Hardware Accelerator for Ethanol Detection in Water Media based on Machine Learning Techniques

Mariño Andrés, Rodrigo ORCID: https://orcid.org/0000-0002-9699-3398, Quintero Moreno, Sergio Andrés ORCID: https://orcid.org/0000-0002-4545-7819, Lanza Gutiérrez, José Manuel ORCID: https://orcid.org/0000-0002-9699-3398, Riesgo Alcaide, Teresa ORCID: https://orcid.org/0000-0003-0532-8681, Holgado Bolaños, Miguel ORCID: https://orcid.org/0000-0001-9299-1371, Portilla Berrueco, Jorge ORCID: https://orcid.org/0000-0003-4896-6229 and Torre Arnanz, Eduardo de la ORCID: https://orcid.org/0000-0001-5697-0573 (2019). Hardware Accelerator for Ethanol Detection in Water Media based on Machine Learning Techniques. En: "DCIS 2019 XXXIV Conference on Design of Circuits and Integrated Systems", 20-22 noviembre 2019, Bilbao, Spain. ISBN 978-1-7281-5458-9. pp. 1-6. https://doi.org/10.1109/DCIS201949030.2019.8959937.

Descripción

Título: Hardware Accelerator for Ethanol Detection in Water Media based on Machine Learning Techniques
Autor/es:
Tipo de Documento: Ponencia en Congreso o Jornada (Artículo)
Título del Evento: DCIS 2019 XXXIV Conference on Design of Circuits and Integrated Systems
Fechas del Evento: 20-22 noviembre 2019
Lugar del Evento: Bilbao, Spain
Título del Libro: 2019 XXXIV Conference on Design of Circuits and Integrated Systems (DCIS)
Fecha: 2019
ISBN: 978-1-7281-5458-9
Materias:
ODS:
Palabras Clave Informales: Smart Farming; Optical Sensing; MachineLearning; Feature Extraction; SoPC
Escuela: E.T.S.I. Industriales (UPM)
Departamento: Automática, Ingeniería Eléctrica y Electrónica e Informática Industrial
Licencias Creative Commons: Reconocimiento - Sin obra derivada - No comercial

Texto completo

[thumbnail of INVE_MEM_2019_322722.pdf]
Vista Previa
PDF (Portable Document Format) - Se necesita un visor de ficheros PDF, como GSview, Xpdf o Adobe Acrobat Reader
Descargar (1MB) | Vista Previa

Resumen

In the last years, the Industry 4.0 paradigm is gaining relevance in the agro-food industry, leading to Smart Farming. One of the applications in the Smart Farming domain is the advanced chemical analysis in process monitoring using distributed, low-cost embedded systems. Optical sensing technology is used in conjunction with machine learning techniques for this advanced analysis. From the embedded system perspective, it might be required to propose a method for the implementation of machine learning techniques in heterogeneous platforms. This paper focuses on implementing Machine Learning techniques in a System on Programmable Chip, based on an FPGA and ARM processors. As a use case, we mimic water pollution by ethanol. Thus, the application might determine the percentage of ethanol of the water during run-time. As a result, this paper provides a methodology for implementing a machine learning technique for ethanol prediction using an FPGA, and the study of its parameters as resource utilization and accelerator latency for the architecture proposed.

Proyectos asociados

Tipo
Código
Acrónimo
Responsable
Título
Gobierno de España
TEC2017-86722-C4-2-R
PLATINO
Sin especificar
PLATAFORMA HW/SW DISTRIBUIDA PARA EL PROCESAMIENTO INTELIGENTE DE INFORMACION SENSORIAL HETEROGENEA EN APLICACIONES DE SUPERVISION DE GRANDES ESPACIOS NATURALES
Gobierno de España
TEC2017-84846-R
HERON
Sin especificar
Transductores avanzados, biochips y plataformas de lectura para biosensores de alto rendimiento, detección de líquidos y monitorización de células
Universidad Politécnica de Madrid
RR24/2017
Sin especificar
Sin especificar
Sin especificar

Más información

ID de Registro: 64959
Identificador DC: https://oa.upm.es/64959/
Identificador OAI: oai:oa.upm.es:64959
Identificador DOI: 10.1109/DCIS201949030.2019.8959937
URL Oficial: https://dcis2019.org/
Depositado por: Memoria Investigacion
Depositado el: 26 Oct 2020 17:21
Ultima Modificación: 13 Ene 2025 09:33