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Abstract—In this paper we tackle the problem of efficient
video event detection. We argue that linear detection fun@bns
should be preferred in this regard due to their scalability and ef-
ficiency during estimation and evaluation. A popular approah in
this regard is to represent a sequence using a bag of words (B
representation due to its: (i) fixed dimensionality irrespetive of
the sequence length, and (ii) its ability to compactly modethe
statistics in the sequence. A drawback to the BOW representin,
however, is the intrinsic destruction of the temporal ordeing
information. In this paper we propose a new representation hat
leverages the uncertainty in relative temporal alignmentdetween
pairs of sequences while not destroying temporal orderingOur
representation, like BOW, is of a fixed dimensionality makirg
it easily integrated with a linear detection function. Extensive
experiments on CK+, 6DMG, and UvA-NEMO databases show
significant performance improvements across both isolatecénd
continuous event detection tasks.

I. INTRODUCTION

A popular strategy for learning a discriminative event
detection functionf(X;0) : RP>*M — R! is to employ a
linear function,

1)

where ¢{X} is a vectorized feature representation of the
multi-dimensional event sequen® < RP*M; D is the
dimensionality of the signal; andl/ is the number of frames.
This is in contrast to canonical methods for temporal detact
in vision such as hidden Markov models (HMMS) [1], latent
dynamic conditional random fields (LDCRF$) [2], time series
kernels [3], [4] and dynamic time-alignment kernels [5] alii
have non-linear interactions between the model paramdters
and the feature representatioi{,X}.

f(X;0) = o{X}"0

compared their approach to canonical hidden state prastdil
methods for event detection such as hidden Markov models
(HMMs), and demonstrated their BOW+SVM method achieves
superior performance in terms of computation and accuracy
by a considerable margin. A drawback, however, to the BOW
representation lies in the destruction of the temporal dyiosa

in the raw signal X. It is the preservation of this temporal
ordering information that is at the heart of this paper.

Contributions: We make the following contributions in this
paper,

e We propose a novel strategy for learning the relative
alignment uncertainty between pairs of training se-
guences using an adaptation of dynamic time warping
(DTW). Using this model of uncertainty we then
propose a new representation which is an efficient
linear transform of the raw input sequence which: (i)
preserves temporal ordering information while aver-
aging over alignment uncertainty, and (ii) ensures the
representation is of a fixed dimensionality so as to be
applicable within a linear event detection function.

e We demonstrate that our approach has comparable
computational cost to current state-of-the-art BOW
linear detectors, but with the advantage of obtain-
ing significantly better detection performance across
the CK+, 6DMG, and UvA-NEMO event detection
datasets.

We evaluate the proposed approach on three datasets for
both isolated and continuous event detection, and demon-
strate improved performance while retaining computafiona

There are two central advantages for maintaining a lineagfficiéncy. The remainder of this paper is structured avst

relationship betwee{X} and @ in Equation[1. Firstly, the
linear form allows one to employ canonical max-margin linea

Section[I] presents an overview of existing literature, ar-p
ticular the bag of words representation, dynamic time waypi

detectors such as linear support vector machines (SVM) [Gind time series kernels; Sectinl Il presents our proposed

or structural output SVMs (SO-SVM) [7] which generalize
well to high-dimensional discriminative learning probkem
Secondly, during detector evaluation one can take advartfg
efficient search strategies afforded to linear detectasl{near
convolution, summed area tables, etc.) making the appitat
of such detectors highly efficient.

Recently, [8], [9] demonstrated that state-of-the-arfqer
mance in temporal event detection can be achieved udiag a
of words (BOW) representation of the temporal signal in con-
junction with a SVM-style detector. Specifically, the autho

pproach and in Sectidn IV we outline the features that we
use in the proposed method; Secfion V evaluates our proposed
approach; and Sectidn VI concludes the paper.

Il. BACKGROUND
A. Bag of Wbrds Representation

Bag of words (BOW) representations can be viewed as
simply taking the mean over all frames of a non-linear rep-
resentationn{x,,}, where them-th frame vector isX =
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[x1,...,Xa], such that, distance metric. For our purposes this will be the Euclidean
distance. Dynamic time warping (DTW) can be applied to

M align the two signals, and this can be expressed as solving,

1
X} =55 m;n{xm} : @
The non-linear function obtains a sparse encoding of thadra
vector,x, using the codebook matrid € RP*X, where K . . _ _
is the number of codebook entries. The codebook is typicallyvherem, andm, are integer index vectors with the constraints
learned through k-means clustering. We can define this nofthat 1 = 7. (1) < 7,(2),..., < p(T — 1) < po(T) = M

T
DTW(X,Y) = min Y [X[m.(t)] = YIm, 0]} (4
Y =1

linear function as, and1l = my(1) < my(2),....< py(T'—1) < py(T) = N
. with unitary increments and no simultaneous repetitiorse T
Mx} = arg min |[x — Db]], (3)  lengthT of the index vectorsr, andm, are bound byl" <
stbeB M + N — 1. For all elements ofr, andw, we define the
o incrementr such that
whereB = {e;}&£ | is the non-convex set of alk dimen- 1
sional vectorse;, containing all zeros except for one at the _ (Tt 1) _ | =) (5)
th entry my(p+1) my(p)

— . . is constrained to the a set of 3 causal movest and 7,
An initial question one may ask is why destroy the temporalI st 7

ordering information inX? One obvious motivation stems 11 (0] |1
from the realization that the vectorized dimensionality0f TE {O] ’ M ’ M 6)
will vary as a function of M, whereas¢{X} is invariant . . , :

to M. The fixed dimensionality of{X} allows for training !t IS the constraint of the causal moves defined in Equdtlon 6
with canonical linear geometric classifiers such as linagvis ~that makes an efficient solution to the DTW objective in
and structural output SVM. The inevitable information lossEquatiorl possible. Specifically, the causal constransly
stemming from the taking the multi-dimensional averager ove@ tree-structure which can be solved efficiently throughebel
all frames is somewhat mitigated by the application of the-no Propagation (i.e. Viterbi decoding) with a cost { M N D).
linear mapping in Equatidd 3. Without the non-linear magpin . . . L
one Woulzpsir?]ply ge Iei?ning a detector modefrom tﬁ’g DTW _\Narplng Matrices: One can re-write the objective in
multi-dimensional mean oK across frames. By encodirg ~ E£quatior(# as,

non-linearly the destruction of information is not quite as DTW(X,Y) = min |XP, — YP,|[% 7)
severe with higher-order statistical moments being puesker Py, PycP

(i.e. {X} can be interpreted as a multidimensional histogramynere P. and P. are the M x T and N x T warping
x Y

feature). matrices respectively stemming from the $ethat enforce
causal deformations in time. Although unconventional, the
Cost of Search: Another advantage of the BOW representa-c,ncept of expressing the warps stemming from DTW align-
tion is that since temporal ordering information is deséy ment a5 deformation matrices is crucial later for our pregos

in Equation[2, searching over variable size window widths;onroach. FigurE]1 shows four different examples with their
becomes computationally efficient through the judicious us corresponding alignment paths.

of a summed area table (commonly referred to as the integral
image [10] in computer vision). In this strategy once we have .
applied the non-linear transform in Equatioh 3 to all framesc' Time Series Kernels
in a sequence, one can then obtain a cumulative sum of the Time series kernels have been gaining in popularity re-
sequence, at a cost @ (M K), and then obtain the BOW cently for temporal classification and event detectian [3],
representation for any sub-window at a cost of oflyX')  Recently, Lérincz et al[]4] proposed the idea of employing
operations. The sum area table method can only be employd@rnel SVM based on a time series kernel for event detection.
for sequence representations such as BOW where temporal arr this approach they proposed an event detection functpn a
dering is destroyed. The major computational drawback o th

f . . L
BOW representation is the cost of mapping frdn— n{X} o
is O(M K D) using a naive codebook search. f(X;8) = lZalMXa X1) (8)
=1
B. Dynamic Time Warping where 8 = {«;,X;}£, are the kernel SVM’s model pa-

) ) rameters specifically thé, support weightsy; (which have
A number of works have been proposed in the literature fofnhe pinary support labels subsumed within them) and support

temporal alignment [11],[12]. In this work we use dynamic yectorsX;. The alignment kernel is defined as,
time warping (DTW) due to its established performance on

temporal alignment tasks. k(Xi,X;) = exp{—t-DTW(X;, X;)} 9)
Lets assume we have two multi-dimensionalwheret is a constant. The measure DTWn Equation[T is
sequencesX = [x1,...,xym] and'Y = [y1,...,¥n], not technically a distance (as it does not obey the triangle

of equal dimensionalityD (i.e. x € R” andy € R”) but  inequality) so the authors propose projecting the resut in
differing frame lengths,A/ and N respectively. We would the closest symmetric positive semi-definite ker®alw().
like to temporally align these two sequences based on somiejrincz et al. also proposed various extensions and vanist



to the DTW kernel, such as the Global Alignment (GA) kernel,For example, one can nearly always find a superior alignment
the details of which are outside the scope and focus of thibetween two sequencds € RP*M andY € RP*¥ in terms
paper. of their Frobenius norms, such that

A real strength of this method is that it elegantly embraces || X; P}, — X;Pixrl|% > min || XP,—-YP,||5 (11)
the idea that alignment is a relative notion. Instead ofnyyi PoPycP

to align all sequences to a single temporal frame of referenc whereP is the set of causal DTW matrices previously defined
the approach instead employs the notion of relative aligrime in Equation[¥. An issue, however, is that the notion of
between pairs of training examples. The authors reportgd st alignment in Equatioh 11 is relative 8 andY. It is difficult

of the art event detection performance across a number ab ascertain whaP, or P, should be without knowing a priori
event detection datasets, also validating the importarice avhat sequence or sequences you are aligning against.
preserving temporal ordering information in any represtomn

one employs for event detection. B. Learning P

Inspired by the work of([3],[[4] we propose a variation

Computational Cost: Although achieving impressive empir- : 2b
P g g mp P upon our naive representation in Equation 10,

ical performance, time series kernels c@3(LM N D) for

every window searched in a sequenéeis the number of 1 N

support vectorsM is the length of the input sequencs, o{X} = @ Z XPhrP (12)
is the average length of the support vector sequences’and PeG

is the dimensionality of the sequences. Some wéik [3] has = XPuyxrP

explored strategies for making these methods more efﬁde%here@ is a set oflearned T x T temporal deformation

such as the employment of constrained DTWs] [13], Wh'Chmatrices. Instead of estimating an absolute alignmenfXfor

consider a smaller set of possible caugal @"Q”me”ts.- Eutén w our representation instead takes the expectation of therunc
these speed ups, the cost of evaluation is dramaticalledarg tainty in absolute alignment encapsulated in the GetFor

than most other event detection methods in current litezatu . - . S
- . . computational efficiency, the summation P=P
such as efficient BOW methods. Their strength, however, “e%an Fl)ae re-computed );rﬁ* is the Iinelazr:f)netme;r olation
in their good empirical performance and the theoreticabims P P MXxT P

P P : . trix to ensure the raw sequenXeof length M is always
that temporal ordering is of high importance in event débect matry A
and relative DTW alignment may be of service in effectivelyOlc a fixed lengthl". We should note that we are not claimify

taking advantage of this redundanc itself to be a warping matrix (since it is the average of a
9 9 Y- set of warping matrices which belong to a non-convex set).

Instead,P should be just considered a pre-computation of the

1. PROPOSEDAPPROACH averaging procedure described in Equafioh 12.
In this paper we propose the employment of the following , _ . .
linear representation, Learning G: We apply a simple but effective strategy for
learning the sefz where we estimate the deformation matrices
{X} =XP (10)  through the DTW objective of Equatidn 7 for all pairs of posi-

tive class sequence examples which we shall, for conveajenc
simply refer to asX € RP*M andY € RP*¥N, Each pair

of sequences shall produce thé x T and N x T alignment
matricesP, andP, respectively (they are estimated in reverse
pairing as well). All these alignment matrices are collated

the learned set

where the matriXP is a M x T matrix that causally warps all
events into a common reference frame of leriftfirrespective
of the raw lengthM of X). The choice ofT" is chosen to
be larger than all training sequences. The central streofyth
this representation is that, depending on the natur®,oéll
temporal ordering information is preserved. Further, the-r
resentation is a linear transformation of the raw sigKatir- G={P/Pr,1,.. e, (13)
cumventing the sometimes costly non-linear mapping regluir
in canonical BOW representations. An obvious drawback
however, to this approach is how to obtain the alignmen
matrix P?

where L is the total number of estimated deformation matri-
esP; across all pairs of positive class sequend®s, 5, is

he linear interpolation matrix to scale all deformationtntas

to a common length wher&,,.. = max{T;}%Z, is chosen

) to ensure that no temporal detail is lost. Figule 1 shows four

A. Choosing P aligned pairs of videos and their corresponding warpingimat

An obvious choice fofP is simply a interpolation matrix Pt
to transform any sequenée of varying frame length\/ into ) ) , )
results in a homogeneous temporal stretching or squeesiag. ©f [4] (see Sectio II-C) our proposed approach is computa-
shall herein refer to this interpolation matrix B, -, which tionally efficient. Although we cannot take advantage of the

we employ a linear interpolation although other interpolat ~@pproach does not require any non-linear mappings. Further
strategies can be entertained. during evaluation one can actually pre-compute the apipica

) . ) ~_ of the warping matrices,
A drawback to this naive strategy, however, is that it is

almost always sub-optimal if one entertains the DTW Bet f(X;0) = ve{XPj P} 6 (14)
of all causal deformation matrices discussed in Sedfida II- = vec{X}0,y,
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Fig. 1: Example of four aligned sequences from two diffedatbases and their corresponding alignment paths. Fgstep
shows two aligned deliberate smile video frames and Figiledttom shows two aligned spontaneous smile video franes
UVA-NEMO database. Figure (b)-top shows two aligned AU-ded frames and Figure (b)-bottom shows two aligned AU-12
video frames from CK+ database.

so that a number oy, € RP*! linear models of varying ~Algorithm 1: Our Approach (Continuous Event Detec-
window size, M, can be pre-computed frol@ so as to tion)
efficiently handle varying window sizes efficiently. The tos
of evaluating a single window is the®(M D) which is
comparable to the cost dP(K D) of applying the K" entry
codebook encoding to a new frame with a BOW representation.
Also for faster detection we only select those valuesMdf
which are more likely to happen. Finally, for offline or bufe - ) )
applications this approach can also utilize efficient FFgega 2 | ¢ « linearly interpolate {0}
convolutions in time to further decrease computationatiloa 3 dSCOFG « conv (X, 0;)

4 en
Continuous Event Detection: Algorithm 1 shows our pro- 5 {start,end < max (score)
posed model for detecting events in continuous video, ie.
detecting a particular event in an unknown sequence with
unknown starting and ending locations. We learn our modeV
for the continuous problem by using a structured output SVM,
(SO-SVM) as presented iri][7], because of its strengths i
continuous domains. For our SO-SVM we use the same mod
as presented ir_[8][[9] for the loss function and the trajnin
model.

Input  : Input examples X € RP*M  Model
parameter 6, Event size M.
Output : Event Start, Event End
Initialize : X, 6, M
1 while j € M do

ariations, and the speed of action. On the other hand, ge-
metric approaches follow the movement of some key parts
r points (for instance on a body or face) and try to capture
e temporal movement as a sequence of observations. In this
paper, we use shape to represent each video frame vector.
We use facial feature points and 6D comprehensive motion
data, including position, orientation, acceleration andwar
speed tracking for body gestures to build the observatita. da
The facial points are tracked using Constrained Local Medel
CLM) [18]. After the facial components have been tracked,

similarity transformation is applied to facial featureghw
respect to the normal facial shape to eliminate all vanieio
including, scale, rotation and transition. Figlile 2-b sham
example of facial landmark features in several frames of the
IV. FEATURE EXTRACTION FROM VIDEO UVA-NEMO [19] video database.

A. Feature Extraction

Non-Linear Extensions: It becomes obvious that one can
apply similar a strategy for learnin@s to the non-linear
representationy{X}, of the codebook encoding function
described in Equatioq] 3. The only additional computational
cost in testing is thed(K D) cost of applying theK entry
codebook encoding to a new frame.

. B. Feature Encodin
There are two general approaches for video feature extrac- g

tion, shape-based [14], [15] and appearance-based [1#], [L Shape featuresX, are extracted from each frame as
methods. Common to all appearance-based methods, they hadescribed in Sectioh IVJA, and are encoded in one of three
some limitations due to changes in camera view, illumimatio ways.



Linear: refers to the raw feature representation, Xeis used
without any encoding.

Delta: refers to using a differential signal such that feature
becomesX(n) — X(n — 1).

Non-Linear: refers to the raw representation being encoded
using a codebook functiom{X}. We can also encode the
delta signal with the codebook function.

V. EVALUATION

This section describes our experiments on three publicly
available databases, CK+_[20] UvA-NEMQ_]19] and 6D
Motion Gesture Databask [21]. We evaluate our proposed ap-
proach for the detection of both isolated and continuoustsve
An overview of the databases in presented in Sedtion] V-A;
Section[\V-B details the experimental settings used; Sectio
V-Cl outlines the metrics we use to evaluate our approach;
Section[V-D presents our results for isolated and contisuou
event detection tasks; and Section V-E compares our prdpose
approach with other state of the art methods.

(¢)

Fig. 2: a) Example of "stroke order” for 6DMG database. b)
Some examples for UVA-NEMO database, ¢) Some examples
A. Databases for CK+ databases.

6D Motion Gesture Database:The 6DMG database contains

comprehensive motion data, including the the 3D position,

orientation, acceleration, and angular speed for setdfefeint CK+ Database: The CK+ Database is a facial expression
motion gestures performed by different users. The databasfatabase. It contains 593 facial expression sequencesl28m
contains three subsets: motion gestures, air-handwriimi) participants. Each sequence starts from a neutral faceradsl e
air-fingerwriting. In this work we used the air-handwritingt.  at the peak frame. Sequences vary in duration between 4 and
The WorldsViz PPT-X4 optical tracking system was used to71 frames, and the location of 68 facial landmarks are pexvid
track infra-red dots that were mounted at the top of a Wiimotealong with database. Facial poses are frontal with sliglatdhe
Overall, the tracking device provided 6D spatio-temporal i motions. All the facial feature points are registered to a
formation, including the position, orientation, accetemaand  reference face by using a similarity transformation. Exksp
angular speed. They adjusted the scale of the 3D model tibom this database are shown in Figlite 2-c.

make the rendered motion as close to the real-world action as

possible. This database contains 26 upper-case lettexs Z\ t _

for motion characters. Each character is repeated 10 tiores fB- Experimental setup

every subject. Sequences vary in duration between 27 and 412

frames. To eliminate allographs or different stroke orddre  Training/Testing split: In our experiments, we use a 5-fold

subjects were instructed to follow a certain “stroke order’ ~ cross-validation to evaluate our approach. Approximately
each character (as is shown Figlie 2-a). of instances in each database are used for training and the

remaining20% are used for testing.

UvVA-NEMO Database: The UvA-NEMO database is col-

lected to analyse smiles. This database is composed of viddsolated event detection task:In this task we choose three
recorded with a Panasonic HDC-HS700 3MOS camcordegommon databases 6DMG, UvA-NEMO and CK+ as pre-
placed approximately 1.5 meters away from subjects. Théented in Subsection VIA. For each sequence the start and
database has 1240 smile videos in two classes, spontanedtrd points of the event of interest are known a priori. For
and posed (597 spontaneous and 643 posed) from 400 subjeéaluation, we use a linear SVM and LIBSVIM [22] package.
(185 female and 215 male). The age of subjects varies frondVe perform a standard grid-search on cross-validationrie tu

8 to 76 years. For posed smiles, each subject was askdgrameters (including th€' on the SVM).

to pose a smile as realistically as possible. For spontaneou

smiles a short funny video was shown to each person to elici€ontinuous event detection task:To test our proposed
spontaneous smiles. Each sequence starts and ends if neutramethod on the continuous problem we use the 6DMG database.
near neutral expressions. Sequences vary in duration betweWe consider detecting “A” in a word which is preceded and
50 and 715 frames. To track the facial landmarks, we use thfllowed by five random letters, “B” to “Z". The size of the
recently proposed CML method [18] to track 66 landmarkssequences vary from 981 to 1482 frames. In this case the start
from each face. All tracked facial feature points are regesi  and end points of the event of interest are unknown. We use
to a reference face by using a similarity transformatiom8&o the 6DMG database for the continuous event detection pmoble
examples from this database are shown in Fiflire 2-b. because it has longer videos compared to other databases. Fo



ROC-Curve Original signal
T T

ROC-Curve Differential signal
100 100 . -
80 -1 80
60 - 60| -
40 4 4w B
20 - -4 20 -
0 0
“N-L (CK+)" "L (CK+)" “N-L (6DMG)" "L (6DMG)"  “N-L(UVA-NEMO)" "L (UvA-NEMO)" “N-L (CK+)" "L (CK#)" “N-L (6DMG)" "L (6DMG)"  “N-L(UVA-NEMO)" "L (UvA-NEMO)"
I Hist L : Linear L : Linear I Hist
| — T N-L : Non-linear N-L : Non-linear [ Eye
C—Jotw F1-score Original signal F1-score Differential signal —Jotw
100 T T T 100 T T T
80 - 80
60 - - 60 A
40 |- 4 a0 i
il IH I 171 IH IH HH I ]
. . |
N-L (CK+)" "L (CK4)" “N-L (6DMG)" "L (6DMG)"  "N-L(UVA-NEMO)" "L (UVA-NEMO)" “N-L (CK+)" "L (CK4)" “N-L (6DMG)" “L (6DMG)"  "N-L(UVA-NEMO)" "L (UvA-NEMO)"

L Linear

L: Linear
N-L : Non-linear

N-L : Non-linear

Fig. 3: Graphs comparing the accuracy d@nescore on Non-Linear and Linear features with diffe®rmodels. Delta corresponds
to the differential signalX(n) — X(n — 1)).
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Fig. 4: The mapping matri® for seven different cases across the three databases (6@M&,and Uva-NEMO): The first
four columns show the proposed approach with differenufeaéncodings (see Section 1V-B); the fifth column sha@vior the
Histogram case; and the last column shdw$or the Identity case.

evaluation, we use SO-SVM (using the SV packagdl).  C. Evaluation metrics
We perform a standard grid-search on the validation setrte tu
parameters (including paramet€rin SO-SVM). To evaluate the pc_arformance, we report the area un(_:ier ROC
curve, and the maximuné}-score. TheF;-score is defined
as: | = m%", and conveys the balance between
Number of temporal codebooks:For building the codebooks, the precision and recall. ThE;-score is a better performance
k-means clustering is used. In our experiments we performmeasure than the area under ROC curve because the ROC
cross-validation to tune the number of temporal codebooks. curve is designed to measure the binary classification rathe
this work we seB300 codebooks for 6DMG] 36 for CK+ and  than detection and fails to reflect the effect of the proporti
1500 for the UvA-NEMO database for the original signal, and of the positive to negative samples.
in the case of delta signal we set these valuesity 30, and

500 respectively. D. Results

Figure[3 compares the performance of different configura-
Lavailable at: hitp:/iwww.cs.cornell.edu/people/tj/siight/svm_struct.html  tions of the proposed approach, reporting the average acgur
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Method Computational Area under F-score
time (s) ROC curve Method CK+ | 6DMG | UvA-NEMO
BOW + SO-SVM [8], [9] 135.8995 56.27 BOW + SVM [8], [9] | 48.70 | 39.64 59.84
Our method + SO-SVM 81.3082 58.30 Lérincz et al. [4] 71.33| 53.84 78.50
Our method + SVM | 70.79 | 58.33 79.56

TABLE |: Comparing our proposed approach (using a linear
encoding of the original signal) with methods 6f [€]! [9] and TABLE IIl: Comparing our proposed approach (using a linear
[4] on three databases. The table shows the area under RQicoding of the original signal) with methods 6f [€]) [9] and

curve. [4] on three databases. The table shows Ehescore.
Area under ROC curve ) .
Method CK+ | 6DMG T UVA-NEMO E. Comparing with other methods
BOW + SVM [8], [9] | 71.83 | 87.81 63.21 In this subsection we compare our method (using a linear
Lérincz et al. [4] 89.13 | 89.77 75.25 encoding of the original signal) with the state-of-the2@W
Our method + SVM | 90.86| 96.19 81.87 method [8], [9] and the time series kernel method of Lérincz
et al. [4].

TABLE II: Comparing our proposed approach (using a linear
encoding of the original signal) with methods of [€]] [9] and _ The BOW method was proposed to tackle the problem

[4] on three databases. The table shows the area under Rt action unit detection/[8],[[9] compared their method twit
curve. a frame-based SVM approach and a dynamic method using

HMMs. They showed a segment-based SVM classifier using
BOW feature vectors outperforms both a frame-based SVM
and a HMM with two or four states. The major difference be-

and F;-score among all classes, and Figlre 4 shows the varidween frame-based SVM and segment-based one is the former
tions of P used in Equation 2 learned using the proposed apclassifies each frame independently while the latter censid
proach in SectioA Il-B. We investigate the impact of diget ~ collection of frames for prediction. We implement segment-
feature encodings (see Sectfon 1V-B): “Linear” refers tings based SVM using BOW proposed byl [8].] [9] and compare
the raw representatiok; “Delta” refers to using differential it against our proposed approach introduced in Se¢tioBlIII-
signalX(n) — X (n —1); and “Non-Linear” refers to using the The area undgr ROC curve arg-score for this comparison
codebook encoding functiop{ X}, which we also apply to the are reported in Tablelll and Tabl_e__]III_ on _above-ment|oned
differential signal. Figurl4 visualises ti® matrices learned databases. As shown, our approach significantly outpesform
through the DTW procedure described in Secfion Il-B, andsegment-based SVM.

we also compare to two other representations: “Hist’, where e also compare our method against Lérincz et [@l. [4].
all elements ofP are set to unity; and “Eye”, wher® is  They proposed to use a time series kernel for event detection
simply an identity matrix. and obtained state-of-the-art performance for expressassi-

It is interesting to note that our representation, Whenﬂcatlon.As can be seen, our method outperforims [4]. We also

employing HIST for P in conjunction with a Non-Linear note that the computational cost for our pro_posed r_neth_od is
representatiom{ X}, is equivalent to the BOW representation O(MD>' hOW?Vef the computational complexny of using time
described in Equatiofl 2. We can see that using the non-lineSETies kermel inl[4] isO(LM N D) where L is the number of
representation with a histogram f&F (i.e. BOW), performs SUPPOrt vectors) is the length of the input sequenc¥, is
poorly. This is to be expected as the BOW representatiOII'I:e average Iength of the support vector sequences/aigl
throws away all temporal information. On the other hand,N€ dimensionality of the sequences.

stretching the observations to a standard length (linear in
terpolation, “Eye”) shows better performance than using a VI. CONCLUSION

histogram, as this preserves some temporal ordering. As can |n this paper we addressed the problem of event detection
be seen from the graphs, our proposed model outperforms bogthd presented a simple, yet efficient, approach. Our propose
the BOW and naive interpolation methods. In this case legrni algorithm preserves temporal ordering that is essentiaie

P from DTW alignment helps the model to preserve theanalysis of problems with a dynamic nature. In this approach
temporal ordering information. The results also show tlsatg  instead of aligning all sequences to a single temporal +efer
the non-linear representation degrades performancesaaibs ence, we employed the notion of relative alignment between
datasets and types & matrix. pairs of training examples. This approach proved effective

. in our empirical evaluations and maintained ordering wthils
Table ?? shows performance for the continuous event r P J

X . eserving the discriminative characteristics of the frob
detection problem, and compares the run times and area un(%fe also demonstrated how the proposed approach could be
ROC curve of our proposed method (using a linear encoding, o qeq to tackle the problem of continuous event detectio
of the original signal) from Sgcuolnt[]]]B with that of BOW nd demonstrated efficient and accurate performance.
method. The cost of search in our proposed model is muc|€j1l
less than using BOW, while also achieving better perforreanc
The run times shown in Tabl@? are achieved using Matlab
implementations on a Intel i7 2.1GHZ dual core CPU with  This research was supported by Australian Research Coun-
16GB RAM. cil (ARC) Discovery Grant DP140100793.
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