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Abstract—Energy conservation is an important issue in the
design of embedded systems. Dynamic Voltage Scaling (DVS)
and Dynamic Power Management (DPM) are two widely used
techniques for saving energy in such systems. In this paper,
we address the problem of minimizing multi-resource energy
consumption concerning both CPU and devices. A system is
assumed to contain a fixed number of real-time tasks scheduled
to run on a DVS-enabled processor, and a fixed number of off-
chip devices used by the tasks during their executions. We
will study the non-trivial time and energy overhead of device
state transitions between active and sleep states. Our goal is to
find optimal schedules providing not only the execution order
and CPU frequencies of tasks, but also the time points for
device state transitions. We adopt the frame-based real-time
task model, and develop optimization algorithms based on 0-
1 Integer Non-Linear Programming (0-1 INLP) for different
system configurations. Simulation results indicate that our
approach can significantly outperform existing techniques in
terms of energy savings.

Keywords-real-time systems; energy management; dynamic
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I. INTRODUCTION AND BACKGROUND

Energy efficiency plays an important role in modern
embedded systems. Two effective and widely-used energy
saving techniques are Dynamic Voltage Scaling (DVS) and
Dynamic Power Management (DPM). DVS is used to reduce
CPU power consumption by reducing CPU voltage and
frequency, while DPM is used to reduce power consumption
of off-chip devices by transitioning a device from the active
to the sleep state.

A DVS-enabled processor can adjust its operating voltage
and frequency (speed) dynamically to reduce power con-
sumption. DVS is supported by many commercial CPUs,
such as Intel XScale and PowerPC 405. Each processor
offers a fixed, limited set of valid operational frequencies.
There are two types of DVS policies: the CPU frequency
can change within a single task for intra-task DVS, while the
CPU frequency can only be changed at inter-task boundaries
for inter-task DVS. We adopt the inter-task DVS policy in
this paper. In a real-time system, the goal is to minimize
energy consumption while still meeting all the deadlines of
the real-time tasks. [1] provides a comprehensive survey of
research work on the real-time DVS problem.

As the number of off-chip devices in today’s embedded
systems grows, energy consumption of these devices be-
comes an important issue in addition to the CPU energy
consumption. A typical device has at least two states: a
high-power active state, and a low-power sleep state. DPM
is a popular technique for reducing energy consumption of
an off-chip device transitioning it to the sleep state when
not in use. Since each state transition between active and
sleep incurs a certain overhead in terms of time and energy
consumption, a device should transition to the sleep state
only when the idle duration exceeds a certain threshold,
called the break-even time. [2], [3] explored DPM via
I/O device scheduling for energy efficiency in real-time
embedded systems.

Many research works had been focused on the energy
saving for either the CPU or the device separately. However,
it was shown that lowering the CPU frequency using DVS,
even though it reduces CPU energy consumption, may cause
a net increase in total system-wide energy consumption [4],
[5]. Lower CPU frequency results in decreased processor en-
ergy consumption at the expense of increased task execution
time. This lengthens the duration that a device must stay in
the active state and shortens the idle duration. Furthermore,
some devices may not be able to go to sleep if the device
idle duration does not exceed its break-even time. The
effect is that device energy consumption is increased. Higher
CPU frequency generates the opposite effect. Therefore, the
energy consumption of both processor and devices should
be considered together. In [6]–[8], the concept of critical
speed (or energy-efficient speed) is defined as the CPU
frequency that results in the minimum system-wide energy
consumption. In [9], the authors integrated DVS and DPM
into the same framework and proposed a practical system-
wide energy-efficient scheduling algorithm for preemptive
periodic real-time tasks.

The authors, in [10], exactly analyzed the trade-off be-
tween the benefit/cost spaces of DVS and DPM techniques
and addressed the problem of minimizing system-wide en-
ergy consumption with a combination of DVS and DPM
while taking into account device state transition overheads
for the frame-based task model [11]. Two key assumptions
in [10] are that all devices used by all tasks must be



in active state throughout the execution of the entire task
sequence in a frame, i.e., all devices are assumed to be
used by all active tasks and devices can go to the sleep
state only when all tasks have finished execution, and they
assume the processor can adjust the processing frequency
continuously and power function is P (f) = αf3. In this
paper, we relax these two assumptions. First, we allow each
task to use a subset of devices, so that certain devices
may go to the sleep state even while certain tasks are
still running, as long as the devices are not used by the
running tasks. Second, we focus on the realistic case that a
processor can only operate at discrete set of valid operational
modes (frequencies) and do not make any restriction on
the form of power function. The optimization problem has
two degrees of freedom: task execution order within each
frame, and CPU frequency assignment to each task assuming
inter-task DVS. Since the DVS problem where the target
processor operates at discrete frequencies is well known to
be NP-hard in general, we present effective algorithms for
selecting the task execution order, and formulate the CPU
frequency assignment problem as a 0-1 Integer Non-Linear
Programming (0-1 INLP) problem. Performance evaluation
shows that our approach can result in significant energy
savings compared to related approaches.

The rest of the paper is organized as follows: Section II
presents our system model; Section III, Section IV and Sec-
tion V describe the energy minimization problems; Section
VI presents performance evaluation; Section VII gives some
discussions and concludes this paper.

II. SYSTEM MODEL

Table I summarizes the key notations used in this paper.
We consider a multi-tasking real-time embedded applica-

tion running on a hardware platform of a single processor
and multiple devices. We adopt the frame-based task model
[11]. The application consists of a set of N periodic tasks,
Γ = {τi, i = 1, . . . , N}. All tasks share the same system-
wide frame denoted by T , i.e., the system has a single
execution rate, and all tasks are invoked periodically with
the same period T at time instants n ∗ T, n ∈ Z. All
tasks also share the same relative deadline equal to T . At
the nth invocation, all tasks are released at time instant
n ∗T , and must complete execution within the time interval
[n ∗ T, (n + 1) ∗ T ]. The same task schedule is repeated in
all task frames.

A DVS-enabled CPU is capable of operating at discrete
set of Q valid frequencies, i.e., Q active states, which are
denoted as {f1, f2, ..., fQ}, f1 < f2 < ... < fQ. We normal-
ize the frequency values with respect to fQ, i.e., the range
of fi is (0, 1]. For each frequency level, there is a power
consumption associated with it, and thus we have a set of
power values: {Pf1 , Pf2 , ..., PfQ

}, Pf1 < Pf2 < ... < PfQ
.

The Worst-Case Execution Time (WCET) of τi at maximum
CPU frequency (fQ = 1) is denoted ci, and it scales linearly

Table I
KEY NOTATIONS USED IN THIS PAPER.

τi Task i, i = 1, . . . , N
ci WCET of τi under maximum CPU frequency
fi Valid CPU frequency levels, normalized to be a

frational number in [0,1], fi ∈ {f1, f2, ..., fQ}
Pfi The corresponding power consumption when CPU

operates at frequency fi
T Frame period shared by all tasks
δi Device i, i=1, . . . , M
Di Set of devices used by task τi
Γi Set of tasks using device δi
Bi Break-even time for device δi
P ai Power consumption of device δi in active state
P si Power consumption of device δi in sleep state
T sdi ,Twui State transition time of δi for shutdown (from ac-

tive to sleep) and wake-up (from sleep to active),
respectively

Esdi ,Ewui State transition energy overhead of δi for shut-
down and wake-up, respectively

Etrani Total state transition energy overheads of δi for
one shutdown and one wake-up: Esdi + Ewui

Ecpud CPU dynamic energy consumption within a single
frame

Eδd Total dynamic energy consumption of all devices
within a single frame

Eδi
d Dynamic energy consumption of device δi within

a single frame

with CPU frequency, i.e., its WCET at CPU frequency f is
ci/f . We assume inter-task DVS, hence the CPU frequency
can only be changed at inter-task boundaries, and stays
constant for the entire duration of a given task’s execution.
In order for all tasks to finish within a single frame, we
must have

∑N
i ci/fi ≤ T , where fi is the CPU frequency

assigned to running task τi.
There are a total of M devices used by the application,

denoted by the set D = {δi, i = 1, . . . ,M}. Each device δi
has two states: active and sleep. We assume inter-task device
scheduling, i.e., each device δi used by a task τj must be
in active state for the entire duration of τj’s execution, and
can transition to sleep state when τj completes execution.
These assumptions are realistic since device state transitions
incur non-trivial costs, and it’s difficult to predict when a
running task may request any device during its execution.
The following parameters are associated with each device:

• P ai and P si : device power consumption in active and
sleep state, respectively. We assume P si = 0 in this
paper for simplicity, but our algorithms can be easily
adapted to the case when P si > 0.

• T sdi and Twui : device state transition times for shutdown
(from active to sleep) and wake-up (from sleep to
active), respectively.

• Esdi and Ewui : device state transition energy overheads
for shutdown and wake-up, respectively. We use Etrani



to denote Esdi +Ewui , i.e., the total energy consumption
of device δi’s state transition from active to sleep, and
back from sleep to active.

Note that the energy and time overhead associated with the
CPU frequency switching is on the order of magnitude of
microjoule (µJ) and microsecond (µs) respectively. This
is negligible compared to the overhead of device state
transition which is on the order of millisecond (ms) and
millijoule (mJ).

The device break-even time Bi denotes the minimum
length of idle period that justifies a state transition from
active to sleep state, given as [10], [12]:

Bi = max(E
tran
i

Pa
i
, T sdi + Twui ) (1)

The first term denotes the minimum CPU idle interval length
during which keeping δi in active state consumes at least the
same amount of energy as switching it from active to sleep
and then back from sleep to active; the second term denotes
the total time of two state transitions from active to sleep and
then back from sleep to active. If the length of continuous
device idle time is less than Bi, then δi must remain in
active state even when it is idle, since there is not enough
idle time to put it to sleep while still achieving a net energy
reduction.

Since each frame contains the same task schedule, we
focus on the total energy consumption in a single frame.
The total system energy E consists two parts: static energy
Es and dynamic energy Ed. The static energy is constant
and not affected by DVS or DPM due to fixed frame size,
hence it is ignored in our problem formulation. Ed consists
of two parts: CPU energy consumption Ecpud and device
energy consumption Eδd . We have the following expressions:

Ecpud =
N∑
i=1

ci

fi
Pfi

,

Eδd =
M∑
i=1

(liP ai + oiE
tran
i ),

Ed = Ecpud + Eδd

(2)

where li denotes the total amount of time that δi spends in
active state, and oi denotes the number of times that δi goes
into sleep state in a single frame. Our optimization objective
is to minimize the total dynamic energy consumption Ed by
finding the optimal solution of task execution order within
each frame and CPU frequency assignment to each task.

In this paper, we consider two possible dependency con-
straints among tasks:
• Tasks are independent from each other, i.e., their order

of execution within each frame is flexible.
• Tasks must execute with a fixed total task execution

order imposed by application requirements within each
frame.

Assume that each task τi uses a set of devices Di =
{δi1, ..., δi|Di|}. Within each set Di, device indices are sorted

Table II
SYSTEM CONFIGURATIONS

flexible order fixed order
zero− full − overlapping zfov − flex zfov − fix
partial − overlapping pov − flex pov − fix

in increasing order of their break-even times. We classify
device usage pattern by tasks into two categories:
• zero-full-overlapping: any given pair of tasks must use

the same set of devices, or use two disjoint sets of
devices that do not overlap with each other, i.e., ∀i, j ∈
[1, . . . , N ] (Di = Dj) ∨ (Di ∩Dj = ∅).

• partial-overlapping: there may be non-zero overlaps
between the set of devices used by any pair of tasks,
i.e., ∃i, j ∈ [1, . . . , N ] (Di 6= Dj) ∧ (Di ∩Dj 6= ∅).

We consider a total of four different system configurations
according to task dependency constraints and device usage,
as shown in Table II. We address each of these configurations
in the following sections.

III. ZFOV-FLEX: ZERO-FULL-OVERLAPPING &
FLEXIBLE ORDER

In this section, we consider the case when all tasks are
independent and device usage is zero-full-overlapping. We
present a two-phase algorithm and formulate a 0-1 Integer
Non-Linear Programming (0-1 INLP) problem to determine
the optimal solution.

A. Phase 1
We group all tasks that use the same set of devices into a

contiguous sequence in order to maximize the lengths of de-
vice idle durations. We partition the total set of N tasks into
m + 1 subsets denoted by S = {S0, S1, ..., Sm},m ≤ M .
S0 denotes the subset of tasks that use no device, and Si|i 6=0

denotes the subset of tasks that use the same set of devices
Di, i.e., (

m⋃
i=1

Di = δ) ∧ (Di

⋂
i6=j|i,j∈[1,...,m]

Dj = ∅). Each

subset Si is called a Homogeneous Device Usage task group,
or a task group for short. For our purposes, execution order
of tasks in the same task group has no effect on system
energy consumption. After task grouping, the device idle
durations either become larger or stay the same, so any
device has higher possibility to transition into sleep state.
Therefore, the total energy consumption of CPU and devices
must either decrease or remain the same, i.e., task grouping
leads to miss no optimal solution. Due to our assumption
that device usage is zero-full-overlapping, each device is
used by at most one task group. Therefore, the active and
idle durations of each device coincide with the active and
idle durations of the task group that uses it, and there is no
fragmentation of idle/active durations of each device within
each frame. This means that each device either stays active
for the entire frame, or goes from active to sleep and back
again only once within each frame.
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Figure 1. Relationship between break-even time and frame T .

B. Phase 2

In this phase, we formulate a 0-1 INLP problem for
minimizing multi-resource energy consumption.

Figure 1 shows the execution order of m + 1 task
groups for two frame periods. Si contains |Si| tasks:
τi1, τi2, ..., τi|Si|. Bit stands for the break-even time of
device δit, t ∈ [1, ..., |Di|] (For ease of presentation, we
assume S0 use one device δ0 with break-even time and
active power equal to zero). For each Si|i∈[0,...,m], we define
several binary variables:
• xiuv = 1 if task τiu runs on frequency fv .
• yit = 1 if device δit can go to sleep, while yit = 0

stands for that the device can not sleep.
Where, fv ∈ {f1, f2, ..., fQ}.

If δit can go to sleep, the sum of its break-even time and
its time spent in the active state must not exceed the frame
length. Since each device is used by at most one task group,
its time spent in the active state within each frame equals to
the execution time of the task group that uses it. Hence:

∀t ∈ 1, ..., |Di|, li + yitBit ≤ T,

where li =
|Si|∑
u=1

Q∑
v=1

xiuv
ciu

fv

(3)

Recall that within each set Di = {δi1, . . . , δi|Di|}, device
indices are sorted in increasing order of their break-even
times. Therefore, if δit can go to sleep, devices with smaller
or equal break-even times (δi1, . . . , δi(t−1)) can also go to
sleep, since all devices in Di have identical usage pattern
due to our zero-full-overlapping device usage assumption.
This fact can be expressed with a constraint:

∀t ∈ 1, ..., |Di| − 1, yit ≥ yi(t+1) (4)

Total energy consumption EDi

d of all devices in Di within
a single frame is:

EDi
1 =

|Di|∑
t=1

yit(liP ait + Etranit )

EDi
2 =

|Di|∑
t=1

(1− yit)TP ait
EDi

d = EDi
1 + EDi

2

(5)

where EDi
1 is sum of the energy consumption of those

devices that can go to sleep, and EDi
2 is sum of the energy

consumption of those devices that must keep active for the
entire frame.

The total energy consumption of all devices in the system
within a single frame is:

Eδd =
m∑
i=0

EDi

d (6)

Each task τiu can run on only one frequency, which is
expressed as:

∀i ∈ [0, ...,m], ∀u ∈ [1, ..., |Si|],
Q∑
v=1

xiuv = 1 (7)

To meet deadlines, the task set should finish before or at
end of the current frame:

m∑
i=0

|Si|∑
u=1

Q∑
v=1

xiuv
ciu

fv
≤ T (8)

The total CPU energy consumption in a single frame is:

Ecpud =
m∑
i=0

|Si|∑
u=1

Q∑
v=1

xiuvPfv

ciu

fv
(9)

The optimization objective is to minimize Ed, the total
dynamic energy consumption of the CPU and all devices
within a single frame:

min Ed = Ecpud + Eδd (10)

Conditions 3 to 9 form a constraint set, and combined
with the optimization objective in Condition 10, it forms a
0-1 INLP problem. Furthermore, if substituting each term
of xiuv multiplied by yit with one binary variable, we
can formulate a 0-1 Integer Linear Programming (0-1 ILP)
problem, detail shown in Appendix A.

IV. ZFOV/POV-FIX: ZERO-FULL/PARTIAL-
OVERLAPPING & FIXED-ORDER

In this section, we consider the case when all tasks must
execute with a fixed total task execution order imposed by
application requirements within each frame. Without loss
of generality, we assume the execution order is the same as
order of task indices, i.e., from τ1 to τN ; τ1 starts to execute
at the beginning of each frame. The device usage pattern can
be either zero-full-overlapping or partial-overlapping, and
both can be addressed by our algorithm proposed in this
section.

For each device, its active intervals within a frame is
the set of time intervals when the device is in use con-
tinuously and hence must stay active. Each active interval
is delimited by two tasks’ start and end time instants
[start(τj), end(τj′)], where τj (τj′ ) uses the device at the
beginning (end) of the active interval.

Figure 2 shows an example when device δi has two
active intervals within a frame, which partition a frame T
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Figure 2. Device δi has two active intervals (shaded area in the lower
figure) within a frame: [start(τj), end(τj′ )], [start(τk), end(τk′ )].

into two segments: Ai1 and Ai2. We use the example in
Figure 2 to explain our two-phase approach. Phase 1: find
all the segments partitioned by the active intervals. Phase 2:
formulate a 0-1 INLP problem to determine the frequencies
which lead to the minimum energy consumption.

A. Phase 1

A device δi ∈ {δ1, ..., δM} may have more than one
active intervals (segments) within a frame. We use Ai and
|Ai| to denote the set and the number of all segments
for device δi, respectively, and use A = {A1, . . . , AM}
to denote the whole set of the segments for all the
M devices. Aiw|w∈[1,...,|Ai|] stands for wth segment. As
shown in Figure 2, two segments are denoted as Ai1 =
[start(τj), start(τk)], Ai2 = [start(τk), next start(τj)],
each of which starts from the start of an active interval
and ends at the start of the next active interval. (We use
next start(τj) to denote start time of the instance of τj in
the next frame.) The usage relationship of M devices and N
tasks form a M×N matrix, which can be traversed to obtain
all the active intervals and the whole segment set A. Since
the segments of a device δi may overlap with the segments
of other devices, we should consider each device separately
and calculate the energy consumption of δi by summing up
the energy for each segment Aiw.

B. Phase 2

From Phase 1, we have obtained A for all tasks in
increasing order of task indices, i.e, the beginning task
in Ai1 is the first task use δi within a frame. For each
Aiw|w∈[1,...,|Ai|], we define several binary variables:
• yiw = 1 if δi can transition to sleep while yiw = 0 for

keeping active, in Aiw.
Note that here yiw has different meaning with that in Section
III. One denotes wth device in Di while the other represent
the wth segment in Ai. For each task τu, define Q binary
variables:
• xuv = 1 if τu runs at frequency fv .
Since the processor may become idle only after the

execution of the last task in a frame, we treat the last

segment (Ai|Ai|) as a separate case from all other non-
last segments (Aiw|w∈[1,...,|Ai|−1]). For example, in Figure
2, the set of segments Ai for device δi in a frame has
size 2: the first one, [start(τj), start(τk)], is a non-last
segment; the second one [start(τk), next start(τj)], is the
last segment in a frame. (If there is only one segment, we
treat it as last segment.) Next, we present the constraints for
Aiw|w∈[1,...,|Ai|−1], followed by those for Ai|Ai|.

1) Constraint set for the non-last segments (Ai1): If
the device idle duration [end(τj′), start(τk)] in Figure 2
exceeds break-even time Bi, δi can go to sleep at the end of
the active interval (end(τj′)). Since the scheduling discipline
is work-conserving, the length of this device idle duration is
equal to sum of the execution times of the set of tasks from
τj′+1 to τk−1. This condition can be expressed as:

yi1Bi ≤
k−1∑

u=j′+1

Q∑
v=1

xuv
cu

fv
(11)

The total energy consumption of device δi in the time
interval Ai1 can be obtained as follows:

Eδi
1 = yi1(

j′∑
u=j

Q∑
v=1

xuv
cu

fv
P ai + Etrani )

Eδi
2 = (1− yi1)

k−1∑
u=j

Q∑
v=1

xuv
cu

fv
P ai

Eδi

d1 = Eδi
1 + Eδi

2

(12)

where Eδi
1 is the device energy consumption when δ1 can

go to sleep at end(τj′), and Eδi
2 is the device energy

consumption when δi keeps active for all the length of Ai1.
2) Constraint set for the last segment (Ai2): Unlike the

non-last segments, CPU may become idle after τN execution
in the last segments. Therefore, the device idle duration
[end(τk′), next start(τj)] can not be expressed by sum
of the execution times of the set of tasks from τk to the
next instance of τj−1. We use the following constraint to
represent the relationship between the idle duration and
break-even time Bi:

yi2Bi ≤ T −
k′∑
u=j

Q∑
v=1

xuv
cu

fv
(13)

The total energy consumption of device δi in the time
interval Ai2 can be obtained as follows:

Eδi
1 = yi2(

k′∑
u=k

Q∑
v=1

xuv
cu

fv
P ai + Etrani )

Eδi
2 = (1− yi2)(T −

k−1∑
u=j

Q∑
v=1

xuv
cu

fv
)P ai

Eδi

d2 = Eδi
1 + Eδi

2

(14)

where Eδi
1 is the device energy when δ1 can go to sleep at

end(τk′), and Eδi
2 is the device energy when δi keeps active



for the device idle duration [end(τk′), next start(τj)]. And,
the energy consumption of δi is:

Eδi

d =
|Ai|∑
w=1

Eδi

dw = Eδi

d1 + Eδi

d2
(15)

For clarity of presentation, we have described the con-
straint conditions for the example in Figure 2 with two
active intervals (segments) in a frame for device δi. These
conditions can be easily generalized for the case with
arbitrary number of active intervals for device δi.

Having obtained the energy consumption of each device,
the total energy of all M devices in a frame is:

Eδd =
M∑
i=1

Eδi

d (16)

Each task τu can run on only one frequency, which is
expressed as:

∀u ∈ [1, ..., N ],
Q∑
v=1

xuv = 1 (17)

To meet deadlines, the total execution time can not exceed
the frame:

N∑
u=1

Q∑
v=1

xuv
cu

fv
≤ T (18)

The total CPU energy consumption in a single frame is:

Ecpud =
N∑
u=1

Q∑
v=1

xuvPfv

cu

fv
(19)

The optimization objective is to minimize Ed, total dy-
namic energy consumption of the CPU and all devices within
a single frame:

min Ed = Ecpud + Eδd (20)

V. POV-FLEX: PARTIAL-OVERLAPPING & FLEXIBLE
ORDER

In this section, we address the case when device usage
pattern is partial-overlapping and task execution order is
flexible within each frame. We present two algorithms with
different tradeoffs between running speed and optimality.

A. Conservative Approximation

We group any two tasks that share at least one common
device into a single task group that uses the union of devices
that are used by the two original tasks, i.e., for any pair of
tasks τi and τj , if Di ∩Dj 6= ∅, then group τi and τj into
a single task group that uses Di ∪Dj . Then the techniques
presented in Section III can be applied. This is a conservative
approximation of the actual device usage pattern, hence the
solution obtained is sub-optimal, but it is very efficient since
the solver only needs to be invoked once.

B. Efficient Heuristic

To improve the efficacy, we proposed an efficient heuristic
algorithm base on lexicographical order to determine a
task execution order, and then the techniques presented in
Section IV can be adopted.

Algorithm 1 Determine the task running order
Input: (Γ,Γi, D,Di);
Output: a task running order;

1: for i = 1 to M do
2: if

∑
τj∈Γi

cj +Bi ≥ T then

3: D = D − δi;
4: end if
5: end for
6: if D = ∅ then
7: return any task running order is OK;
8: end if
9: sort D according to the decreasing order of P ai , and in

increasing order of Bi (Etrani ) if some P ai equals;
10: sort Γ in the reverse lexicographical order;
11: reverse the task order in each odd group, which becomes

the lexicographical order in each odd group;
12: return the task running order;

We would like to let the devices with higher P ai and
lower Bi (Etrani ) go to sleep. There are two reasons: (i)
this can save more energy due to devices with high P ai can
sleep; (ii) these devices can go to sleep less costly due to
small Bi (Etrani ). A group in Algorithm 1 is headed with
the same device. Lines from (1) to (8) check a trivial case
if all devices can not switch to sleep even when all tasks
run at maximum frequency. Line (9) sorts the device set
accordingly. Line (10) make tasks using common devices
execute continuously in each group and line (11) may make
the common devices in two adjacent groups go to sleep too.
Suppose three devices has P a1 > P a2 > P a3 and δ1, δ2, δ3
can be seen as alphabets c, b, a respectively. The device
usage of four tasks is D1 = {δ1} = c,D2 = {δ2, δ3} =
ba,D3 = {δ1, δ2, δ3} = cba,D4 = {δ2} = b. The first
group is {τ1, τ3} headed by δ1, and the second group is
{τ2, τ4} headed by δ2. After execution line (10), the task
order is the reverse lexicographical order τ3, τ1, τ2, τ4. Then,
the order changes to τ1, τ3, τ2, τ4 by line (11), where δ3 is
also grouped together. We can see that more devices are used
continuously, thus more devices may go to sleep.

VI. PERFORMANCE EVALUATION

Our simulation is based on processor and device param-
eters taken from [13] and [12] respectively. Table III lists
parameters of some devices1. The Intel XScale processor

1Since we assume the device power consumption in the sleep state (P si =
0) is zero, the device parameters from [12] are adjusted by subtracting its
power consumption in the sleep state from that in the active state.



Table III
DEVICE PARAMETERS

Device Pa
(mW )

T
sd(wu)
(ms)

E
sd(wu)
(mJ)

Realtek EthernetChip 105 10 0.4
MaxStreamwirelessmodule 745 40 3.8
IBM Microdrive 1200 12 4.8
SST F lashSST39LF020 124 1 0.049
SimpleTechF lashCard 205 2 0.16
Fujitsu 2300AT Hard disk 1300 20 10

Table IV
ACTUAL CPU OPERATION FREQUENCIES AND APPROXIMATE POWER

FUNCTION

Normalized frequency 0.15 0.4 0.6 0.8 1
Power(mW ) 80 170 400 900 1600

Approximate power function : 40 + 1560f3

is used, with the discrete operation mode and approximate
power function shown in Table IV after normalizing the CPU
frequency so that 0 < f ≤ 1.

In general, there are two approaches in designing the
energy saving schemes for the discrete operation modes.
The first one is to patch the scheduling obtained under
the continuous frequency model and reassign each task
frequency to the closest higher frequency, by which we
consider two algorithms as follows:
• DVS-ONLY, which is treated as the baseline approach.

All tasks shared the same CPU frequency, which is low-
ered aggressively to minimize CPU energy consump-
tion while preserving schedulability, i.e., f =

∑N
i=1 ci

T ,
under continuous frequency model. Then, the frequency
is reassigned to the closest higher valid frequency. All
devices keep active throughout the entire frame period.

• TL-CS: the Task-Level Critical Speed, defined as [7]
under continuous frequency model, is the frequency
obtained by setting the derivative of the following
equation to 0 and equal to (P

a(Di)
2α )

1
3 .

αcif
2
i + P a(Di)

ci
fi

where fi is the CPU frequency for task τi; P a(Di) is
the total power consumption of Di, devices used by τi.
Then, reassign fi to the closest higher valid frequency.
A device will always go to sleep, if it is feasible to do
so for the reassigned frequency and break-even time.

The second approach is to design the optimal energy saving
scheme considering the discrete frequency model from the
beginning.
• ST-OT: The approach in [10] assumes that Sequence of

Tasks as One Task and all tasks within one frame use
all devices. Assuming continuous frequency processor
model, the approach determines the global minimum
energy consumption through trying all local extreme
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Figure 3. Comparison of ZFOV-FLEX, ST-OT, TL-CS, and DVS-ONLY.
T is 120ms; each task uses 1-2 and 3 devices.

frequency points of M + 1 intervals obtained by di-
viding [

∑N
i=1 ci, T ] with the non-decreasing order of

break-even times. Due to the discrete frequency model
in this paper, we adapt this approach by trying all
possible frequencies and returning the minimum energy
consumption value. So, it doesn’t have to try M + 1
but Q frequency values.

• ZFOV-FLEX, ZFOV/POV-FIX and POV-FLEX: Our
algorithms presented in Sections III, IV, V respectively.

We compare the performance of the above three approaches
for different system configurations.

We use ILOG CPLEX (not ILOG Parallel CPLEX) solver
to solve the 0-1 INLP problems. The experiments are per-
formed on a Windows PC with an Intel Core2 2.83GHZ 32-
bit processor and 2GB main memory. In all the figures in this
section, Umin denotes the minimum CPU utilization when
CPU frequency is set to be the maximum normalized value
of 1. The energy consumptions in each figure are normalized
to that of the DVS-ONLY for each setting, respectively.

A. ZFOV-FLEX: zero-full-overlapping & flexible order

In this experiment, we use the following procedure
to set the zero-full-overlapping device usage pattern for
ZFOV-FLEX. First, a partition of all devices in Table III
is generated randomly denoted by {D1, ..., Dm}, where
m ≤ 6. Then, one device set is chosen randomly from
{∅, D1, ..., Dm} to be used by τi. For fairness of compari-
son, the same device usage pattern is used and tasks used the
same device set are also grouped for TL-CS. Figures 3 shows
the results. As Umin increases, the taskset becomes non-
schedulable with TL-CS, hence the TL-CS curve is shorter
than others in some figures.

B. ZFOV/POV-FIX: zero-full/partial-overlapping & fixed
order

It’s randomly chosen several devices from Table III for
each task in this experiment. Figures 4 shows the perfor-
mance comparison of ZFOV-/POV-FIX, ST-OT, TL-CS, and
DVS-ONLY. From the results of the above two experiments,
we can see that the proposed approaches outperform the
other approaches across the whole range of Umin.
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Figure 4. Comparison of ZFOV-/OV-FIX, ST-OT, TL-CS, and DVS-ONLY.
T is 120ms; each task uses 1-2 and 3 devices.
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Figure 5. Running time of the solver for the experiments in Figure 3(b)
and in Figure 4(b).

ZFOV-FLEX and ZFOV/POV-FIX save more energy com-
pared to ST-OT up to 29.1% and 17.6% respectively. Due to
the assumption that all devices are active when the processor
is non-idle, the performance of ST-OT moves towards DVS-
ONLY when the utilization grows.

ZFOV-FLEX and ZFOV/POV-FIX save more energy com-
pared to TL-CS up to 17.0% and 10.4% respectively, when
up to 3 devices are used. This saving increases as the number
of devices grows, since more and more devices can go to
sleep state by our approaches. The maximum energy savings
occurs in the utilization range of [0.4, 0.7]. The reason is
that most devices can go to sleep in both our algorithms
and TL-CS when utilization is less than 0.4 while most
devices have to keep active all frame long when utilization
is greater than 0.7, and the numbers of devices can sleep
in our approaches and TL-CS have maximum differences
between the two extreme conditions.

In some cases, such as the utilization range [0.45, 0.6] in
Figure 4(b), TL-CS performs even worse than DVS-ONLY.
The reason is that TL-CS derives the task-level critical speed
which leads to the minimum energy consumption for each
task, but not for the whole task set. When all devices must
keep active for entire frame in both the two algorithms,
DVS-ONLY has lower CPU energy consumption and thus
performs better than TL-CS.

Figure 5 shows the running time of CLPEX solver for
the experiments in Figure 3 and Figure 4, with task numbers
ranging from 10 to 25 and from 5 to 20, respectively. We can
see that ZFOV-FLEX’s has lower running time and better

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

 

 

N
or

m
al

iz
ed

 E
ne

rg
y 

C
on

su
m

pt
io

n

Utilizatoin(Umin)

 POV-FLEX-Ex
 POV-FLEX-Heur
 POV-FLEX-Con
 DVS-ONLY
 ST-OT

(a) 1-2 devices

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

 

 

N
or

m
al

iz
ed

 E
ne

rg
y 

C
on

su
m

pt
io

n

Utilizatoin(Umin)

 POV-FLEX-Ex
 POV-FLEX-Heur
 POV-FLEX-Con
 DVS-ONLY
 ST-OT

(b) 3 devices

Figure 6. Comparison of POV-FLEX-Ex, POV-FLEX-Con, POV-FLEX-
Heur, ST-OT, and DVS-ONLY. T is 120ms; each task uses 1-2 or 3 devices.

scalability than ZFOV/POV-FIX, which is mainly due to
the number of variables in ZFOV-FLEX is less than that
in ZFOV/POV-FIX.

C. POV-FLEX: partial-overlapping & flexible order

Each task randomly chooses several devices from Table
III. In Figure 6, POV-FLEX-Ex denotes an exhaustive search
approach, where we try all possible task execution orders
exhaustively, and determine the solution of CPU frequency
assignments with minimum energy consumption for each
task execution order using the techniques presented in Sec-
tion IV. POV-FLEX-Con and POV-FLEX-Heur denote the
conservative approximation approach and efficient heuristic
as presented in Section V. We can see that POV-FLEX-
Heur has very good performance and its results are nearly
the same as the optimal results of POV-FLEX-Ex when
each task uses either 1-2 or 3 devices. The reason is that
POV-FLEX-Heur almost guarantees each of the devices with
high P ai can be used as continuously as possible and has
higher possibility to switch into sleep state. When device
sets overlap heavily and all tasks may be formed to only one
group, POV-FLEX-Cons performance is compromised and
degenerates to ST-OT. In this case, the performance of POV-
FLEX-Con and ST-OT moves towards to DVS-ONLY as the
system utilization becomes higher because most devices are
used for a long time and may keep active within the whole
frame.The running time of POV-FLEX-Heur is longer than
that of POV-FLEX-Con, which is also shown in Figure 5.

VII. DISCUSSIONS AND CONCLUSIONS

A. Discussions

An assumption in Section III to V is that all tasks must
execute without any idle time in-between within a frame,
i.e., the work-conserving schedule discipline is adopted.
The formulations can be easily adapted to the non-work-
conserving case by setting some variables of the idle times,
which may lower the energy consumption further.

For Section III, since each device is used by at most one
task group, the device either stays active for the entire frame,
or swithces from active to sleep state and back again only
once within each frame. Therefore, the 0-1 INLP derives
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Figure 7. Segments after insert idle time after each task.

minimum energy consumption under either work-conserving
or non-work-conserving schedule discipline.

For Section IV, we set variable tj of an idle time after
each task τj . In phase 1, the segments in Figure 2 becomes
|Γi| segments shown in Figure 7, where |Γi| is the number
of tasks using device δi. Each segment begins from one task
using the device and ends at the beginning of the next task
using the device, so there is only one task using the device
in each segment, i.e., each active interval contains only one
task. We do not have to differentiate the last and non-last
segments. We only need to insert the idle time ti into all the
formula and change ”≤” to ”=” in Condition (18) in phase
2, which formulates a mixed integer non-linear programming
(MINLP) problem, detail shown in Appendix B.

B. Conclusions

In this paper, we addressed the multi-resource energy min-
imization problem for frame-based real-time tasks running
on a DVS-capable processor of discrete set of operational
modes with multiple off-chip DPM-capable devices. The
optimization problem has two degrees of freedom: task
execution order within each frame, and CPU frequency as-
signment to each task assuming inter-task DVS. We present
effective algorithms for selecting the task execution order,
and formulate the CPU frequency assignment problem as a
0-1 Integer Non-Linear Programming (0-1 INLP) problem
under different system configurations. Simulation results
show that our approach can result in significant energy
savings compared to related approaches.
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APPENDIX

A. 0-1 Integer Linear Programming (0-1 ILP) for ZFOV-
FLEX

In phase 2 of Section III, we can formulate a 0-1 ILP
problem for minimizing multi-resource energy consumption.

Figure 1 shows the execution order of m+ 1 task groups
for two frame periods. For each Si|i∈[1,...,m], we define
several binary variables:
• Xituv = 1 iff device δit can go into sleep state and

task τiu run on frequency fv .
• Yituv = 1 iff task τiu run on frequency fv but device
δit cannot sleep.

Where, fv ∈ {f1, f2, ..., fQ}.



If δit can go to sleep, then sum of its break-even time and
its time spent in the active state must not exceed the frame
length. Hence:

li +Bit
Q∑
v=1

Xit1v ≤ T,

where li =
|Si|∑
u=1

Q∑
v=1

Xituv
ciu

fv

(21)

As shown in Figure 1, in one frame beginning from τi1,
since the operational state of device δit must be the same
and each task can be assigned only one frequency, we have
the following constraints:

∀u, u′ ∈ [1, ..., |Si|], (
Q∑
v=1

Xituv =
Q∑
v=1

Xitu′v)

∧(
Q∑
v=1

Yituv =
Q∑
v=1

Yitu′v)
(22)

Note that we use index it1v in some equations or constraints
due to the equivalence in Condition (22). And, δit either can
go into sleep state or keep active all frame long:

Q∑
v=1

(Xit1v + Yit1v) = 1 (23)

Besides Condition (22), we use the following equations to
guarantee that each task runs at only one frequency:

∀t, t′ ∈ [1, |Di|], ∀u ∈ [1, |Si|], ∀v ∈ [1, Q],
Xituv + Yituv = Xit′uv + Yit′uv

(24)

Note that is why we use index i1uv in some equations or
constraints.

Recall that within each set Di = {δi1, . . . , δi|Di|}, device
indices are sorted in increasing order of their break-even
times. Therefore, if δit can go to sleep, devices with smaller
or equal break-even times (δi1, . . . , δi(t−1)) can also go to
sleep, since all devices in Di have identical usage pattern
due to our zero-full-overlapping device usage assumption.
This fact can be expressed with a constraint:

∀t ∈ [1, |Di| − 1],
Q∑
v=1

Xit1v ≥
Q∑
v=1

Xi(t+1)1v (25)

Total energy consumption EDi

d of all devices in Di within
a single frame is:

EDi
1 =

|Di|∑
t=1

(P ait
|Si|∑
u=1

Q∑
v=1

Xituv
ciu

fv
+ Etranit

Q∑
v=1

Xit1v)

EDi
2 =

|Di|∑
t=1

TP ait

Q∑
v=1

Yit1v

EDi

d = EDi
1 + EDi

2

(26)

where EDi
1 is sum of the energy consumption of those

devices that can go to sleep, and EDi
2 is sum of the energy

consumption of those devices that must keep active for the
entire frame.

Total energy consumption of all devices in the system
within a single frame is:

Eδd =
m∑
i=1

EDi

d (27)

To meet deadlines, each task group should finish before
or at end of the current frame:

m∑
i=0

|Si|∑
u=1

Q∑
v=1

(Xi1uv + Yi1uv) ciu

fv
≤ T (28)

Total CPU energy consumption within a single frame is:

m∑
i=0

|Si|∑
u=1

Q∑
v=1

(Xi1uv + Yi1uv)Pfv

ciu

fv
(29)

The optimization objective is to minimize Ed, total dy-
namic energy consumption of the CPU and all devices within
a single frame:

min Ed = Ecpud + Eδd (30)

Conditions 21 to 29 form a linear constraint set, and
combined with the optimization objective in Condition 21,
it forms a 0-1 ILP problem. In general, many problems
with thousands of variables and constraints can be solved
efficiently with modern ILP tools, such as CPLEX. The
complexity of ILP solving is determined by the number of
variables. In the worst case, every task use all M devices
and has to be associated with M variable X sets and M
variable Y sets and multiplied by Q CPU operation modes,
the number of binary variables is 2MNQ. However, in
practice, since it seldom occurs that all devices in one system
used by each task, the number of variables in sharply lower
than 2MNQ.

B. MINLP

There is only one task τw using device δi in each segment
Aiw, and we formulate a MINLP as follows:

min Ed = Ecpud + Eδd
sub.to yiwBi ≤ tiw(∼δi),

Eδi

dw =
Q∑
v=1

xwv
cw

fv
P ai + yiwE

tran
i

+(1− yiw)tiw(∼δi)P
a
i ,

Eδi

d =
|Ai|∑
w=1

Eδi

dw, E
δ
d =

M∑
i=1

Eδi

d ,

∀u ∈ [1, ..., N ],
Q∑
v=1

xuv = 1,

Ecpud =
N∑
u=1

Q∑
v=1

xuvPfv

cu

fv
,

N∑
u=1

(
Q∑
v=1

xuv
cu

fv
+ tu) = T

(31)

Where tiw(∼δi) denotes the time duration when δi is not in
use in Aiw, which is equal to the sum of the processor idle
time and the execution time of tasks not using δi in Aiw. tu
is the processor idle time after τu.


