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Abstract
Craniofacial researchers make heavy use of established facial landmarks in their morphometric
analyses. For studies on very large facial image datasets, the standard approach of manual
landmarking is very labor intensive. With the goal of producing 20 established landmarks, we
have developed a geometric methodology that can automatically locate 10 established landmark
points and 7 other supporting points on human 3D facial scans. Then, to improve accuracy and
produce all 20 landmarks, a deformable matching procedure establishes a dense correspondence
from a template 3D mesh with a full set of 20 landmarks to each individual 3D mesh. The 17
geometrically-determined points on the individual 3D mesh are used for the initial correspondence
required by the deformable matching. The method is evaluated on 115 3D facial meshes of normal
adults, and results are compared to landmarks manually identified by medical experts. Our results
show a marked improvement to prior results in the recent literature.

I. INTRODUCTION
Using 3D human face data to measure facial features is of great practical importance in
craniofacial research and practice. Traditionally, direct anthropometry using calipers has
been the standard technique for quantifying craniofacial dysmorphology, as well as for
surgical planning and outcome assessment [1]. Some of the major downsides to direct
anthropometry include the excessive time and invasiveness of the method, the amount of
training required, the extent of measurement error, and limitations in the kinds of data that
can be collected. Following the introduction of cost-effective 3D surface imaging solutions,
computerized anthropometry has largely replaced more traditional direct methods for
collecting quantitative information on human faces [2]. These systems are capable of
capturing the full 3D geometry of the human face and head in just a fraction of a second.

While computerized 3D anthropometry represents a major advance, to obtain measurements,
points on the face and head corresponding to traditional anthropometric landmarks must still
be captured manually through the use of software. This can be a time consuming process,
requiring a fair amount of training to master. Efficiency is particularly crucial when dealing
with very large 3D facial datasets, such as the repositories currently being collected as part
of the FaceBase Consortium [3]. Recognizing the need to move beyond manual data
collection, our goal is to provide an automatic method to detect landmarks from 3D facial
surfaces. Such a method requires the resulting automatically-generated landmarks to be
located in the correct anatomical positions and the process to be extendable to as many
landmarks as needed.
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In the computer vision community, facial landmark detection methods can be classified as
those that are solely dependent on geometric information and those that are supported by
trained statistical feature models [4]. Of the methods that are dependent on geometric
information, surface curvatures, shape index and geometric relationships are heavily used.
For example, Lu and Jain [5] and Colbry et al. [6] find eye/mouth corners and nose/chin tips
based on a fusion scheme of shape index on range maps and the “cornerness response,”
making use of distance relationships to find the points. Lin et al. [7] used curvature analysis
to determine the eye sockets and detected the nose tip as the extreme vertex along the
normal direction of the eye sockets.

Using not only geometric information but also trained models, Yu and Moon [8] located the
nose tip and inner eye corners in 3D range maps with a genetic-algorithm-trained detector.
Xu et al. [9] used the concept of “effective energy” to describe the relationships between
neighboring points and an SVM classifier to select the correct nose tip points. Nair and
Cavallaro [10] used a point distribution model to locate landmarks and register faces.
Romero-Huertas and Pears [11] developed a graph-matching approach to locate the
positions of the nose tip and inner eye corners. All of the above methods are limited to a
fixed number of predefined points. If any new landmarks are needed, a new type of model
must be created.

In this paper, we describe an improved method to automatically locate an arbitrary number
of landmarks on a 3D facial mesh. First, a partial set of landmarks is located on each
individual mesh by geometric techniques. Then, in order to improve positional accuracy and
add additional landmarks, the geometrically-detected landmarks are used to initialize a
deformable transformation that is used to create a dense correspondence between a template
mesh and the individual (target) mesh, so the set of established landmarks on the template
mesh can be transferred to the target. The distance between manually annotated landmarks
labeled by experts in anthropometry and the automatically-detected final landmarks is
computed to evaluate the accuracy of the method.

The main contribution of this work is the fully working system that can produce all 20
established landmarks and outperforms all competing methods in the literature. A second
contribution is the geometric methodology for finding the initial set of 17 landmark points
that are used to intialize the deformable matching procedure and are critical to its success.
The use of deformable matching for this purpose is not a new idea, but the specific matching
algorithm used [12], which has not been used for this purpose before, is particularly good for
this task, because it executes an order of magnitude faster than other algorithms we tested
(e.g. about 10 minutes for the process in [12] compared to more than 4 hours for the method
in [13]).

II. DATA FORMAT
Our data set consists of 115 3D facial meshes comprised of 30-40,000 points obtained from
a 3dMD® digital stereophotogrammetry imaging system (Atlanta, GA). These systems are
outfitted with multiple CCD cameras mounted at fixed angles and distances, to capture
overlapping views of the face and head. Prior to 3D image capture, scalp hair obscuring the
subject's face was cleared away through application of hairnets, hairbands, and various types
of pins and clips. Subjects were positioned so that their heads were centered between the
imaging pods and positioned slightly upward in order to ensure adequate coverage of the
subnasal region. Extraneous data, including most of the subject's neck and shoulders, were
removed. Surface meshes were pose-normalized for our automatic detection system using a
method described in [14].
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There are 27 landmarks mentioned in this paper, including the nasion (n), sellion (se),
pronasale (prn), subnasale (sn), right and left alare (al), right and left alar curvature (ac),
labiale superius (ls), stomion (sto), labiale inferius (li), sublabiale (sl), right and left subalare
(sbal), right and left crista philtri (cph), right and left chelion (ch), ganthion (gn), right and
left endocanthion (en), right and left exocanthion (ex), right and left superaurale (sa), right
and left postaurale (pa), as shown in Fig. 1. The 20 established facial landmarks that we
sought are listed in Table 1 and also marked with a triangle in Fig. 1. For ground truth, these
20 landmarks were located manually on each surface by a single trained personnel. All
landmarking was performed on 3D models with color and texture mapping active, which
made them more accurate than if placed on the mesh alone. However, our programs only
had access to 3D meshes with no color/texture.

III. METHOD
Our method to find landmarks using deformable registration can be described in the
following steps:

1. Compute 17 initial landmarks on the nose, mouth, eyes, and ears of both the
template mesh T and the target mesh D using fully automatic geometric methods.

2. Use deformable registration with the geometric landmarks from step 1 for
initialization to find a dense correspondence from T to D.

3. Transfer the 20 manually-marked established landmarks from T to the
corresponding points of D to obtain final landmarks.

A. Generating Initial Landmarks
The geometric method for automatic detection of initial landmarks requires that the head is
normalized to face forward, the origin point lies in the center of the head, and the data are in
(x, y, z) coordinates as shown in Fig. 1. The face width is defined along the x-axis, the
height along the y-axis, and the depth along the z-axis. Our geometric methodology can find
17 landmarks automatically, including seven nose points, four eye points, two mouth points
and four ear points, marked with an asterisk in Fig. 1. Of the 17, ten are established
landmark points and seven more (the sellion, the right and left alar curvature, right and left
superaurale, right and left postaurale) are support points that help the deformable matching
procedure to find a better correspondence from the template to the target.

1) Nose Landmarks—For each 3D head, there is a set of points Zmax at the maximum z-
value. The geometric center of these points (xprn,yprn) is the pronasale (prn). The sellion (se)
and subnasale (sn) can be found as the local minima on either side of the pronasale on the
line with the same x-value as the pronasale, as shown in Fig. 2(a). (Note that the nasion, an
established landmark, is easy to find on skull CT data, but impossible to localize on 3D
mesh data, so we find the sellion instead and leave it to the deformable matching to estimate
the nasion.) To find the left and right alare and alar curvature, the region is restricted to ysn <
y < yprn. The left and right alare (al) are located by calculating the surface normal angles of
the points. Given the surface normal vector n(nx, ny, nz) of a point in the region, the point
with the largest nx value has a surface normal pointing toward the left side of the face. This
point is selected as al_l, and the point with the smallest nx value is selected as al_r (Fig.
2(c)).

Given the surface normal vectors of two neighboring triangles, the angle between these two
vectors is a dihedral angle. All the points on the edges with dihedral angles larger than 30°
make up the set of sharp edge points S shown in Fig. 2(b).
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Two more nose points, the left and right alar curvature (ac), are defined by equations (1) and
(2). The ac_l point is selected as the leftmost point (with the largest x-value) of the region,
and the ac_r is the rightmost point (with the smallest x-value) as shown in Fig. 2(c).

(1)

(2)

Both points are selected from sharp edge point set S, lower than the pronasale and higher
than the subnasale.

2) Mouth, Ear and Eye Points—As shown in Fig. 3(a), to locate the left and right
chelion (ch) points, the mouth is extracted by first restricting to the region where y <ysn.
Among the points on sharp edges in this region, we select the point with the largest x-value
as ch_l and the point with the smallest x-value as ch_r, as defined in (3) and (4).

(3)

(4)

Two points on each ear are used to help define the eye position and registration: the point
with the largest y value as superaurale (sa) and the point with the smallest z value as the
postaurale (pa) on the outline of the ear (Fig. 3(b)).

To locate the endocanthion (en) and exocanthion (ex) points on the left eye, the region El is
restricted to ypa < y < yse along the y-axis and xse < x < 0.8xpa along the x-axis. Then ex_l
and en_l can be found as those points with the least Euclidean distance to the corner with
largest x-value and smallest y-value (the right-back-most point) and smallest x- and z-values
(the left-back-most point), respectively, among all the candidates on the sharp edges. The
ex_r and en_r points can be detected similarly as shown in Fig. 3(c). All the geometric
restrictions are based on the relationship of points to already-detected landmarks. Thus the
pose normalization step [14] is critical to the success of the geometric methods. For most
individuals, including adults (Fig. 4(a)) and children (Fig. 4(b)), the geometric method
produces good initial results. In some cases, such as in Fig. 4(c), where the subnasale is
mistakenly located because of the mustache in the upper lip area, initial results can be
improved by the following deformation step.

B. Deformable Registration
The purpose of this step is to improve the accuracy of the initial landmarks and to add
additional landmarks that cannot be easily detected on meshes. Given a template 3D mesh T
and a target 3D mesh D with sets of geometrically-generated initial landmark points IT and
ID, respectively (Fig 5(a) and (b)), deformable registration is a process that can be applied to
find a dense correspondence from mesh T to mesh D. Due to its speed, we used the
deformable registration method of Allen et al. [12], initialized by the correspondences
between the points of IT and the corresponding points of ID. After completion, all landmarks
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marked by an expert on the template mesh T are transferred to the corresponding points on
the target mesh D, and these become our final landmarks. Note that the number of final
landmarks is determined by the number of the landmarks on the template mesh, and the final
landmarks need not have any relation to the initial landmarks.

The deformable registration algorithm uses an optimization framework to find a set of
transformations that move all the points in T to a deformed surface that matches well with
D, minimizing an energy function

(5)

whose terms include the data error Ed (how well the deformed template matches the target),
the smoothness error Es (of the deformation) and the marker error Em (how well the initial
landmarks match). The process is iterative. In early iterations, the marker error contributes
more to the global optimization. As the process moves towards the end of the registration,
the data error dominates the transformation. See [12] for details.

Only one template mesh was used in the experiments reported here. We did try several
different template meshes with similar results. In prior work, we have developed systems
that selected the best matching template mesh using a fast heuristic matching algorithm for
this purpose [13].

IV. RESULTS
In order to validate our automatic landmark results, we compared the landmark positions
with the landmarks manually placed by the experts. The average distances from our
automatic landmarks to the ground truth given by medical experts are shown in Table I with
their standard deviations. Recall that the automatic landmarks are computed based on the
shape information of the heads without textures, while the experts used the color/texture
data.

The average distance of the 10 points generated by the geometric method alone to the expert
points is 3.12 mm. After the deformable registration with one template to all targets, the
average distance of these 10 landmarks reduces to 2.74mm, with a smaller standard
deviation for eight out of the 10 points (though a few points increase in average error). The
final results with all 20 points have an average distance of 2.64 mm to the ground truth.
Results in the literature on similar data are much worse with average distances ranging from
5 to 13 mm, as shown in Table II. Note that none of the other methods attempted to find the
full set of 20 landmarks.

V. CONCLUSIONS
In this paper, an improved method was introduced to automatically detect landmarks from
3D human facial data. First, geometric information was used to locate 17 prominent points.
Then a deformable transformation between target mesh and data mesh determined 20
established landmarks and located them more accurately than with the geometric method
alone. Our method has an average error of 2.64 mm over a sample of 115 heads and is
superior to prior published methods. Further studies will include testing our method on a
larger database, using these landmarks in morphometric studies and comparing landmark-
based analysis against shape-based analysis of human faces.
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Fig. 1.
Normalized head with landmarks. The geometric method finds the points marked with *.
The points marked with △ are found using the deformation method and compared with the
ground truth.
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Fig. 2.
Initial landmarks on nose
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Fig. 3.
Initial landmarks on mouth, ears, and eyes
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Fig. 4.
Initial landmarks generated by the geometric method. (a)(b) show good results while (c) is a
poor result which is improved by deformable registration. (d) is the result after deformable
registration for (c), the subnasale (on nose tip in (c)) is largely improved (below nose in (d)).
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Fig. 5.
The deformable registration process: (a) and (b) show T (target) and D (destination) with
initial landmarks IT and ID respectively. (c) shows D with transferred landmarks, which is
the final result of our method.
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TABLE I

Average distances and the standard deviations of automatically generated landmarks compared with the
ground truth given by medical experts

Point Name Geometric Method Average Distance(mm) Deformable Method Average Distance(mm)

Nasion — 2.92±1.62

Pronasale 1.29±0.68 1.59±0.81

Subnasale 2.35±2.16 2.45±0.80

Alare(R) 3.24±2.61 1.78±1.15

Alare(L) 3.14±2.41 3.07±1.15

Labiale Superius — 2.27±1.15

stomion — 1.49±0.90

Labiale Inferius — 2.27±1.41

Sublabiale — 3.17±1.87

Subalare(R) — 2.36±1.06

Subalare(L) — 1.59±0.93

Crista Philtri(R) — 2.31±1.27

Crista Philtri(L) — 1.99±1.03

Chelion(R) 3.14±2.41 3.08±2.14

Chelion(L) 2.80±2.38 3.08±1.64

Gnathion — 5.31±3.54

Endocanthion(R) 4.78±1.45 2.39±1.09

Endocanthion(L) 4.58±1.70 2.78±1.50

Exocanthion(R) 3.15±2.21 3.34±1.63

Exocanthion(L) 2.72±1.86 3.68±1.91
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TABLE II

Average distances(mm) and the standard deviations of our method and methods in the literature.

Point Name Our method Yu [8] Nair [10] Lu [5] Colbry [6] Perakis [4]

prn 1.6±0.8 2.2±6.8 8.8 8.3±19.4 4.1±5.1 4.9±2.4

ch(R) 3.1±2.1 — — 6.0±16.9 6.9±8.6 5.6±4.3

ch(L) 3.1±1.6 — — 6.2±17.9 6.7±9.3 6.4±4.2

gn 5.3±3.5 — — — 11.0±7.6 6.0±4.3

en(R) 2.4±1.1 4.7±9.8 12.1 8.3±17.2 5.5±4.9 5.1±2.5

en(L) 2.8±1.5 5.6±16.1 11.9 8.2±17.2 6.3±5.0 5.5±2.6

ex(R) 3.3±1.6 — 20.5 9.5±17.1 — 5.8±3.4

ex(L) 3.7±1.9 — 19.4 10.3±18.1 — 5.7±3.5
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