Texto completo
Vista Previa |
PDF (Portable Document Format)
- Se necesita un visor de ficheros PDF, como GSview, Xpdf o Adobe Acrobat Reader
Descargar (1MB) | Vista Previa |
Mariño Andrés, Rodrigo ORCID: https://orcid.org/0000-0002-9699-3398, Quintero Moreno, Sergio Andrés
ORCID: https://orcid.org/0000-0002-4545-7819, Lanza Gutiérrez, José Manuel
ORCID: https://orcid.org/0000-0002-9699-3398, Riesgo Alcaide, Teresa
ORCID: https://orcid.org/0000-0003-0532-8681, Holgado Bolaños, Miguel
ORCID: https://orcid.org/0000-0001-9299-1371, Portilla Berrueco, Jorge
ORCID: https://orcid.org/0000-0003-4896-6229 and Torre Arnanz, Eduardo de la
ORCID: https://orcid.org/0000-0001-5697-0573
(2019).
Hardware Accelerator for Ethanol Detection in Water Media based on Machine Learning Techniques.
En: "DCIS 2019 XXXIV Conference on Design of Circuits and Integrated Systems", 20-22 noviembre 2019, Bilbao, Spain. ISBN 978-1-7281-5458-9. pp. 1-6.
https://doi.org/10.1109/DCIS201949030.2019.8959937.
Título: | Hardware Accelerator for Ethanol Detection in Water Media based on Machine Learning Techniques |
---|---|
Autor/es: |
|
Tipo de Documento: | Ponencia en Congreso o Jornada (Artículo) |
Título del Evento: | DCIS 2019 XXXIV Conference on Design of Circuits and Integrated Systems |
Fechas del Evento: | 20-22 noviembre 2019 |
Lugar del Evento: | Bilbao, Spain |
Título del Libro: | 2019 XXXIV Conference on Design of Circuits and Integrated Systems (DCIS) |
Fecha: | 2019 |
ISBN: | 978-1-7281-5458-9 |
Materias: | |
ODS: | |
Palabras Clave Informales: | Smart Farming; Optical Sensing; MachineLearning; Feature Extraction; SoPC |
Escuela: | E.T.S.I. Industriales (UPM) |
Departamento: | Automática, Ingeniería Eléctrica y Electrónica e Informática Industrial |
Licencias Creative Commons: | Reconocimiento - Sin obra derivada - No comercial |
Vista Previa |
PDF (Portable Document Format)
- Se necesita un visor de ficheros PDF, como GSview, Xpdf o Adobe Acrobat Reader
Descargar (1MB) | Vista Previa |
In the last years, the Industry 4.0 paradigm is gaining relevance in the agro-food industry, leading to Smart Farming. One of the applications in the Smart Farming domain is the advanced chemical analysis in process monitoring using distributed, low-cost embedded systems. Optical sensing technology is used in conjunction with machine learning techniques for this advanced analysis. From the embedded system perspective, it might be required to propose a method for the implementation of machine learning techniques in heterogeneous platforms. This paper focuses on implementing Machine Learning techniques in a System on Programmable Chip, based on an FPGA and ARM processors. As a use case, we mimic water pollution by ethanol. Thus, the application might determine the percentage of ethanol of the water during run-time. As a result, this paper provides a methodology for implementing a machine learning technique for ethanol prediction using an FPGA, and the study of its parameters as resource utilization and accelerator latency for the architecture proposed.
ID de Registro: | 64959 |
---|---|
Identificador DC: | https://oa.upm.es/64959/ |
Identificador OAI: | oai:oa.upm.es:64959 |
Identificador DOI: | 10.1109/DCIS201949030.2019.8959937 |
URL Oficial: | https://dcis2019.org/ |
Depositado por: | Memoria Investigacion |
Depositado el: | 26 Oct 2020 17:21 |
Ultima Modificación: | 13 Ene 2025 09:33 |