove the lemma by induction on the recursion
depth. Clearly, when |T | ≤ 10k, the output of the algorithm
is a feasible solution for the set T of terminal. Assume now
that |T | > 10k, and that E′′ is a feasible solution for the
instance defined by the set T ′′ of terminals. We show that
E′∪E′′ is a feasible solution for T . Consider some terminal
t ∈ T . If t ∈ T ′′, then by the induction hypothesis, t is k-
vertex connected to s in the graph induced by E

′′
. Assume

now that t ∈ T ′. If t is not k-vertex connected to s in the
graph G∗ = (V,E′ ∪ E′′), there exists a subset X ⊆ V \
{s, t} of (k− 1) vertices whose removal from G∗ separates
t from s. However, since t is strongly k-vertex connected to
T ′′ ∪ {s} in graph induced by E′, it remains connected to
some t′ ∈ T ′′ ∪ {s} even after X is removed from G∗. If
t′ = s we are done. Otherwise, t′ ∈ T ′′, and by induction
hypothesis t′ is k-vertex connected to s in G∗. Therefore,
even when X is removed from G∗, t remains connected to
t′ and t′ remains connected to s in G∗. A contradiction.

We will show that the cost Γ in Step (1) of the algorithm
is O(k) · OPT. Assuming this property, we can bound the
cost of the solution produced by the algorithm using the re-
currence: α(p) ≤ α

(
p− p

4(k+1)

)
+ O(OPT), where α(p)

denotes the worst-case cost of a solution output by our al-
gorithm when given as input a subset T ′ ⊆ T of p termi-
nals. It is easy to verify that α(|T |) = O(k log |T |) · OPT.
The remainder of this section is devoted to proving that
Γ = O(k) · OPT. The main ingredient of our proof is a
Prefix Decomposition Theorem that may be of independent
interest. We need the following definitions.

Definition 1 (Canonical Spider) LetM be any collection
of simple paths, such that each path p ∈ M has a distin-
guished endpoint t(p), and the other endpoint is denoted by



v(p). We say that paths in M form a canonical spider iff
|M| > 1 and there is a vertex v, such that for all p ∈ M,
v(p) = v. Moreover, the only vertex that appears on more
than one path of M is v. We refer to v as the head of the
spider, and the paths ofM are called the legs of the spider.

Definition 2 (Canonical Cycle) LetM = {g1, . . . , gh} be
any collection of simple paths, where each path gi has a
distinguished endpoint t(gi) that does not appear on any
other path inM, and the other endpoint is denoted by v(gi).
We say that paths ofM form a canonical cycle, iff (a) h is
an odd integer, (b) for every path gi, 1 ≤ i ≤ h, there is
a vertex v′(gi) such that v′(gi) = v(gi−1) (here we use the
convention that g0 = gh), and (c) no vertex of gi appears on
any other path ofM, except for v′(gi) that belongs to gi−1

only and v(gi) that belongs to gi+1 only (see Figure 1).
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Figure 1. A canonical cycle

Assume now that we are given any collection P of paths,
where every path f ∈ P has a distinguished endpoint t(f).
For f ∈ P , we say that a sub-path p of f is a prefix of f iff
t(f) ∈ p.

Theorem 4 (Prefix Decomposition) Given any collection
P of paths, where every path f ∈ P has a distinguished
endpoint t(f) that does not appear on any other path of P ,
we can find, in polynomial time, for each path f ∈ P , a pre-
fix p(f), such that in the graph induced by {p(f) | f ∈ P},
the prefixes appearing in each connected component either
form a canonical spider, a canonical cycle, or the con-
nected component contains exactly one prefix p(f), where
p(f) = f for some f ∈ P .

We defer the proof of the Prefix Decomposition Section to
next section, and we proceed to show that this theorem im-
plies that Γ = O(k · OPT).

Fix an optimal solution OPT. For each t ∈ T , fix a k-
tuple of internally vertex-disjoint paths B(t) that connects

t to s in OPT. We now define k-tuple B′(t) of paths as
follows. For each f ∈ B(t), if f contains any terminal as
intermediate vertex, let t′(f) be the first such terminal, and
otherwise let t′(f) = s. In order to obtainB′(t), we replace
each path f ∈ B(t) by its sub-path that starts at t and ends
at t′(f). Let ϕ∗(t) = {t′(f) | f ∈ B′(t), t′(f) 6= s} (it is
possible that ϕ∗(t) = ∅). Notice that now no terminals
appear as intermediate vertices on paths

⋃
t∈T B

′(t), and
each path inB′(t) terminates at a vertex in ϕ∗(t)∪{s}. For
any terminal t ∈ T and path f ∈ B′(t), we say that p is a
prefix of f iff p is a sub-path of f containing t. We say that
all paths f ∈ B′(t) belong to t. If f belongs to terminal t
and p is a prefix of f , we say that p belongs to t as well.

Using the Prefix Decomposition Theorem, we can obtain
the following theorem and its corollary that shows Γ =
O(k · OPT). The proofs are deferred to the full version [9]
due to space limitations.

Theorem 5 (Weak k-connectivity) Let T ′ ⊆ T be any
subset of terminals, such that for each t ∈ T ′, T ′ ∩ϕ∗(t) =
∅. For each t ∈ T ′, let Ht be a minimum-cost k-tuple of in-
ternally vertex disjoint paths that do not contain terminals
as intermediate vertices, where each path f ∈ Ht connects
t to a vertex in (T ′ ∪ ϕ∗(t) ∪ {s}) \ {t}, and where each
terminal in ϕ∗(t) is an end-point of at most one path of Ht.
Let Et be the set of edges appearing on paths of Ht. Then∑
t∈T c(Et) ≤ 2OPT.

Corollary 1 (Strong k-connectivity) For each t ∈ T , let
Et be a minimum cost subset of edges in G that ensures
that t is strongly k-connected to the set T+ \ {t}. Then∑
t∈T c(Et) ≤ O(k · OPT).

4. Proof of the Prefix Decomposition Theorem

We now prove Theorem 4. Note that the Prefix Decompo-
sition theorem is a structural result, independent of the un-
derlying cost model (that is edge or vertex costs). We will
thus also utilize this result in designing an algorithm for the
vertex costs case.

We start with the set P of paths, where each path f ∈ P
has one distinguished endpoint t(f) that does not appear on
any other paths in P , and the other endpoint is denoted by
z∗(f). We will view path f as starting at t(f) and ending
at z∗(f). Let V ∗ = {z∗(f) | f ∈ P}. Throughout the al-
gorithm we will define prefixes of paths in P . Prefix of a
path f is denoted by p(f), and it is defined to be the por-
tion of f between t(f) and some other vertex z(f) ∈ f .
At the beginning of the algorithm, z(f) = z∗(f) for all
f . Throughout the algorithm, path f is trimmed by moving
z(f) closer to t(f). We can trim a path several times, and
during the execution of the algorithm the prefix may only
become shorter.



Definition 3 (Canonical Set) Let P ′ ⊆ P be any set of
paths. A set of prefixes p(f) for f ∈ P ′ is said to
form a canonical set iff in the graph induced by the pre-
fixes {p(f) | f ∈ P ′}, each connected component is either
a canonical spider, a canonical cycle, or it contains a single
prefix p(f) = f for some f ∈ P .

In order to complete the proof of the Prefix Decomposition
theorem, it is enough to show that we can define, for each
path f ∈ P a prefix p(f), such that the set of prefixes of
paths in P forms a canonical set.

We show an algorithm that finds such prefixes p(f). We
start with the set P of paths and prefixes p(f) = f for all
f ∈ P . Throughout the algorithm we will maintain a col-
lectionD of dead paths, and all other paths inP are referred
to as live paths. If f is a live path, then we refer to p(f) as
a live prefix. At the beginning, D contains a path f ∈ P
iff none of the vertices of f belongs to other paths in P .
Clearly, prefixes in D form a canonical set.

Definition 4 (Special Vertices) For any live path f , we say
that u is a special vertex of p(f) if u belongs to another live
prefix. The ith special vertex of f (counting from t(f)), is
denoted by ui(f).

Note that multiple special vertices on f might result due to
intersections of f with another path f ′, so ui(f) and uj(f)
may be a result of the intersection with the same path. We
maintain the following invariants throughout the algorithm:

C1. The set of path prefixes in D forms a canonical set.

We define a set U of vertices as follows. For each con-
nected component P ′ of D, if P ′ is a canonical spider,
then U contains its head, and if P ′ contains only one
prefix p(f) = f for some f ∈ P , then U contains
z∗(f).

C2. The only vertices that dead paths and live paths may
share are vertices in U . For any live path f , its prefix
p(f) may contain at most one vertex in U . If p(f)
contains a vertex of U , then this vertex must be z(f),
the last vertex of p(f).

C3. For a live path f , one of the following conditions must
hold:

• p(f) contains a vertex in U (and this is the last
vertex of p(f)).

• p(f) does not contain any vertex in U but z(f) =
z∗(f).

• p(f) neither contains a vertex in U nor is z(f) =
z∗(f), but there is another live path f ′ 6= f such
that z(f) is the first special vertex of f ′. We refer
to f ′ as a witness for f , denoted by f ′ = W (f).
Note that W (f) is defined only if the first two
conditions do not hold.

The algorithm works in iterations. In each iteration, we ei-
ther trim prefixes of some live paths, or move some live
paths to set D. At the beginning of the algorithm, it is easy
to see that properties C1–C3 hold. Assume these properties
hold before the current iteration. We show how to perform
an iteration and maintain the properties. The algorithm ends
whenD = P . It will be clear from the description given be-
low that each iteration can be executed in polynomial time.
We will use the following easy observation in our analysis:

Proposition 1 Assume we have a collection of paths D,
and prefixes of paths in P for which properties C1–C3 hold.
Let f be any live path, v ∈ p(f) be any special vertex of f ,
and f ′ be a live path whose first special vertex is v. Then
if we trim f at vertex v by setting z(f) = v, and either set
W (f) = f ′ or add v to U , property C3 continues to hold.

Proof: Note that no assertion is being made about main-
taining properties C1 or C2. The only potential problem is
paths f∗ for which W (f∗) = f . In this case p(f∗) must
contain u1(f), the first special vertex of f . But since we
trim f at its special vertex and do not trim f∗, u1(f) con-
tinues to be the first special vertex of p(f), that belongs to
p(f∗).

Iteration Description: We now describe how an iteration
of the algorithm is executed. It will be clear from the de-
scription given below that each iteration can be executed in
polynomial time.

At the beginning of an iteration, each live path f marks its
first special vertex u1(f). If no such vertex exists, then f
marks the vertex z(f). Note that if p(f) does not contain
any special vertices then z(f) = z∗(f) or z(f) ∈ U must
hold by Invariant C3. We then perform one of the next five
steps. We consider the steps in the order in which they ap-
pear, and perform the earliest listed step that is applicable.
After an applicable step is executed, the iteration ends and
we proceed to the next iteration. As long as the set of live
paths is non-empty, we will show that one of the steps below
necessarily applies.

Step 1 Is performed if some path f marks its vertex z(f),
and either z(f) ∈ U or z(f) = z∗(f). We add f to D,
where it either becomes part of an existing canonical spider
or defines a new connected component.

• If z(f) ∈ U , then p(f) becomes part of an existing
canonical spider. Notice that p(f) does not share any
vertices (except for z(f)) with another live prefix, and
therefore, properties C1 and C2 still hold. It is impos-
sible that f = W (f ′) for some live path f ′, since the
only vertex that f shares with any other live prefix is
z(f), which belongs to U . Therefore, property C3 is
still true.



• If z(f) = z∗(f) 6∈ U , then f defines a new con-
nected component in D, and we add z∗(f) to U . Since
z(f) = z∗(f), we have that p(f) = f . It is easy to see
that properties C1–C3 still hold.

The case when some path f marks a vertex z(f), and nei-
ther z(f) ∈ U nor z(f) = z∗(f) (and therefore, z(f) is a
special vertex for f ), will be handled as one of the cases in
Step 2. Notice that in this case, by property C3, W (f) must
exist, and both f and W (f) mark the same vertex z(f).

Step 2 Is performed if there are two or more paths that
marked the same vertex v. Let F = {f1, . . . , fh} be the
set of all paths that marked v, and let F ′ be the collection
of all other live paths whose prefixes contain v (possibly
F ′ = ∅). We perform the following actions: (i) the prefixes
of all paths in F and F ′ are trimmed at v, (ii) the paths in
F are added to set D of dead paths, and (iii) the vertex v
is added to the set U . Notice that prefixes of paths of F
form a canonical spider, and the only vertex they share with
any live prefixes is v, while they do not share any vertex
with dead prefixes. It is thus easy to see that properties C1
and C2 still hold. We can use Proposition 1 to prove that
property C3 is also still true (we can think about this pro-
cess as trimming paths in F and F ′ one by one and using
Proposition 1 after each step to show that property C3 is
maintained).

Step 3 Is performed if there are two live paths f, f ′, and
f ′ marked some vertex v that lies strictly between t(f) and
z(f) on p(f). We then trim path f at v by setting z(f) = v
and W (f) = f ′. Clearly, properties C1–C2 still hold, and
we can invoke Proposition 1 to see that property C3 is still
true (as v must be a special vertex of f ).

Assume now that we have been unable to perform any of
the Steps 1 through 3. This means that for each path f ′, if v
is the vertex that f ′ has marked, then v 6= z(f ′) and v is the
last vertex on some other path f . We will say that f ′ gives
its token to f . If there are several paths containing v, then
f ′ gives its token to all these paths.

Proposition 2 If none of the Steps 1 through 3 is applica-
ble, then the token distribution results in each live path giv-
ing and receiving exactly one token.

Proof: From the description above, it is clear that each path
gives at least one token. We will argue that no path can
receive more than one token. This clearly implies that every
path gives and receives exactly one token. Suppose there
exists a path f that receives two or more tokens. Since Step
3 is not applicable, two or more paths must have marked
z(f). But then Step 2 is applicable, a contradiction.

Proposition 3 If none of the Steps 1 through 3 is applica-
ble, then (a) the prefix of each live path f has at least two
special vertices u1(f) and u2(f), (b) no live prefix contains
a vertex from the set U , and (c) if f ′ gives token to f and
z(f) 6= z∗(f) then W (f) = f ′.

Proof: By Proposition 2, we know that each live path f
gives a token by marking the vertex u1(f). Since each live
path f also receives a token, some path f ′ must have marked
a vertex u that lies on p(f). If u = u1(f) then Step 2 would
have been applicable. So u must be distinct from u1(f).
Hence u2(f) must exist.

To see that no live prefix contains a vertex of U , note that
if a path f contains a vertex of U , then it must be z(f) by
Property C2. Since z(f) has been marked by path f ′ =
W (f), and z(f) ∈ U , it follows that z(f) = z(f ′). We
should have then executed Step 1.

By Proposition 2, for each live path f , there is a unique live
path f ′ that gives a token to f . Hence f ′ is the unique live
path that contains z(f) as its first special vertex. It follows
that W (f) = f ′.

Step 4 Is performed if for some f , the path f ′ to which
f gave its token also contains u2(f). This means that f ′

meets f at least twice: first at u2(f) then at u1(f). We can
then trim f ′ at u2(f) by setting z(f ′) = u2(f). We set
W (f ′) = f as before. It is easy to see that all properties
continue to hold, since now u2(f) becomes the first special
vertex of f .

Assume that none of the Steps 1 through 4 are applicable.
We create a directed graph where for every live path f , there
is a vertex wf . We connect wf to wf ′ iff the path f∗ that
gave its token to f has u2(f∗) belonging to f ′. Notice that
the out-degree of every vertex in this graph is at least 1,
and since Step 4 was not applicable, no self-loops can exist.
Therefore, we can find a simple cycle in this graph. Assume
that the paths corresponding to the vertices on the cycle are
f1, . . . , fh (we use the convention that fh+1 = f1). For
each i : 1 ≤ i ≤ h, let f ′i be the path that gave its token
to fi. Then u2(f ′i) belongs to fi+1 (see Figure 2). We will
need the following simple observation.

Proposition 4 For each i : 1 ≤ i ≤ h, u2(f ′i) lies strictly
between t(fi+1) and z(fi+1).

Proof: Assume for contradiction that u2(f ′i) = z(fi+1)
(it is impossible that u2(f ′i) = t(fi+1)). Then path f ′i+1,
which has marked z(fi+1) has two paths intersecting it at
z(fi+1), which is impossible since every path gives and re-
ceives exactly one token.

We say that path fi is bad iff for some j : 1 ≤ j ≤ h,
fi = f ′j , and u2(f ′i−1) = u1(fi). If no bad paths exist in



our cycle, we perform Step 5.

… …

f1 f2 f3 fh

u2(f1’)

z(f1)=u1(f1’)

f1’ f2’ f3’ fh-1’ fh’…

Figure 2. Before the execution of step (5).

Step 5 We trim each path fi, 1 ≤ i ≤ h, by setting z(fi) =
u2(f ′i−1) and setting W (fi) = f ′i−1 (See Figure 3). It is
easy to see that properties C1 and C2 continue to hold. We
now focus on showing that property C3 still holds as well.
We only perform trimming of paths {fi}hi=1. So we only
need to take care of two cases:

• For each path fi ∈ {f1, . . . , fh}, we need to show that
after the trimming fi contains the first special vertex
of W (fi) = f ′i−1, and this is the last vertex z(fi) of
p(fi).

• If f 6∈ {f1, . . . , fh}, and W (f) = fi, then we need to
show that f contains the first special vertex of fi, and
it is the last vertex of p(f).

For the second case, observe that fi has been trimmed on its
special vertex, and f has not been trimmed in this iteration.
Therefore, we can use arguments similar to Proposition 1 to
show that f still contains the first special vertex of fi.

… … … …

(a) (b)

f1 f2 f3 fh

f1’ f2’ f3’ fh-1’ fh’
…

f1 f2 f3 fh

f1’ f2’ f3’ fh-1’ fh’
…

Figure 3. Illustration of step (5)

Consider now the first case. Recall that from Proposi-
tion 4, the trimming of fi−1 made it shorter by at least one

edge. Therefore, after the trimming, fi−1 does not contain
u1(f ′i−1), which stops being the first special vertex of f ′i−1.
(Recall that fi−1 and f ′i−1 are the only paths that contained
u1(f ′i−1), since otherwise f ′i−1 gives at least two tokens). If
we show that u2(f ′i−1) continues to belong to f ′i−1 after the
trimming step, then it now becomes the first special vertex
of f ′i−1. Vertex u2(f ′i−1) belongs to fi even after trimming,
and is the last vertex of p(fi). We only need to show that
u2(f ′i−1) still belongs to f ′i−1 after the trimming. The only
way f ′i−1 has been trimmed is if f ′i−1 = fj for some j. If
u2(f ′i−1) does not belong to the new prefix of f ′i−1 = fj
is then u2(f ′j−1), at which fj has been trimmed lies before
u2(fj) on its prefix. But since u2(f ′j−1) is a special ver-
tex of fj , it must be that u2(f ′j−1) = u1(fj), and since
fj = f ′i−1, we have that fj is a bad path, a contradiction.

Step 6 If none of the above steps has been performed, then
there is a bad path f = fi = f ′j whose vertex wf belongs to
the cycle. We prove that in this case, every path fj is bad,
and a subset of prefixes of {f1, . . . , fh} = {f ′1, . . . , f ′h},
form a canonical cycle that can be added to the set D. We
start with the following claim:

Claim 1 If fi = f ′j is bad, then fj is also bad and fj =
f ′i−1.

Proof: Let g = f ′i−1. Since fi is bad, its first special vertex
is the second special vertex of g. Therefore, fi gave its
token to g, and the prefix of g currently ends at z(g) =
u1(f). Thus, g has exactly two special vertices: u1(g) and
u2(g) = z(g). Since fi = f ′j , and fj is the path to which
f ′j gave its token, it follows that fj = g = f ′i−1. Consider
now f ′j−1. Its second special vertex u = u2(f ′j−1) belongs
to g and must be a special vertex of g. From Proposition 4,
it cannot be the last vertex of g, z(g) = u2(g). So it must
be u1(g). It follows that g = fj = f ′i−1 is also bad.

! ! !

! ! !

! ! !

! ! !

! ! !

! ! !

f1 f2 fi=f fj=g fh

u2(g)=u1(f)

f’1 f’if’i-1=g f’j-1 f’j=f f’h-1 f’h

Figure 4. Proof of claim 1

Corollary 2 If fi = f ′j is bad, then fi−1 is bad and fi−1 =
f ′j−1.



Proof: Assume that fi = f ′j is bad. Then from Claim 1, fj
is bad and fj = f ′i−1. We now apply the same claim again
to fj serving as fi and f ′i−1 serving as f ′j . We get that fi−1

is also bad and fi−1 = f ′j−1.

From the above corollary, all paths F = {f1, . . . , fh} are
bad, and F = {f ′1, . . . , f ′h}. If fi = f ′j is bad, then since
fj+1 is also bad, the second special vertex of fi = f ′j
is the first special vertex of fi, and so it is also the last
vertex of p(fi). It follows that every prefix p(fi), for
fi ∈ F , contains exactly two special vertices: v1(fi) and
v2(fi) = z(fi). Moreover, v1(fi) = v2(f ′i−1) and no
other live path contains it; v2(fi) = v1(f ′i) and no other
live path contains it. Let h′ : 1 ≤ i ≤ h be such that
f1 = f ′h′ . Considered the ordered set of prefixes M =
(p(f1), p(f ′1), p(f2), p(f ′2), . . . , p(f ′h′−1), p(fh′)). Notice
that the number of prefixes in M is odd. From the above
discussion, prefixes in M form a canonical cycle. More-
over, vertices appearing on the prefixes inM do not appear
on any other live prefixes and do not belong to paths in D.
We move the paths whose prefixes belong toM to D.

5. Single-Source VC-SNDP with Vertex Costs

We now consider the case when the costs are on vertices.
We are given a graph G = (V,E) with cost c(v) ≥ 0 for
each vertex v ∈ V , a subset T ⊆ V of terminals, and a
source s ∈ V \ T . The goal is to find a minimum cost
subset V ′ ⊆ V of vertices, such that in the graph induced
by V ′ every terminal is k-vertex connected to s. For each
subset T ′ ⊆ T of terminals, we again denote by T ′+ the
set T ′ ∪ {s} of vertices. We assume w.l.o.g. that the cost
of every vertex in T+ is 0 since any solution must include
them. The main theorem of this section is the following.

Theorem 6 Let G = (V,E) be any instance of single-
source k-vertex connectivity problem with terminal set T ,
source s and vertex costs c. Given any subset T ′ ⊆ T of
terminals, there is a randomized polynomial time algorithm
that finds, with high probability, a subset V ′ ⊆ V of ver-
tices of cost O(OPT · k log n) with the following properties.
The graph induced by V ′ contains, for each t ∈ T ′, a k-
tuple F (t) of internally vertex disjoint paths. Each path in
F (t) connects t to some vertex in T+ \ {t}, while for termi-
nals t′ ∈ T \ T ′ at most one path in F (t) terminates at t′.
Moreover, paths in F (t) do not contain any terminals of T
as intermediate vertices.
The theorem above can be used to obtain the following ana-
logue of Corollary 1.

Corollary 3 There is a randomized polynomial time algo-
rithm, that finds, with high probability, a subset V ′ ⊆ V of
vertices of cost O(OPT · k6 · log n), such that in the graph

induced by V ′ every terminal t ∈ T is strongly k-vertex
connected to T+ \ {t}.

We now state our algorithm for the vertex costs case.

1. If |T | ≤ 10k: for each terminal t ∈ T , find a minimum
cost subset Vt ⊆ V of vertices, such that t is k-vertex
connected to the source s in the graph induced by Vt.
Stop and output∪t∈TVt. Otherwise, using Corollary 3,
find a set V ′ of vertices of cost O(OPT · k6 · log n),
such that in the graph induced by V ′ every terminal
t ∈ T is strongly k-vertex connected to T+ \ {t}. Let
F (t) denote the k-tuple of paths that strongly k-vertex
connect t to T+ \ {t}.

2. Identify a subset T ′ ⊆ T of size
⌈
|T |

2(k+1)

⌉
such that

for each t ∈ T ′, the paths in F (t) terminate only on
vertices in T+ \ T ′.

3. Recursively solve the problem on the set T ′′ = T \
T ′ of terminals. Let V ′′ be the set of vertices in the
recursive solution. Output V ′∪V ′′ as the final solution.

Using similar arguments as in Lemma 3.1 it is easy to see
that the algorithm outputs a feasible solution. The total
depth of recursion is bounded by O(k log n) and thus the
solution cost is at most O(OPT · k7 log2 n).

The proof of Theorem 6 is based on rounding an LP relax-
ation for computing a minimum cost spider decomposition.
We defer the details of the proofs of Theorem 6 and Corol-
lary 3 to the full version [9].

6. Concluding Remarks

The results in this paper represent progress towards clos-
ing the gaps in our understanding of the approximability
of single-source k-vertex connectivity. While there still re-
mains a separation between the upper and lower bounds in
the single-source vertex connectivity, the gap in the upper
and lower bounds for the general VC-SNDP is far more
striking. For any fixed k ≥ 3, the upper bound is a
polynomial-ratio approximation algorithm while the lower
bound is an APX-hardness. Perhaps both the approximabil-
ity factor and the hardness factor can be much improved.
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