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Abstract
In this paper, we propose a methodology for partitioning 
and mapping computational intensive applications in 
reconfigurable hardware blocks of different granularity. A 
generic hybrid reconfigurable architecture is considered so 
as the methodology can be applicable to a large number of 
heterogeneous reconfigurable platforms. The methodology 
mainly consists of two stages, the analysis and the mapping 
of the application onto fine and coarse-grain hardware 
resources. A prototype framework consisting of analysis, 
partitioning and mapping tools has been also developed. 
For the coarse-grain reconfigurable hardware, we use our 
previous-developed high-performance coarse-grain data-
path. In this work, the methodology is validated using two 
real-world applications, an OFDM transmitter and a JPEG 
encoder. In the case of the OFDM transmitter, a maximum 
clock cycles decrease of 82% relative to the ones in an all 
fine-grain mapping solution is achieved. The corresponding 
performance improvement for the JPEG is 43%. 

1. Introduction 
Reconfigurable architectures have been a topic of 

intensive research activities in the past years. 
Reconfigurable fabrics are able to unify the performance of 
ASICs and the flexibility offered by the microprocessors 
[1]. In particular, hybrid (mixed) granularity reconfigurable 
systems [1]-[4] offer extra advantages in terms of 
performance and great flexibility to implement efficiently 
computational intensive applications (like DSP and 
multimedia) characterized by mixed functionality (data and 
control). Such hybrid architectures usually consist of: fine-
grain reconfigurable units usually implemented in FPGA 
technology, coarse-grain reconfigurable units implemented 
in ASIC technology, data and program memories, 
reconfigurable interconnection network, and 
microprocessor(s). Due to the special characteristics of the 
heterogeneous (coarse and fine-grain) reconfigurable units 
included in a hybrid platform, certain parts of the 

application are better suited to be executed on the coarse-
grain units and other parts on the fine-grain units.  

The fine-grain reconfigurable hardware’s granularity 
usually ranges from 1 to 2-bits and it is realized by an 
embedded FPGA unit. Small bit-width operations can be 
efficiently executed by fine-grain hardware, as the 
granularity of the CLBs of the embedded FPGA is typically 
one or two bits. Tasks of Finite State Machine (FSM) type 
of functionality (i.e. control structures) are also good 
candidates to be implemented by the fine-grain 
reconfigurable hardware. The coarse-grain reconfigurable 
blocks are implemented in ASIC technology and execute 
the word-level or sub word-level operations. These blocks 
can slightly modify their functionality according to the 
application requirements.  

It is widely adopted that the execution of word-level 
operations by coarse-grain units offers great advantages in 
terms of delay, area and reconfiguration time compared to 
the execution of these operations by the fine-grain 
reconfigurable units [1]. So, to exploit these advantages, the 
development of a methodology for partitioning an 
application in two parts, where the one is executed in the 
coarse-grain reconfigurable hardware and the other one in 
the fine-grain one, and mapping efficiently these parts on 
the corresponding reconfigurable units, is required.  

In this paper, a formalized and automated partitioning 
methodology is presented for hybrid reconfigurable 
systems. The methodology is parameterized with respect to 
the reconfigurable hardware, i.e. the fine and the coarse-
grain parts of the target architecture. It is assumed that both 
types of reconfigurable hardware are characterized in terms 
of timing and area characteristics. The introduced 
methodology was developed for the purposes of a European 
IST project, called Architectures and Methodologies for 
Dynamic REconfigurable Logic (AMDREL) [5]. The 
project’s consortium is composed by industrial and 
academic partners.  

The main contributions of the methodology are the 
analysis procedure at the basic block level of the 
application and the mapping procedures to the fine and 
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coarse-grain hardware. A prototype software framework 
has been developed for implementing the proposed 
methodology. The methodology is evaluated in this paper 
using two real-world applications, an IEEE 802.11a OFDM 
transmitter and a JPEG encoder, both developed by the 
industrial partners of the AMDREL project [5]. The work 
presented here is an extension of our previous work [6], 
where we developed a high-performance coarse-grain data-
path and a methodology for mapping applications onto it.  

The considered generic reconfigurable platform, which 
mainly targets the DSP and multimedia domains, is shown 
in Figure 1. The platform includes coarse and fine-grain 
reconfigurable hardware units for data processing, shared 
data memory, and a reconfigurable interconnection 
network. All the above components are typically integrated 
in a System-on-Chip (SoC) configured by 
microprocessor(s). This generic architecture can model a 
variety of existing hybrid (mixed) reconfigurable 
architectures, like the ones presented in [2], [3], [4].  

Reconfigurable Interconnect Network
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reconfigurable

hardware
blocks

Fine-grain
reconfigurable

hardware
blocks

Microprocessor

Program
memory Shared data memory

Control

Data Data
Data

DataControl

Figure 1. Generic reconfigurable platform architecture. 

The paper is organized as follows: The related work is 
presented in section 2, while section 3 describes the 
proposed partitioning methodology. Experimental results 
are given in section 4. Finally, section 5 concludes this 
paper and presents future activities. 

2. Related work 
There has been considerable research for developing 

reconfigurable architectures in the past [1]. We are focusing 
on hybrid granularity platforms containing fine and coarse-
grain reconfigurable hardware blocks.  

The Pleiades [3] architecture is an approach that 
combines an on-chip microprocessor with a number of 
heterogeneous reconfigurable units of different granularities 
connected via a reconfigurable interconnection network. 
The Strategically Programmable System (SPS) [2] is a 
hybrid reconfigurable system architecture that combines 
fine-grain reconfigurable units and ASIC coarse-grain 
modules which are pre-placed within a fully reconfigurable 
fabric. Chameleon project [4] considers a hybrid 
reconfigurable platform that contains microprocessor(s), an 
FPGA unit and coarse-grain reconfigurable units, called 
Field Programmable Function Arrays (FPFAs).  

In the aforementioned hybrid reconfigurable systems, 
there is no a formalized partitioning methodology between 

the fine and coarse-grain reconfigurable units. In [4], a 
rather empirical manner is followed, which assigns bit-level 
parts of an application to the FPGA.  

There has been also work in hardware-software 
partitioning of applications for reconfigurable architectures 
consisting of one RISC-type microprocessor and FPGA(s) 
[7], [8]. However, those works do not consider coarse-grain 
reconfigurable blocks, thus they can not benefit from the 
computational ability of these units [2], [3], [4].  

3. Partitioning methodology 
Research activities [9] have shown that basic blocks 

inside loop structures represent a significant portion of the 
execution time for DSP and multimedia applications. The 
term basic block expresses a sequence of instructions 
(operations) with no branches into or out of the middle. At 
the end of each basic block there is a branch that controls 
which basic block executes next. The proposed partitioning 
methodology focuses on finding the most critical basic 
blocks (called kernels) of the input application. These 
kernels are executed on the coarse-grain hardware, so that 
the total execution time of the application meets the 
specification’s requirements. With the term critical, we 
define the basic blocks that represent computationally 
intensive parts of the application. The critical basic blocks 
are often located in nested loops. 

We are interested in exploiting the available parallelism 
at the operation level (either in critical or in non-critical 
parts of an application) in both types of reconfigurable 
hardware. Therefore, the methodology supports mutually 
exclusive execution of the fine and the coarse-grain 
hardware. According to their original C/C++ specification, 
critical and non-critical parts of the application are executed 
purely sequentially in the coarse and the fine-grain part of 
the architecture, respectively. Although, the methodology 
supports the mutual exclusive operation, this does not 
imply that either the fine or the coarse-grain hardware 
remain unused during the execution of the application. This 
is due to the fact that our generic hybrid reconfigurable 
architecture targets DSP and multimedia applications. 
Typically these applications process certain amount of data 
(called frames) whose computation is repeated over time. 
Through the pipelining among the stages of computations, 
the reconfigurable processing units of the hybrid 
architecture are always utilized. 

In the following, we explain the proposed partitioning 
methodology. In Figure 2, the flow of the proposed 
methodology is shown. The input is the application (or a 
part of the application) which is described in a high-level 
language like C/C++. The application’s source code is 
considered as the output of a hardware/software partitioning 
stage, which defines the parts that they are going to be 
executed in the reconfigurable hardware.  

In the first step, the Control Data Flow Graph (CDFG) 
representation is created from the source code. This model 
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of computation is extensively used in mapping applications 
on reconfigurable hardware. The CDFG is the input in the 
steps of mapping to fine and coarse-grain hardware and in 
the partitioning engine. In step 2, the application is mapped 
to the fine-grain hardware and the execution time is 
calculated. If the overall execution time of the application 
meets the timing constraints, then the methodology exits, 
since there is no need to continue with the next steps, i.e. to 
partition the application into fine and coarse-grain 
hardware. If the timing constraints are not satisfied, then we 
proceed to step 3, which is the analysis procedure. 
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Mapping to fine-grain
hardware

Timing constraints met?Exit
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  Dynamic and static
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Candidate parts to be executed
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Figure 2. Block diagram of the proposed partitioning 
methodology.

In the analysis procedure (step 3), the application’s 
source code is processed, so as to identify the dominant 
kernels, which are the candidates to be mapped to the 
coarse-grain hardware. The rest of the application code is 
mapped to the fine-grain part of the architecture. The 
identification of kernels is a combination of dynamic and 
static analysis. The kernels are ordered in decreasing order 
of computational complexity.       

In the partitioning engine (step 4), kernels are moved 
one by one for execution (and thus acceleration) in the 
coarse-grain hardware. After the movement of each kernel 
in the coarse-grain part, the total execution time of the 
application is calculated to check if the timing constraints 
are met. To compute the execution time, the mapping to the 
fine and coarse-grain hardware takes place. The time 
required for communicating data values through the shared 
data memory of Figure 1, between the two types of 
hardware is also taken into account.  

The mapping to the coarse-grain part of the architecture 
is the step 5 of the proposed methodology. If there is still a 
violation in the overall execution time of the application, 

the procedures of moving kernels to the coarse-grain 
hardware and mapping the parts of the application onto the 
fine and coarse-grain parts, are repeated until the timing 
constraints are satisfied. As the mapping procedures to both 
types of reconfigurable hardware determine the execution 
time, we have developed appropriate algorithms to perform 
these procedures. 

3.1 Analysis step 
The analysis step is the procedure for identifying the 

kernels of the input application and provides the input to 
the partitioning engine block, as it is shown in Figure 2. 
More specifically, it identifies the critical and non-critical 
parts of the application. The critical part is the set of 
kernels, which are the basic blocks inside loops that cause 
performance overheads. These kernels are candidates to be 
mapped to the coarse-grain hardware, while the non-critical 
parts of the application are executed in the fine-grain 
hardware.  

The inherent computational complexity (counts of basic 
operations and memory accesses) is a meaningful measure 
to identify dominant kernels. This information can be 
obtained through a combination of: (a) dynamic analysis 
(profiling), and (b) static analysis within basic blocks of the 
input specification. Since operations in a basic block do not 
have a uniform cost, a weighted sum is calculated and 
aggregated at the basic block level to indicate the 
computational complexity within the application. The 
weights indicate the delay allocated to each basic operator.  

For the dynamic analysis, the source code is executed 
with appropriate input and profiling information is gathered 
at the basic block level. For performing dynamic analysis, 
we have used Lex [10], which a lexical analyzer used for 
parsing the input code. By developing the proper scripts in 
Lex, we can identify loop (for, while and do-while) and 
conditionals (if-then-else) structures in the source code. 
Then, Lex automatically places a counter for each basic 
block in a loop. The modified source code (after counter 
placement) is compiled and executed with the input vectors 
that represent the typical operation of the application. The 
placed counter gives the access count for each basic block 
of the input program.  

Lex is also used for the static analysis. It identifies the 
basic operations and the memory accesses inside the basic 
blocks and generates a detailed and illustrative overview of 
the distribution of the algorithm complexity over basic 
operators. The total weight (complexity) of a basic block is 
computed as the product of the basic block execution 
frequency (exec_freq) times the weight of the operations of 
this basic block (bb_weight), i.e.: 

_ _ _total weight exec freq bb weight            (1) 

After all critical basic blocks have been identified, an 
ordering of these critical basic blocks takes place. These 
kernels are sorted in descending order of computational 
complexity. Thus, the first kernel which is going to be 

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05) 
1530-1591/05 $ 20.00 IEEE 



mapped onto the coarse-grain hardware, if the overall 
execution requirement is not met, is the most computational 
intensive one. 

3.2 Mapping to fine-grain hardware 
The proposed mapping methodology for the fine-grain 

part of the architecture is a temporal partitioning algorithm. 
The temporal partitioning resolves the hardware 
implementation of an application that does not fit into the 
fine-grain reconfigurable hardware by time-sharing the 
hardware in a way that each partition fits in the available 
resources (for example the CLBs of an FPGA). This time-
sharing of the hardware is achieved through the dynamic 
reconfiguration of the device, which is the case in 
contemporary FPGA devices, either commercial [11] or 
academic ones.  

The mapping methodology classifies the nodes in the 
Data Flow Graph (DFG) of the input application according 
to their As Soon As Possible (ASAP) levels [12]. The 
ASAP levels expose the parallelism hidden in the DFG, i.e. 
all the DFG nodes with the same level can be considered 
for parallel execution without any dependency check. There 
also exists some degree of parallelism among the nodes 
with different levels, i.e. if they are not connected by a data 
edge. The approach followed is that the nodes are executed 
in increasing order relative to their ASAP levels. This 
ensures stable inputs for every DFG node at the next ASAP 
level. The mapping methodology also handles CDFG, by 
iteratively mapping the DFGs composing the CDFG.  

The pseudocode of the proposed mapping algorithm to 
the fine-grain hardware is illustrated in Figure 3. 
Partition(ui) denotes the temporal partition to which the 
node ui belongs (1 iu N , N is the number of DFG 

nodes)  and max_level denotes the maximum ASAP level of 
any node in the DFG. The algorithm traverses each node of 
the DFG, level by level, and assigns them to a partition. 
The DFG nodes are assigned to partitions numbered 1 and 
beyond. All the nodes from level 1 to max_level are 
traversed. Nodes of the same ASAP level are placed in a 
single partition and if the available area in the fine-grain 
hardware is exhausted then the nodes are assigned to the 
next partition. If the nodes in the current ASAP level are all 
assigned to a partition, then the next level nodes are 
considered. Initially, a partition has no nodes.  

The AFPGA is the area available for mapping the DFG 
operations in the fine-grain (FPGA) reconfigurable 
hardware. To ensure that the routing of the resources is 
feasible, the AFPGA is a percentage of the total FPGA area. A 
typical value is a 70% of the overall FPGA area. The 
size(ui), which is the area occupied by the mapped DFG 
node, and the AFPGA are dependent from the fine-grain 
technology (e.g. a specific FPGA device [11]). Since these 
are parameters in our methodology, the proposed 
methodology is applicable to every type of reconfigurable 
fine-grain hardware.   

i = 1; 
level = 1; 
area_covered = 0; 
while(level max_level)
   for each node ui with level(ui)= level   
      current_area = size(ui);
      if (area_covered + current_area AFPGA)      
         partition(ui) = i;
         area_covered = area_covered + current_area; 
      end if;     
      else  
         i = i + 1; 
         partition(ui) = i;
         area_covered = current_area; 
       end else;    
       level = level + 1; 
   end for;
end while;

Figure 3. Mapping algorithm to fine-grain hardware. 

The shared data memory of the hybrid reconfigurable 
platform (Figure 1) is used for storing the input and output 
values among the temporal partitions. For each temporal 
segment a configuration bit-stream is generated. According 
to the application’s data- and control-flow, the appropriate 
configuration bit-stream is loaded to the FPGA device. For 
each temporal partition, full reconfiguration of the fine-
grain hardware is performed. Thus, the reconfiguration time 
has the same value for each partition and it is added to the 
execution time of each temporal partition.        

3.3 Mapping to coarse-grain hardware 
For the coarse-grain hardware, the high-performance 

coarse-grain data-path and the mapping methodology 
presented in [6] are considered. This data-path consists of a 
set of Coarse-Grain Components (CGCs) implemented in 
ASIC technology, a reconfigurable interconnection 
network, and a register bank. The CGC is an nxm array of 
nodes, where n is the number of rows and m the number of 
columns. The connections among the CGC nodes are 
reconfigured by appropriate steering logic. This allows to 
easily realize any complex operations (like a multiply-add 
operation) and increase system’s performance [6]. Each 
CGC node contains a multiplier and ALU where only one 
of them is activated in a clock cycle.  

Due to the flexible structure of the CGC-based data-
path, any required computational structure can be easily 
implemented; thus the CGC data-path can realize the 
behaviour of any existing coarse-grain data-path, like the 
ones in [2], [3]. This is the main reason why we have 
considered in this work this specific type of coarse-grain 
hardware. Also, due to the CGC data-path’s features, the 
stages of the mapping methodology are accommodated by 
simple, yet efficient algorithms. The steps of the mapping 
process are: (a) scheduling of DFG operations, and (b) 
binding with the CGCs. A proper list-based scheduler has 
been developed. After CGC binding [6], the overall latency 
of the DFG is measured in clock cycles having period TCGC.
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This period is set for having unit execution delay for the 
CGCs. For handling CDFG, the mapping procedure is 
iterated through the DFGs comprising the CDFG of an 
application.  

3.4 Partitioning engine 
The partitioning engine moves kernels one by one to the 

coarse-grain hardware until the performance requirements 
are satisfied. After the movement of each kernel to the 
coarse-grain hardware, the total execution time of the 
application is calculated to check if the timing constraints 
are met. The mapping procedures to the fine and coarse-
grain hardware are required for computing the execution 
time. If the timing constraints are not met, the process of 
moving kernels to the coarse-grain hardware is repeated 
until the timing constraints are satisfied. The total execution 
time is: 

ttotal = tFPGA + tcoarse +tcomm (2)
where tFPGA is the execution time in the FPGA (fine-grain) 
hardware, tcoarse is the execution time in the coarse-grain 
data-path and tcomm is the time required for transferring data 
between the two types of reconfigurable hardware, through 
the shared data memory (Figure 1).  

The tcoarse equals to: 

_ ( ) ( )coarse to coarse i i
i

t t BB Iter BB         (3) 

where tto_coarse is the time required for executing the basic 
block BBi in the coarse-grain hardware, and Iter(BBi) is the 
number of times that the BBi is invoked. Similarly, tFPGA

equals to:  

_ ( ) ( )FPGA to FPGA i i
i

t t BB Iter BB                               (4) 

The tFPGA includes the reconfiguration time for all the 
generated temporal partitions after the mapping of the basic 
blocks. 

4. Experimental results 
We have developed a prototype framework in C++ to 

implement the flow of Figure 2. For the software 
development, we have also used academic open source 
tools. For example, the SUIF2 [13] and MachineSUIF [14] 
compiler infrastructures has been used and proper passes 
have been developed for the CDFG creation. As already 
mentioned, Lex has been used for the dynamic and static 
analysis.

In this paper, we apply the proposed partitioning 
methodology to two applications written in C language by 
the AMDREL’s partners [5]. The first one is the front-end 
of the baseband processing of an IEEE 802.11a OFDM 
transmitter. The front-end consists of the Quadrature 
Amplitude Modulation (QAM) unit, the IFFT block and the 
cyclic prefix unit. The considered source code of the 
OFDM transmitter is composed by 18 basic blocks (BBs). 
The second application is a JPEG encoder. The main parts 
of the JPEG encoder are the DCT transformation unit, the 

quantizer, the zig-zag scanning unit and the entropy 
(Huffman) encoder. The considered JPEG encoder source 
code consists of 22 BBs.   

Table 1 reports the total weights of both applications 
(last column), in decreasing order of value, of the 8 most 
computational intensive basic blocks, extracted by the 
analysis step of the partitioning methodology. The second 
column of this Table reports the execution frequency of the 
specific basic block, while the third column gives the 
weights of the operations in the basic block. The execution 
frequency values are taken for a number of 6 payload 
symbols for the OFDM transmitter, while for the JPEG 
encoder for transforming an image of size 256 256 bytes. 
These inputs of the applications also hold for the clock 
cycles results of Table 2 and 3. The DFGs of the basic 
blocks of both applications consist of arithmetic operations 
of type ALU and multiplication; thus no divisions are 
present in the DFGs. In the analysis process, we give a 
weight equal to 1 for the ALU operations and a weight 
equal to 2 for the multiplication ones, since the later ones 
have a larger computational complexity. 

Table 1. Ordered total weights of basic blocks 

Basic Block 
no. 

Basic Block 
exec. freq. 

Operations 
weight 

Total
weight 

OFDM transmitter
22 336 115 38640 
12 1200 25 30000 
3 864 6 5184 
5 370 12 4440 
42 800 5 4000 
32 560 6 3360 
29 448 7 3136 
21 147 18 2646 

JPEG encoder
6 355024 3 1065072 
2 8192 85 696320 
1 8192 83 679936 
22 65536 5 327680 
8 30927 8 247416 
3 65536 3 196608 
16 63540 3 190620 
17 63540 2 127080 

Table 2 and 3 show the results of the partitioning 
methodology, in terms of clock cycles, after using the 
developed partitioning framework for the OFDM 
transmitter and the JPEG encoder. The following 
assumptions hold for both applications. The clock cycle 
period is set to the clock period of the fine-grain (FPGA) 
hardware. We have considered that the clock cycle period 
of the FPGA hardware is three times larger than the CGC 
data-path’s clock period, i.e. TFPGA = 3 TCGC. This is a 
rather moderate assumption for the performance gain of an 
ASIC technology compared to an FPGA one. For these 
experiments, two values of AFPGA are considered: 1500 and 
5000 units of area. For each case of the AFPGA, the coarse-
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grain data-path consists of two and three 2x2 CGCs. Thus, 
four different cases are considered in this experiment. For 
all of these cases, a timing constraint of 60000 clock cycles 
has to be satisfied for the OFDM transmitter, while for the 
JPEG encoder a timing constraint of 11 106 clock cycles 
has to be met. 

Table 2. OFDM partitioning results for timing constraint of 
60000 clock cycles  

AFPGA=1500 AFPGA=5000
Initial
Cycles 

263408 124080 

CGCs no. two 2x2 three 2x2 two 2x2 three 2x2
Cycles in 
CGC 53184 41472 53184 41472 

BB no. 22, 12, 3 22, 12 22, 12, 3 22, 12 
Final cycles 57088 47856 56864 46512 
% cycles 
reduction

78.3 81.8 54.1 62.5 

Table 3. JPEG partitioning results for timing constraint of 
11 106 clock cycles  

AFPGA=1500 AFPGA=5000
Initial Cycles 
( 106)

18434 12399 

CGCs no. two 2x2 three 2x2 two 2x2 three 2x2
Cycles in 
CGC ( 106) 5817 5699 5817 5669 

BB no. 6, 2, 1 6, 2, 1 6, 2, 1 6, 2, 1 
Final cycles 
( 106)

10558 10411 10423 10227 

% cycles 
reduction

42.7 43.5 15.9 17.5 

The first row of Table 2 and 3 shows the number of 
cycles for an all-FPGA implementation of the considered 
applications. It is evident that an all-FPGA solution cannot 
satisfy the timing constraint. The third row of Table 2 and 3 
shows the clock cycles required for the implementation of 
the BBs (their number is shown in the fourth row of the 
Table 2 and 3) when these are mapped to the CGC data-
path. The number and type of CGCs are given in the second 
row. The BBs of the fourth row have been chosen from the 
partitioning methodology for execution on the coarse-grain.  

The final clock cycles, after the partitioning, are shown 
in the fifth row of Table 2 and 3. It is clear from these 
results, that by choosing costly BBs to be mapped in the 
coarse-grain reconfigurable hardware, system’s 
performance is largely improved and the timing constraint 
is satisfied. These results prove the effectiveness of both the 
proposed partitioning methodology and the automated 
framework. Also, as the FPGA area grows, the reduction of 
clock cycles is smaller since a larger FPGA exploits better 
the parallelism of an application due to the considered fine-
grain mapping algorithm shown in Figure 3. A maximum 
clock cycles reduction of approximately 82% relative to the 
all-FPGA solution of the OFDM transmitter, is reported for 

the case of AFPGA=1500 and three 2x2 CGCs present in the 
CGC data-path.  

5. Conclusions - Future work 
A methodology for partitioning applications between 

fine and coarse-grain reconfigurable blocks of a hybrid 
granularity architecture, was presented. We also gave 
specific mapping algorithms for the fine and coarse-grain 
reconfigurable blocks. The experiments showed that the 
timing constraints of an application can be satisfied by 
proper functional partitioning. On going-work considers 
multiple threads of execution for parallel operation of the 
fine and coarse-grain reconfigurable blocks. Future work 
focuses on partitioning an application for satisfying energy 
consumption constraints. 
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