
HAL Id: hal-01814740
https://inria.hal.science/hal-01814740v1

Submitted on 13 Jun 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Memory access classification for vertical task parallelism
Jens Gustedt, Maxime Mogé

To cite this version:
Jens Gustedt, Maxime Mogé. Memory access classification for vertical task parallelism. [Research
Report] RR-9182, Inria Nancy - Grand Est. 2018, pp.1-20. �hal-01814740�

https://inria.hal.science/hal-01814740v1
https://hal.archives-ouvertes.fr

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
91

82
--

FR
+E

N
G

RESEARCH
REPORT
N° 9182
June 2018

Project-Team Camus

Memory access
classification for vertical
task parallelism
Jens Gustedt , Maxime Mogé

https://orcid.org/0000-0003-0779-1944

RESEARCH CENTRE
NANCY – GRAND EST

615 rue du Jardin Botanique
CS20101
54603 Villers-lès-Nancy Cedex

Memory access classification for vertical task
parallelism

Jens Gustedt , Maxime Mogé

Project-Team Camus

Research Report n° 9182 — June 2018 — 20 pages

Abstract: We present a paradigm and implementation of a parallel control flow model for al-
gorithmic patterns of two nested loops; an outer iteration loop and an inner data traversal loop.
It is centered around memory access patterns. Other than dataflow programming it emphasizes
on upholding the sequential modification order of each data object. As a consequence the visible
side effects on any object can be guaranteed to be identical to a sequential execution. Thus the
set of optimizations that are performed are compatible with C’s abstract state machine and com-
pilers could perform them, in principle, automatically and unobserved. We present two separate
implementations of this model. The first in C++ uses overloading of the operator[] to instrument the
memory accesses. The second in Modular C uses annotations and code transformations for the two
nested loops. Thereby the code inside the loops may stay as close as possible to the original code
such that optimization of that code is not impacted unnecessarily. These implementations show
promising results for appropriate benchmarks from polybench and rodinia.

Key-words: automatic parallelization, iterative algorithms, parallel control flow, memory access
classification

https://orcid.org/0000-0003-0779-1944

Classification d’accès mémoire pour la
parallélisation verticale en tâches

Résumé : Nous présentons un paradigme et une implémentation d’un modèle de
flot de contrôle parallèle pour des motifs algorithmiques de deux nids de boucles
imbriqués; une boucle externe d’itération et une boucle interne de parcours de
données. Ce paradigme est basé sur les motifs d’accès mémoire. Contrairement
à la programmation par flot de données, il assure l’ordre séquentiel des modi-
fications de chaque objet. Par conséquent, les effets de bords visibles sur tous
les objets sont garantis identiques à une exécution séquentielle. Ainsi l’ensemble
des optimisations effectuées sont compatibles avec la machine abstraite d’état
de C, et les compilateurs peuvent les effectuer, en principe, de façon automa-
tique et non-observée. Nous présentons deux implémentations distinctes de ce
modèle. La premiere, effectuée en C++, utilise la surcharge de l’opérateur [] pour
instrumenter les accès mémoire. La seconde, effectuée en Modular C, utilise des
annotations et transformations de code pour les deux boucles imbriquées. Ainsi
le code à l’intérieur des boucles peut rester aussi proche que possible de l’original
pour ne pas impacter inutilement son optimisation. Ces implémentations mon-
trent des résultats prometteurs pour des codes de référence tirés de polybench
et rodinia.

Mots-clés : parallélisation automatique, algorithmes itératifs, flot de contrôle
parallèle, classification d’accès mémoire

Memory access classification for vertical task parallelism 3

1 Introduction and overview

Race conditions are one of the principle challenges of automatic paralleliza-
tion, and over last decades a lot of effort has been put into understanding
and mastering them, in particular into their detection in faulty executions, see
e.g [2, 11, 15]. Another direction of research has been to attempt to provide a
race free task schedule once that a dependency graph is given [13]. But generally,
the need for a programmer to manually specify a dependency graph, even in the
form a data flow graph is a burden that defeats automatic parallelization.

In our opinion, to be closer to current programming practice, detection of
dependencies and thus possible parallelism should be based on the features that
are present in every day’s imperative programming languages. In these, depen-
dency between program statements are usually not explicit but they are forced
indirectly via data accesses when one statement that reads a data has to be
scheduled after another statement that wrote it.

Therefore parallelization of loops with irregular access patterns requires a
runtime data dependency analysis that is followed by a tool that ensures that
dependencies are enforced. There are currently mainly two types of tools: spec-
ulative and scheduling based.

Speculative techniques such as LRPD [5] identify the dependencies during the
execution of the loop. The loop is run in parallel as a doall and followed by a test
if the computations are correct. If not, a rollback to the previous correct state
is performed and a sequential execution of the loop is carried out. For certain
types of data accesses, namely affine or nearly affine functions over loop counts,
polyhedral models can be used to provide race-free static task parallelism [3], and
these approaches have also recently be used successfully to build runtime systems
that are able to rollback execution if access violations occured [10]. For programs
with low effective parallelism, this can lead to a significant overhead due to
rollback followed by sequential execution when many conflicts occur between
threads.

Scheduling based methods preprocess the loop to compute a dependency
graph at runtime and use this information to do a parallel scheduling. The
Inspector-Executor model [12, 14] consists of three phases: inspection, schedul-
ing and execution. First the program is instrumented to explicitely compute
a dependency graph. Then a parallel scheduling of the iterations is derived,
and then the iterations are run in parallel in wavefronts, using synchronization
between consecutive wavefronts. Huang et al. [1] propose a scheduling based
method that does not explicitely compute the dependency graph, but instead
overlaps the inspection and scheduling. A dedicated scheduling thread dynam-
ically ensures that there is no conflict between threads, and allows cross invo-
cation parallelism. However this method still needs an inspector that is run at
the beginning of each iteration. The limitations of these methods are inherent to
the Inspector-Executor model: it needs one inspector per iteration. In the case
of a cyclic dependency between data and computation of shared addresses the
inspector is basically the whole loop body.

RR n° 9182

4 Jens Gustedt, Maxime Mogé

In contrast to that, we will not restrict ourselves to a specific fine grained ac-
cess projection model, but instead focus on certain type of applications, namely
those that repeat the same data access pattern (coined data traversal) over a
set of iterations, Section 2. This is a pattern that is found widely in the field,
e.g many iterative algorithms that traverse matrices or geometric objects fall
into that category. Using the assumption of a constant data access pattern,
we detect dependencies and derive an implicit scheduling at runtime using Or-
dered Read-Write Locks (ORWL) [4] during some initial iterations. After this
instrumentation phase, we do not need to check any condition or recompute
dependencies, thus eliminating the drawbacks of the Inspector-Executor model.

As a basis for our argumentation, here, we will use C’s model of side effects
on data [9]. C has an abstract state machine that can be used to describe the
effects of any valid program and compilers are allowed to perform all optimiza-
tions that respect that machine model. Our present work emphasizes on the fact
that our parallelization fully respects the computation in that machine model.
A fine grained (theoretical) model is presented that guarantees that all compu-
tational results are exactly as they would have been produced by the originating
sequential program, Section 3. Based on [4] we are able to prove that our parallel
execution model is correct, fair and deadlock free.

Being much too fine-grained for practical utilization, we have to coarsen
our model by grouping programming steps into “meta-steps” and by classifying
objects into “meta-objects”, Section 4. We are able to prove that by doing so the
good properties of our model are maintained, and present two different strategies
that can be used for a memory access classification.

Our approach has been implemented with two different approaches, Section 5.
The first uses C++ and its ability to overload the operator[]. By that we are able
to dynamically instrument the access pattern of complex code without having
to rely on the programmer. A second implementation in Modular C [7] provides
#pragma annotations for a code transformation that shows to be more efficient,
but that needs manual annotations of the data accesses. Both implementations
are tested with a set of benchmarks from the polybench and the rodinia collec-
tions, Section 6, and show very satisfying speedups.

2 Iterations over data transversals

In this work we restrict ourselves to a specific framework, namely programs that
are dominated by two levels of loops, see Fig. 1.

1. An outer loop that we call iteration, e.g, an iteration over a simulated time
or an iterative approximation of some numerical quantity.

2. One or several inner loops that we call data traversal tasks or just tasks,
e.g loops that visit all elements of a matrix or that iterate over a geometric
domain such as the facets of a polyhedral object description.

Our main assumption for data accesses is the following:

The data access pattern does not depend on the iteration.

Inria

Memory access classification for vertical task parallelism 5

Fig. 1. Loop exchange for vertical task parallelism

for (i in iteration) {
// taskT0

for (p in first data traversal) {
// do steps of first task
T0(i, p);

}

// taskT1

for (p in second data traversal) {
// do steps of second task
T1(i, p);

}

}

Ô⇒

do parallel {
for (p in first data traversal) parallel {
for (i in iteration) sequential {
/∗ insert somemiraculous data

coherenceenforcement∗/
T0(i,p);

}
}
for (p in second data traversal) parallel {
for (i in iteration) sequential {
/∗ insert somemiraculous

data coherenceenforcement∗/
T1(i,p);

}
}

}

That is, we assume that each outer iteration visits the same data in the same
order as the previous ones, e.g a traversal of a matrix or of geometry elements
would be done in the same order in each iteration. That does not mean that a
task can’t use the iteration variable for its computation, only that its data access
should not depend on it.

The inner part of a data traversal task t is called a step, denoted by T t(i, p),
characterized by the triple (i, t, p), where i is the actual iteration, t is the task
and p is the actual position in the traversal. That is, we assume that the program
identifies code segments that perform these steps, and that the information about
the current iteration, task and position in the traversal is available.

Steps are sequenced, that is there is a linear order in which the steps are
executed by the program. This order corresponds to the lexicographic ordering
of the indices (i, t, p).

Listing 1 illustrates what we have in mind here. It shows an idealized code ex-
cerpt of rodinia’s hotspot3D benchmark, where we use a split directive (pragma)
and a special task ∶∶ for construct to identify a data traversal task. A step is then
the entire code inside the {}. It has access to the iteration variable i and the
traversal position z.

Another feature of that implementation is also shown, namely data accesses
are instrumented explicitly by means of directives that proclaim that the step
may modify (lvalue) or just read (rvalue) a specific data.

2.1 Execution model: loop exchange and parallelism
In general, we suppose that a sequential program P has the following form:

for (all iterations i)
for (all tasks t)

for (all positions p in T t data traversal) T t(i, p);

Our goal is to improve the performance of P by parallelizing it. The main
idea is to automatically perform a loop exchangetransformation as exemplified in
Fig. 1. After the exchange the outer loops are in fact over the positions p of the

RR n° 9182

6 Jens Gustedt, Maxime Mogé

Listing 1. annotation of a data traversal loop of rodinia’s hotspot3D benchmark
for (size_t i = 0; i < numiter; ++i) {
pragma CMOD insert mctask split
task∶∶for(size_t z = 0; z < nz; z++) {
size_t z0 = ... ; size_t z1 = ... ;
/∗ insert somemiraculous data coherenceenforcement∗/

pragma CMOD insert mctask lvalue = tOut[z]
pragma CMOD insert mctask rvalue = tIn[z], tIn[z0], tIn[z1]

for(size_t y = 0; y < ny; y++) {
size_t y0 = ... ; size_t y1 = ... ;
for(size_t x = 0; x < nx; x++) {
size_t x0 = ... ; size_t x1 = ... ;
/∗ do the computation∗/
tOut[z][y][x] = tIn[z][y][x]*cc + tIn[z][y0][x]*cn + ... ;

}
}

}
//samedata traversal, but inverting roles of tOut and tIn
...

}

data traversals and (at least conceptually) an independent thread is launched
for each such position. Inside such a thread, the iterations are performed over
the individual steps that are all associated to the same position p.

As remarked in the comments, data races could occur when two inner steps
would access the same data concurrently. Therefore we will have to develop a
mechanism that helps us to detect when one step has to wait for another one
because of such a concurrent access.

As already implicit in the hotspot3D example, our notion of dependency of
steps is not an abstract model of data or control flow, but directly deduced from
access to objects of the program. It directly follows C’s notion of side effects [9],
that is, of modifications effected to data. Step S1 directly depends on step S0 if

– S1 is sequenced after S0 and
– S1 reads or writes a data object o that S0 has written.

By that, direct dependency between two steps can never be induced by only read
accesses to a common data.

Step Sn (indirectly) depends on step S0 if there is a direct dependency chain
between them, that is, if there is a, possibly empty, sequence Sn−1, . . . , S1 such
that Sj directly depends on Sj−1 for all 0 < j ≤ n.

Dependence in that sense establishes a partial ordering ℘ the dependency
relation on the steps that are executed by a program. Two steps S0 and S1

are independent if neither of them depends on the other and if so, they can
be executed concurrently without introducing a race condition. Observe that
two independent steps may be from the same or different tasks, iterations and
traversal positions.

The notions of dependence and independence easily extend to sets of steps S0
and S1. In fact, S0 depends on S1 if there is a S0 ∈ S0 that depends on S1 ∈ S1; S0
and S1 are independent if all pairs S0 ∈ S0 and S1 ∈ S1 are independent. Observe

Inria

Memory access classification for vertical task parallelism 7

that here the dependency relation between sets of steps may have cycles if we
are not careful enough in choosing such sets.

2.2 Parallelizations
Fig. 2 shows an example of the initial section of a direct dependency graph and
different scheduling strategies that have been applied. In all four examples, lines
corresponds to concurrent executions of steps at a given time. Columns visualize
all steps that deal with the same position in their respective data traversal. For
the sake of the example, we make the simplified assumption that all steps have
the same execution time.
Sequential execution. A sequential scheduling of the graph is shown in Fig. 2(a).
Here, all steps are strictly executed in iteration and traversal order. E.g first
we schedule all steps T 0(0, .) of task T 0. Among these we respect the traversal
order, that is we execute first T 0(0,0), then T 0(0,1), T 0(0,2) and T 0(0,3). The
rectangle in the figure shows the pattern of the steady state, that is the pattern
of the graph that is repeated over and over again until the final iteration.
Horizontal parallel execution is similar to what OpenMp would do with a for
loop that is prefixed with a parallel for directive. But without keeping track
of dependencies, OpenMp would allow all steps from the same task to run in
parallel, and thus lead to incorrect results.

In fact, introducing horizontal parallelism has several problems that are not
easily solved with static scheduling

– how about horizontal data dependencies?
– how about cache accesses?
– how about execution time variations?

Fig. 2(b) shows that our example only allows for a limited horizontal paral-
lelization that respects dependencies: the small rectangles inside the steady state
visualize the steps from the same task that can be parallelized. We see that we
can place our 8 steps in 6 time units, so on average we have 8

6
= 1.3 parallel

threads in the steady state.
Vertical parallel execution is illustrated in Fig. 2(c). Here, we start the steps
as early as possible under the constraint to still execute the steps of the same
task and iteration in order. In our example, we see that at time 2, step T 1(0,0)
already starts in parallel to step T 0(0,2). Generally, for all i > 0, the four types
of sets of steps

{T 0(i,0), T 1(i − 1,2)} {T 0(i,1), T 1(i − 1,3)}
{T 0(i,2), T 1(i,0)} {T 0(i,3), T 1(i,1)}

are always scheduled in parallel. Thus there are 2 parallel threads running at all
times in the steady state.
Vertical and horizontal parallel execution as a combination of both parallel
modes, shows the best available parallelism, see Fig. 2(d). Here it not only allows
to run steps of the same iteration in parallel (e.g T 1(0,0) and T 1(0,1)) but also
steps of the same task but from different iterations, e.g T 0(0,3) and T 0(1,0). Or

RR n° 9182

8 Jens Gustedt, Maxime Mogé

time

0 T 0
(0,0)

��

##

1 T 0
(0,1)

��

��

##

2 T 0
(0,2)

��

##

3 T 0
(0,3)

��

��

4 T 1
(0,0)

��

5 T 1
(0,1)

��

��

##

6 T 1
(0,2)

��

7 T 1
(0,3)

��

��

8 T 0
(1,0)

��

##

9 T 0
(1,1)

��

��

##

10 T 0
(1,2)

��

##

11 T 0
(1,3)

��

��

12 T 1
(1,0)

��

13 T 1
(1,1)

		 ��

##

14 T 1
(1,2)

��
15 T 1

(1,3)
��

(a) sequential execution

time

0 T 0
(0,0)

��

##

1 T 0
(0,1)

�� ��

##

2 T 0
(0,2)

��

##

3 T 0
(0,3)

�� ��
4 T 1

(0,0)

��

T 1
(0,1)

��

��

##

5 T 1
(0,2)

��

T 1
(0,3)

��

��

6 T 0
(1,0)

��

##

7 T 0
(1,1)

�� ��

##

8 T 0
(1,2)

��

##

9 T 0
(1,3)

�� ��
10 T 1

(1,0)

��

T 1
(1,1)

�� ��

##

11 T 1
(1,2)
��

T 1
(1,3)
��

(b) horizontal parallelism: if possible
steps of the same task are executed in
parallel. On average, 8

6
= 1.3 parallel

threads are in the steady state.

time

0 T 0
(0,0)

��

##

1 T 0
(0,1)

{{

��

##

2 T 1
(0,0)

��

T 0
(0,2)

��

##

3 T 1
(0,1)

{{

��

##
T 0
(0,3)

{{

��
4 T 0

(1,0)

��

##
T 1
(0,2)

��
5 T 0

(1,1)
{{

��

##
T 1
(0,3)

{{

��
6 T 1

(1,0)

��

T 0
(1,2)

��

##

7 T 1
(1,1)

�� �� ��
T 0
(1,3)

�� ��

(c) vertical parallelism: task
starts executing as soon con-
flicts with preceding tasks are
resolved. There are 2 parallel
threads in steady state.

time

0 T 0
(0,0)

��

##

1 T 0
(0,1)

{{ �� ##

2 T 1
(0,0)
��

T 1
(0,1)

{{

�� ��

T 0
(0,2)

��

##

3 T 0
(1,0)

��

##
T 0
(0,3)

{{ ��

4 T 0
(1,1)

{{ �� ##
T 1
(0,2)
��

T 1
(0,3)

{{

��
5 T 1

(1,0)
��

T 1
(1,1)

�� �� ��
T 0
(1,2)
�� ��

(d) vertical and horizontal parallelism:
steps are scheduled with first-fit. On av-
erage, 8

3
= 2.6 parallel threads are in

steady state.

Fig. 2. Schedulings of the direct dependency graphs of steps. Arrows represent data
dependencies, numbers on the left represent execution times of the steps in their line.
Rectangles illustrate patterns of the steady state.

Inria

Memory access classification for vertical task parallelism 9

stated differently, a new iteration of a task may already start before the previous
has completely finished. On average we have 8

3
= 2.6 parallel threads in steady

state.

3 A fine grained execution model

We aim to develop an execution model that is compatible with C’s abstract
machine in a way that the parallelizations that we propose do not change the
observable state of a program.

Observable changes in the states of that abstract machine occur through so-
called side effects. By neglecting IO and similar external events for the moment,
the interesting side effects in our context are modifications of the data objects
that a program manipulates. Such manipulations occur through operations (such
as assignment = or increment ++) or C library functions (such as memcpy).

For each object o in an execution of a program the C standard requires that
accesses to o are properly sequenced, that is, that it can be deduced from the
program structure if

– a write operation A on o provides the value for a read operation B of o;
– two write operation A and B on o are not separated by another write oper-

ation.

Read-only operations in turn are not necessarily expected to be properly se-
quenced. E.g the two evaluations of i in a function call f(i, i) may be executed
in any order.

For our context here, we can assume that an access A to object o is charac-
terized by a triple (i, t, p) for step T t(i, p), and, if it is a write access, by the new
value that is stored in o at the end of step T t(i, p). In particular, we don’t dis-
tinguish if a step T t(i, p) does several accesses to the same object o and whether
read and write access occur inside the same step.

The modification order M(o) =M0,M1, . . . is the precise list of changes that
are applied to an object o. The access order L(o) is M(o) together with the
read accesses to o, that is where we insert the read accesses in sequence order
between write accesses:

L(o) =W0,R
0
0,R

1
0, . . . ,W1,R

0
0,R

1
0, . . .

Since we are assuming that memory accesses do not depend on the iteration,
L(o) is of the form

L(o) = L̂(o,0), L̂(o,1), . . .

where L̂(o, x) is a predetermined list (x, t0, p0), (x, t1, p1), . . . where we textually
substitute x by i for each iteration i.

By changing the perspective from data objects to steps, for each step T t(i, p)
we can now identify the objects o = o0, o1, . . . that it accesses as well as the list
position `(i, t, p, o) in L̂(o, i) where this access occurs.

RR n° 9182

10 Jens Gustedt, Maxime Mogé

3.1 Fifo execution
The lists that we defined in the previous section can now be used to establish a
parallel execution model for the program steps, that takes care of the coherence
requirements of Fig. 1.

For each object o we establish a FIFO data structure F(o) that follows L(o)
and for which we define the following operations:

– init(F(o)) initializes the FIFO position to the start of L(o).
– release(F(o), i, t, p) announces that iteration i of task t at position p has

ended.
– acquire(F(o), i, t, p) blocks step T t(i, p)

● if T t(i, p) is a write access until all previous accesses to position (i, t, p)
in L(o) have been released;

● if T t(i, p) is a read-only access until the last write access previous to
position (i, t, p) in L(o) has been released.

Observe that the conditions for acquire ensure that each write access can be
performed exclusively, and that all read-only accesses that follow the same write
access can be honored concurrently.

Now we can augment each step of the program such that it is protected from
race conditions by acquiring all FIFOs for all accessed objects and by releasing
them thereafter. A protected step Prot⟪T t⟫(i, p) derived from T t(i, p) is:

Prot⟪T t
⟫(i,p) {

for (all objects o accessed by T t(i, p))
acquire(F(o), i, p);

T t(i,p);
for (all objects o accessed by T t(i, p))

release(F(o), i, p);
}

Clearly, substituting Prot⟪T t⟫ for T t for all t in the whole program does not
change its visible side effects: all acquire operation would only be issued after all
previous positions in L(o) are released, and all operations T t themselves would
still appear in sequence order.

We can now proceed to our final goal, the loop exchange. A step iteration
StepIt⟪T t⟫ performs the iteration loop

StepIt⟪T t
⟫(p) {

for (i in iteration) Prot⟪T t
⟫(i,p);

}

Now our parallelized program can be formulated as

for (all tasks t) do parallel {
for (all positions p in T t data traversal) do parallel
StepIt⟪T t

⟫(p);
}

Theorem 1. The parallelized program is well defined and produces the same
side effects as the original program.

Inria

Memory access classification for vertical task parallelism 11

A proof of this theorem follows from the fact that the dependency relation
℘ is acyclic and from the theory developed in [4] for Ordered Read-Write Locks
(ORWL). This formalizes a model for autonomous execution of tasks or processes
that manage their shared resources by means of cyclic FIFOs that are attached
to data resources. The ORWL model here can guarantee correctness, equity
and liveness of execution. It has a reference implementation that has first been
described in [8], and that has proven to be very efficient for coarse grained
parallelism.

Expected efficiency: Generally for the framework that we described so far, we
are unfortunately not in a coarse grained setting. We have made no restriction
about the code that is found inside a step, and for many sensible programs that
we want to cover a step could just be several instructions. In particular, we have
to resolve the following problems:
– Data traversals can have thousands, millions or billions of steps. Thus our

parallel program would have to run as many threads or processes, exceeding
the possible number of threads for current architectures.

– A protected step Prot⟪T t⟫ introduces runtime overhead for each memory ac-
cess, namely calls to acquire and release the corresponding FIFO. Therefore
we’d have to expect the cost of a step at least to triple by that procedure.

– Additionally, we also would have to maintain a FIFO for each data object.
So the memory footprint of the application would at least double.

– There is an important overhead to initiate FIFOs for all objects.

4 Coarsening
To be useful as such, our step-model of is too fine grained. We have to coarsen
it with respect to two aspects. First, we have to ensure that the number of steps
(and thus the number of threads) does not exceed the usual limits of existing
platforms. Second, we have to avoid that each data object gives rise to its own
FIFO, but must regroup objects into classes such that the three types of overhead
that we describe above are limited.

4.1 Groups of steps
To reduce the number of steps, we transform the original program by grouping
steps:
for (i in iteration)
for (t in tasks)
for (group g of positions in T t traversal)
for (p in g) T t(iteration, p);

The easiest strategy to form such groups of positions is to divide the positions
p0, p1, . . . , pr in the traversal into a fixed a amount m of intervals of successive
positions.

gk = (pak
, . . . , pbk) ,with ak =

kr

m
, bk =

(k + 1)r
m

.

This allows to rewrite a group g of steps into a “meta-step” MetaStepm⟪T t⟫:

RR n° 9182

12 Jens Gustedt, Maxime Mogé

MetaStepm⟪T t
⟫(i, g) {

for (p in g) T t(i, p);
}

And thus we can reformulate the program as

for (i in iteration)
for (t in tasks)
for (g of meta-positions in MetaStepm⟪T t

⟫ traversal)
MetaStepm⟪T t

⟫(i, g);

As a consequence this rewrite of the program fits exactly the same model as the
original program; it consists of an iteration loop that is nested with data traversal
loops such that the data access pattern does not change with the iterations. In
particular we have

Lemma 1. The induced dependency relation ℘m between meta-steps is acyclic.

With that grouping strategy the total amount of threads can be limited as a
function of m, the number of groups that we fix per task.
4.2 Classes of objects
To bundle the management of FIFOs for several data objects at a time we
partition the set of data elements D into m′ meta-objects C = {ck ⊂D}.

D = ⋃̇
k<m′

ck

Such a classification of objects into meta-objects gives rise to an induced depen-
dency relation ℘m∣C between meta-steps in a obvious way. We have

Lemma 2. ℘m∣C is an partial order extension of ℘m.

and in particular

Corollary 1. ℘m∣C is an acyclic, irreflexive and transitive relation.

It is also easy to see that the access list L(c) of a meta-object c ∈ C is the
lexicographic merge of all lists L(o), with o ∈ c. That is, we consider that an
meta-object is accessed if any of its members is accessed. We then attribute
one FIFO F(c) to each meta-object c ∈ C and define the protected meta-step
analogously as before.

MetaProt⟪ MetaStep⟪T t
⟫⟫(i,g) {

for (c ∈ C touched by MetaStep⟪T t
⟫(i,g)) acquire(F(c), i, g);

MetaStepMetaStep⟪T t
⟫(i,p);

for (c ∈ C touched by MetaStep⟪T t
⟫(i,g)) release(F(c), i, g);

}

Clearly, using the resulting scheduling is more restrictive, but, because of Corol-
lary 1 its validity is not impacted.

Theorem 2. The parallelized program that is coarsened with respect to a step
grouping of m and an object classifier C is well defined and produces the same
side effects as the original program.

Inria

Memory access classification for vertical task parallelism 13

To assemble the meta-objects we investigated two strategies. Objects such as
vectors or matrices for which sub-objects occupy contiguous memory can be
classified in a similar way as we grouped steps by using access intervals. If this
is not the case or if the access pattern is too irregular, we have to keep track of
individual accesses.

Classify groups of contiguous memory accesses in ranges. Suppose the main data
access is through a vector V[j] for j = 0, ...,N − 1 and that the access to that
vector is regular such that the progression of the data traversal corresponds to
a linear access to the vector.

To classify the access to V we can then fix a chunk size M and define the
meta-objects as

contig(V[k]) = ⌊k/M⌋
Contig(j) = {V[k] ∣ contig(V[k]) = j}

The advantage of Contig(.) is that the membership for any data object to its
class is easily computed. Therefore the overhead that is needed to establish the
FIFOs for the meta-steps is relatively small.

Classify random memory access by ownership. Vector classification does not
work if data access is through lists, e.g if we do a data traversal over a complicated
data structure or if our access pattern follows some random order. In these cases
for each object o we can designate the owner (owning step) and use that owner
to define a partition of the set of objects:

owner(o) = first mega-step g that writes to o in the sequence ordering
Owner(g) = {o ∣ o object, owner(o) = g}

We may prepare the computation of Owner(g) by first running several se-
quential iterations:

– In a first counting phase we determine the number of objects that will be
accessed by all mega-steps and dimensions a hash table with the appropriate
size.

– A second owning phase notes the first write access for all objects in the hash
table.

– A third attribution phase determines the owner of each object. Now the data
objects are partitionned by their access in the meta-step. We have at most
as many meta-objects as there are meta-steps.

After this initial setup of the meta-objects, the remaining iterations can be
done in parallel.

Compared to Contig, Owner classification has a startup that is is more ex-
pensive. On the other hand, no assumption is made about access order or about
a specific organization of the data.

RR n° 9182

14 Jens Gustedt, Maxime Mogé

5 Implementations
We have implemented the Owner classifier with two different approaches. The
first uses C++ and overloading of the operator[] and the second uses Modular C [7]
and #pragma directives for a source-to-source transformation.

Both build on the EiLck library for the FIFO functionality. EiLck is a stan-
dalone library written inModular C for Linux. It implements cyclic access FIFOs
on the basis of Linux’ futex system call that efficiently combines atomic access
with a scheduling queue in the system kernel, [6]. All scheduling of tasks is done
implicitly via these FIFOs; EiLck executes the application without dedicated
management threads. EiLck is compatible with different thread libraries (C11,
C++11, POSIX, OpenMp) and is interfaced to C and C++. It efficiently avoids
overhead for busy waiting if a FIFO access is congested and provides a minimal
run time overhead in case it is not.

5.1 C++: Operator overloading and explicit thread creation

Besides the use of Eilck, our C++ implementation is based on standard tools,
mainly operator[] and the explicit creation of threads for the execution of the tasks.
operator[] is used to instrument every single memory access to a set of vectors
that the programmer designates as being shared between steps. In addition, the
programmer also identifies the iteration loop and registers the data traversal
tasks as functions that are executed in separate C++11 threads.

Then, during execution, data traversals are grouped and protected automat-
ically. For the grouping of the steps into meta-steps, each task counts its number
of calls to operator[] and uses this count as an indication of the traversal position.
For the classification of the memory accesses we use a dynamic std::map to register
the owners and then classify each access according to that owner. A set of FIFOs
is constructed from this, and used in subsequent iterations.

This approach has the advantage that we don’t even have to identify steps.
Any code that supplies sufficient amount of work can automatically be split by
this operator[] approach into steps and meta-steps, respectively. The programmer
only needs to designate the iteration loop, a set of tasks (data traversal) and the
data vectors they share. The modifications needed for this parallelization are
simple, as shown in Listing 2 for the hotspot3D benchmark. The approach has
several disadvantages, though:

– All meta-steps of a task are executed in the same thread. Parallelism is only
achieved between meta-steps that are part of different tasks.

– Control operations by operator[] interleave the computation. This breaks local
optimization opportunities, e.g vectorization.

– The operator[] needs a thread local variable for the position in the traver-
sal.Access to such variables is generally slow.

Inria

http://cmod.gforge.inria.fr/eilck.html

Memory access classification for vertical task parallelism 15

Listing 2. Parallelization of rodinia’s hotspot3D benchmark using operator overload-
ing - the code was simplified for clarity (e.g. omission of template parameters).
void computeTask(VectorWrapper tOut_w, VectorWrapper tIn_w, ...) { // encapsulate computation in a separate function
for(size_t z = 0; z < nz; z++) {
size_t z0 = ... ; size_t z1 = ... ;
for(size_t y = 0; y < ny; y++) {
size_t y0 = ... ; size_t y1 = ... ;
for(size_t x = 0; x < nx; x++) {
size_t x0 = ... ; size_t x1 = ... ;
tOut_w[z][y][x] = tIn_w[z][y][x]*cc + tIn_w[z][y0][x]*cn + ... ;

} } }
}
VectorWrapper tOut_w(tOut), tIn_w(tIn); // overload operator[] using a vector wrapper
IterationLoopIdentifier loopId = ...; // identify an iteration loop
for (size_t i = 0; i < numiter; ++i) {
beginLoopIteration(loopId);
threadPool->submit(new TraversalTask(computeTask,tOut_w,tIn_w)); // start task 1
threadPool->submit(new TraversalTask(computeTask,tIn_w,tOut_w)); // start task 2
endLoopIteration(loopId);

}

Listing 3. The complete paralellization of rodinia’s hotspot3D benchmark. alternate
and duplicate unroll the iteration loop four times such that four tasks can be generated.
#pragma CMOD insert mctask groups = 8
#pragma CMOD amend mctask iterate = numiter
#pragma CMOD amend mctask duplicate = 2 // unroll formoreparallelism
#pragma CMOD amend mctask alternate tOut tIn // unroll to alternate buffers
pragma CMOD insert mctask split
task∶∶for(size_t z = 0; z < nz; z++) {
size_t z0 = ... ; size_t z1 = ... ;
/∗ insert somemiraculous data coherenceenforcement∗/

pragma CMOD insert mctask lvalue = tOut[z]
pragma CMOD insert mctask rvalue = tIn[z], tIn[z0], tIn[z1]

for(size_t y = 0; y < ny; y++) {
size_t y0 = ... ; size_t y1 = ... ;
for(size_t x = 0; x < nx; x++) {
size_t x0 = ... ; size_t x1 = ... ;
/∗ do the computation∗/
tOut[z][y][x] = tIn[z][y][x]*cc + tIn[z][y0][x]*cn + ... ;

}
}

}
#pragma CMOD done
#pragma CMOD done
#pragma CMOD done

5.2 Modular C: pragmas and source-to-source transformation

Listing 3 shows a complete parallelization of the hotspot3D benchmark using
our Modular C implementation. Here we use two forms of Modular C directives.
The first, insert,

#pragma CMOD insert mctask keyword [[=] arguments]

... prefixed statement or block ...

is for a construct that precedes some statement or block and potentially changes
its interpretation. The second, amend,

RR n° 9182

16 Jens Gustedt, Maxime Mogé

#pragma CMOD amend mctask keyword [[=] arguments]

... code snippet to be rewritten ...
#pragma CMOD done

can be used to rewrite an entire code snippet as necessary. Here, both directives
refer to an external script, mctask, that implements our parallelization.
The main features shown in that example are the following

– An iterate directive replaces the outer iteration loop.
– A split directive prefixes the data traversal.
– A task ∶∶ for (or task ∶∶while) loop specifies the data traversal.
– Data access directives lvalue and rvalue indicate all memory accesses that

could be subject to race conditions.

The iterate directive uses amend to transform the code of the iteration. It
creates two modified copies of the code, one for an initial instrumentation phase
(similar to the C++ version) and one for the steady state iterations. For the first
phase, lvalue and rvalue are replaced by calls to appropriate access classification
functions, for the second they are removed such that the steady-state iterations
can use the original code directly.

The split directive together with the task ∶∶ for ensures that the loop is inter-
preted as a single task. It groups the steps into meta-steps and ensures that the
protection against race conditions is inserted between them. But in contrast to
a steps directive, see below, it still only launches one thread per task, and we
only will see vertical parallelism if we only use split.

The transformed parallel program can be quite effective because the inner
data traversal is exactly as programmed originally. In particular, the program
maintains the same optimization opportunities, e.g for vectorization. Also, com-
pared to our C++ version, there is no need for thread local variables, the source-
to-source transformation has enough possibilities to provide the necessary infor-
mation . On the other hand, this implementation here requires that the structure
of the program makes the iteration and data traversal loops apparent. E.g hiding
the data traversal inside a function would not be possible.

Listing 3 also features two other directives that are be quite useful. With the
innermost amend, the alternate directive implements an automatic duplication
that alternates the roles of tOut and tIn. The next level of amend with a duplicate
directive duplicates its inner part, again, such that at the end we have four copies
of the inner part, giving rise to four different tasks.

In total we have 4×8 = 32 meta-steps. Here, because of the split directive, we
have one thread for each task, so 4 tasks in total that are parallelized vertically.
To gain also horizontal parallelism we can replace

#pragma CMOD insert mctask split
task∶∶for(size_t z = 0; z < nz; z++) {

...
}

by

Inria

Memory access classification for vertical task parallelism 17

#pragma CMOD insert mctask steps = nz
{

size_t z = task∶∶step();
...

}

The steps directive creates a separate thread for each meta-step, so here this
results in 32 threads in total.

6 Benchmarks
We tested our implementations with those benchmarks from the polybench and
the rodinia series that fulfill our requirements, and inside a real life application,
the SOFA framework.

The test platform is a Linux machine with an Intel Xeon E5-2650 v3 proces-
sor, 2 cpu sockets, 10 real cores (and 20 hyperthreaded cores) each. Although
we did not expect much parallelism beyond a speedup factor of 2 or 3, we chose
such a platform with relatively many cores to avoid an artificial bound on the
parallelism. For the C++ implementation, we adapted the code using C++ vectors.

Fig. 3 shows the speedups that we obtained with these relatively simple
tests, once we have reached the steady state. We compare the original sequential
implementation seq to our implementations using Modular C with split and
steps directives, and C++. For some tests we unroll the iteration loop (2x or 4x
factor) to increase the number of tasks. With Modular C, we see that all but

se
q

sp
lit

sp
lit

 r
e
v

st
e
p

s

c+
+

c+
+

 2
x

0

0,5

1

1,5

2

adi

se
q

sp
lit

sp
lit

 r
e
v

0
0,2
0,4
0,6
0,8

1
1,2
1,4
1,6

fdtd

se
q

sp
lit

st
e
p

s

c+
+

c+
+

 2
x

c+
+

 4
x

0

0,5

1

1,5

2

2,5

3

heat3d

se
q

sp
lit

 2
x

st
e
p

s

c+
+

 2
x

c+
+

 4
x

0

0,5

1

1,5

2

2,5

hotspot3D

se
q

sp
lit

0

0,2

0,4

0,6

0,8

1

1,2

nn

se
q

sp
lit

 2
x

sp
lit

 4
x

c+
+

 2
x

c+
+

 4
x

0

1

2

3

4

seidel 2d

se
q

sp
lit

sp
lit

 4

sp
lit

 5

sp
lit

 7

0

0,2

0,4

0,6

0,8

1

1,2

1,4

srad2D

Fig. 3. Speedups of steady state iterations achieved for benchmarks from polybench
and rodinia with the Modular C and the C++ implementations.

one of the benchmarks achieve worthy speedup factors that range from 1.2 or
1.3 (srad2D), over 1.5 (fdtd), 1.7 (adi and heat3d), 2.2 (hotspot3D), to up
to 4 for seidel_2d. Indeed, the latter parallelizes perfectly with the number of
duplicates of the data traversal that we produce.

RR n° 9182

www.sofa-framework.org

18 Jens Gustedt, Maxime Mogé

Most of these parallelizations are straight forward code annotations as we
have seen them for the hotspot3D benchmark above. There is no clear winner
between the split and steps directives; adding more threads is not always an
advantage. The parallelization of srad2D is a little bit more involved than the
others, because the original sequential code concentrates most of the computa-
tion in one of the traversals. So here a simple split even slows the execution
down. But when we divide that traversal loop into several such that we obtain
4, 5 or 7 tasks in total, we observe a speedup of about 1.3.

Only the nearest neighbor (nn) benchmark from the rodinia suite detaches
from this. It is completely dominated by the IO for reading the input data. The
computation itself is negligible, so we can’t gain much by parallelization. Nev-
ertheless, we also don’t lose anything, which shows the validity of our approach,
where we are able to integrate the IO seamlessly into a data flow parallelism.

With the C++ version, most of the tested benchmarks achieve worthy speedup,
too, although lower than with Modular C. The overhead induced by the over-
loading and the inhibited compiler optimizations can seriously impact the per-
formances (e.g. only 1.1 speedup for heat3d and even a slowdown for adi).
However, a simple unrolling of the iteration allows us to create more tasks and
gives a much better speedup (1.7 for heat3d with duplicated tasks, and up to
2.9 with 4x unrolling).

The cost of the startup steps is highly dependent on the data objects consid-
ered and the application. With default settings, the Modular C version uses fine
grained data objects (cache lines) with a cost ranging from 2 to 120 sequential
iterations. This granularity can be manually adapted to reduce this cost. The
C++ version, uses coarser data objects (rows of 2D matrices) with a cost of 3
sequential iterations for seidel2D, 12 for heat3d, 16 for hotspot3D.

We also tested our C++ implementation on a large scale application, the
SOFA framework, with interesting performance: we were able to maintain the
runtime overhead induced by our parallelization mechanism low enough to get
a significant speedup on a specific test simulation.

7 Conclusion and outlook
We have shown that a semi-automatic parallelization tool for a special class of
iterative algorithm can be implemented. Provided that the data access pattern
does not change in the iteration loop, execution is guaranteed to follow the
sequential modification order for each data. Thereby we can e.g guarantee that
numerical iterations lead to exactly the same results as sequential execution
and that all proofs for convergence translate directly to the parallel version. We
showed that our implementations leads to satisfying speedups for a variety of
benchmarks.

For the moment our implementations both need intervention from the pro-
grammer. Both need an identification of the iterations and data traversals. Also,
they are limited in their ability to instrument the memory access. The C++ ver-
sion has a certain runtime overhead for the overloaded operator[]. The Modular C
version needs manual annotation of the accesses and has a high startup cost be-
cause of its use of fine grained data objects. We think that all these shortcomings

Inria

Memory access classification for vertical task parallelism 19

can be overcome by implementing the memory access instrumentation directly
in the compiler.

The need of identification could be circumvented by using a framework such
as Apollo [10] that allows to speculate on a particular pattern, and then to
rollback if the expected pattern was not respected.

References

[1] August, D.I., Huang, J., Beard, S.R., Johnson, N.P., Jablin, T.B.: Automatically
exploiting cross-invocation parallelism using runtime information. In: Proceedings
of the 2013 IEEE/ACM International Symposium on Code Generation and Opti-
mization (CGO). pp. 1–11. CGO ’13, IEEE Computer Society, Washington, DC,
USA (2013). https://doi.org/10.1109/CGO.2013.6495001

[2] Banerjee, U., Bliss, B., Ma, Z., Petersen, P.: A theory of data race de-
tection. In: PADTAD ’06. pp. 69–78. ACM, New York, NY, USA (2006).
https://doi.org/10.1145/1147403.1147416

[3] Bastoul, C.: Code generation in the polyhedral model is easier than you think.
In: PACT ’04. pp. 7–16. IEEE Computer Society, Washington, DC, USA (2004).
https://doi.org/10.1109/PACT.2004.11

[4] Clauss, P.N., Gustedt, J.: Iterative Computations with Ordered Read-Write
Locks. Journal of Parallel and Distributed Computing 70(5), 496–504 (2010).
https://doi.org/10.1016/j.jpdc.2009.09.002

[5] Dang, F., Yu, H., Rauchwerger, L.: The r-lrpd test: speculative paral-
lelization of partially parallel loops. In: Proceedings 16th International Par-
allel and Distributed Processing Symposium. pp. 10 pp– (April 2002).
https://doi.org/10.1109/IPDPS.2002.1015493

[6] Franke, H., Russell, R., Kirkwood, M.: Fuss, futexes and furwocks: Fast userlevel
locking in Linux. In: Ottawa Linux Symposium (2002)

[7] Gustedt, J.: Modular C. Research Report RR-8751, INRIA (Jun 2015)
[8] Gustedt, J., Jeanvoine, E.: Relaxed Synchronization with Ordered Read-Write

Locks. LNCS, vol. 7155, pp. 387–397. Springer, Bordeaux, France (May 2012)
[9] JTC1/SC22/WG14 (ed.): Programming languages - C. No. ISO/IEC 9899, ISO,

cor. 1:2012 edn. (2011)
[10] Martinez Caamaño, J.M., et al.: Full runtime polyhedral optimizing loop trans-

formations with the generation, instantiation, and scheduling of code-bones. Con-
currency and Computation: Practice and Experience 29 (2017)

[11] Matsubara, M., et al.: Model checking with program slicing based on variable
dependence graph. In: First International Workshop on Formal Techniques for
Safety-Critical Systems (FTSCS 2012). p. 88 (2012)

[12] Saltz, J.H., Mirchandaney, R., Crowley, K.: Run-time parallelization and schedul-
ing of loops. IEEE Transactions on Computers 40(5), 603–612 (May 1991).
https://doi.org/10.1109/12.88484

[13] Sánchez, C., et al.: On efficient distributed deadlock avoidance for
real-time and embedded systems. In: IPDPS 2006. vol. 2006 (2006).
https://doi.org/10.1109/IPDPS.2006.1639370

[14] Venkat, A., Mohammadi, M.S., Park, J., Rong, H., Barik, R., Strout, M.M., Hall,
M.: Automating wavefront parallelization for sparse matrix computations. In: Pro-
ceedings of the International Conference for High Performance Computing, Net-
working, Storage and Analysis. pp. 41:1–41:12. SC ’16, IEEE Press, Piscataway,
NJ, USA (2016)

RR n° 9182

https://doi.org/10.1109/CGO.2013.6495001
https://doi.org/10.1145/1147403.1147416
https://doi.org/10.1109/PACT.2004.11
https://doi.org/10.1016/j.jpdc.2009.09.002
https://doi.org/10.1109/IPDPS.2002.1015493
https://doi.org/10.1109/12.88484
https://doi.org/10.1109/IPDPS.2006.1639370

20 Jens Gustedt, Maxime Mogé

[15] Wang, G., Matsubara, M.: Data race detection based on dependence analysis.
In: Software Symposium 2017 (SS 2017). Software Engineers Association (SEA)
(2017)

Inria

RESEARCH CENTRE
NANCY – GRAND EST

615 rue du Jardin Botanique
CS20101
54603 Villers-lès-Nancy Cedex

Publisher
Inria
Domaine de Voluceau - Rocquencourt
BP 105 - 78153 Le Chesnay Cedex
inria.fr

ISSN 0249-6399

