
* This work is partially supported by the project IST-2001-34793-AMDREL funded by the E.C.
Also, it was partially funded by the Alexander S. Onassis Public Benefit foundation.

A Partitioning Methodology for Accelerating Applications
in Hybrid Reconfigurable Platforms *

M.D. Galanis1, A. Milidonis1, G. Theodoridis2, D. Soudris3, and C.E. Goutis1

1 VLSI Design Lab., Electrical & Computer Engineering Department, University of Patras, Rio, Greece
2 Section of Electronics & Computers, Physics Department, Aristotle University, Thessalonica, Greece

3VLSI Design Center, Electrical & Computer Eng. Dept., Democritus University, Xanthi, Greece
e-mail: mgalanis@ee.upatras.gr

Abstract
In this paper, we propose a methodology for partitioning
and mapping computational intensive applications in
reconfigurable hardware blocks of different granularity. A
generic hybrid reconfigurable architecture is considered so
as the methodology can be applicable to a large number of
heterogeneous reconfigurable platforms. The methodology
mainly consists of two stages, the analysis and the mapping
of the application onto fine and coarse-grain hardware
resources. A prototype framework consisting of analysis,
partitioning and mapping tools has been also developed.
For the coarse-grain reconfigurable hardware, we use our
previous-developed high-performance coarse-grain data-
path. In this work, the methodology is validated using two
real-world applications, an OFDM transmitter and a JPEG
encoder. In the case of the OFDM transmitter, a maximum
clock cycles decrease of 82% relative to the ones in an all
fine-grain mapping solution is achieved. The corresponding
performance improvement for the JPEG is 43%.

1. Introduction
Reconfigurable architectures have been a topic of

intensive research activities in the past years.
Reconfigurable fabrics are able to unify the performance of
ASICs and the flexibility offered by the microprocessors
[1]. In particular, hybrid (mixed) granularity reconfigurable
systems [1]-[4] offer extra advantages in terms of
performance and great flexibility to implement efficiently
computational intensive applications (like DSP and
multimedia) characterized by mixed functionality (data and
control). Such hybrid architectures usually consist of: fine-
grain reconfigurable units usually implemented in FPGA
technology, coarse-grain reconfigurable units implemented
in ASIC technology, data and program memories,
reconfigurable interconnection network, and
microprocessor(s). Due to the special characteristics of the
heterogeneous (coarse and fine-grain) reconfigurable units
included in a hybrid platform, certain parts of the

application are better suited to be executed on the coarse-
grain units and other parts on the fine-grain units.

The fine-grain reconfigurable hardware’s granularity
usually ranges from 1 to 2-bits and it is realized by an
embedded FPGA unit. Small bit-width operations can be
efficiently executed by fine-grain hardware, as the
granularity of the CLBs of the embedded FPGA is typically
one or two bits. Tasks of Finite State Machine (FSM) type
of functionality (i.e. control structures) are also good
candidates to be implemented by the fine-grain
reconfigurable hardware. The coarse-grain reconfigurable
blocks are implemented in ASIC technology and execute
the word-level or sub word-level operations. These blocks
can slightly modify their functionality according to the
application requirements.

It is widely adopted that the execution of word-level
operations by coarse-grain units offers great advantages in
terms of delay, area and reconfiguration time compared to
the execution of these operations by the fine-grain
reconfigurable units [1]. So, to exploit these advantages, the
development of a methodology for partitioning an
application in two parts, where the one is executed in the
coarse-grain reconfigurable hardware and the other one in
the fine-grain one, and mapping efficiently these parts on
the corresponding reconfigurable units, is required.

In this paper, a formalized and automated partitioning
methodology is presented for hybrid reconfigurable
systems. The methodology is parameterized with respect to
the reconfigurable hardware, i.e. the fine and the coarse-
grain parts of the target architecture. It is assumed that both
types of reconfigurable hardware are characterized in terms
of timing and area characteristics. The introduced
methodology was developed for the purposes of a European
IST project, called Architectures and Methodologies for
Dynamic REconfigurable Logic (AMDREL) [5]. The
project’s consortium is composed by industrial and
academic partners.

The main contributions of the methodology are the
analysis procedure at the basic block level of the
application and the mapping procedures to the fine and

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05)
1530-1591/05 $ 20.00 IEEE

coarse-grain hardware. A prototype software framework
has been developed for implementing the proposed
methodology. The methodology is evaluated in this paper
using two real-world applications, an IEEE 802.11a OFDM
transmitter and a JPEG encoder, both developed by the
industrial partners of the AMDREL project [5]. The work
presented here is an extension of our previous work [6],
where we developed a high-performance coarse-grain data-
path and a methodology for mapping applications onto it.

The considered generic reconfigurable platform, which
mainly targets the DSP and multimedia domains, is shown
in Figure 1. The platform includes coarse and fine-grain
reconfigurable hardware units for data processing, shared
data memory, and a reconfigurable interconnection
network. All the above components are typically integrated
in a System-on-Chip (SoC) configured by
microprocessor(s). This generic architecture can model a
variety of existing hybrid (mixed) reconfigurable
architectures, like the ones presented in [2], [3], [4].

Reconfigurable Interconnect Network

Coarse-grain
reconfigurable

hardware
blocks

Fine-grain
reconfigurable

hardware
blocks

Microprocessor

Program
memory Shared data memory

Control

Data Data
Data

DataControl

Figure 1. Generic reconfigurable platform architecture.

The paper is organized as follows: The related work is
presented in section 2, while section 3 describes the
proposed partitioning methodology. Experimental results
are given in section 4. Finally, section 5 concludes this
paper and presents future activities.

2. Related work
There has been considerable research for developing

reconfigurable architectures in the past [1]. We are focusing
on hybrid granularity platforms containing fine and coarse-
grain reconfigurable hardware blocks.

The Pleiades [3] architecture is an approach that
combines an on-chip microprocessor with a number of
heterogeneous reconfigurable units of different granularities
connected via a reconfigurable interconnection network.
The Strategically Programmable System (SPS) [2] is a
hybrid reconfigurable system architecture that combines
fine-grain reconfigurable units and ASIC coarse-grain
modules which are pre-placed within a fully reconfigurable
fabric. Chameleon project [4] considers a hybrid
reconfigurable platform that contains microprocessor(s), an
FPGA unit and coarse-grain reconfigurable units, called
Field Programmable Function Arrays (FPFAs).

In the aforementioned hybrid reconfigurable systems,
there is no a formalized partitioning methodology between

the fine and coarse-grain reconfigurable units. In [4], a
rather empirical manner is followed, which assigns bit-level
parts of an application to the FPGA.

There has been also work in hardware-software
partitioning of applications for reconfigurable architectures
consisting of one RISC-type microprocessor and FPGA(s)
[7], [8]. However, those works do not consider coarse-grain
reconfigurable blocks, thus they can not benefit from the
computational ability of these units [2], [3], [4].

3. Partitioning methodology
Research activities [9] have shown that basic blocks

inside loop structures represent a significant portion of the
execution time for DSP and multimedia applications. The
term basic block expresses a sequence of instructions
(operations) with no branches into or out of the middle. At
the end of each basic block there is a branch that controls
which basic block executes next. The proposed partitioning
methodology focuses on finding the most critical basic
blocks (called kernels) of the input application. These
kernels are executed on the coarse-grain hardware, so that
the total execution time of the application meets the
specification’s requirements. With the term critical, we
define the basic blocks that represent computationally
intensive parts of the application. The critical basic blocks
are often located in nested loops.

We are interested in exploiting the available parallelism
at the operation level (either in critical or in non-critical
parts of an application) in both types of reconfigurable
hardware. Therefore, the methodology supports mutually
exclusive execution of the fine and the coarse-grain
hardware. According to their original C/C++ specification,
critical and non-critical parts of the application are executed
purely sequentially in the coarse and the fine-grain part of
the architecture, respectively. Although, the methodology
supports the mutual exclusive operation, this does not
imply that either the fine or the coarse-grain hardware
remain unused during the execution of the application. This
is due to the fact that our generic hybrid reconfigurable
architecture targets DSP and multimedia applications.
Typically these applications process certain amount of data
(called frames) whose computation is repeated over time.
Through the pipelining among the stages of computations,
the reconfigurable processing units of the hybrid
architecture are always utilized.

In the following, we explain the proposed partitioning
methodology. In Figure 2, the flow of the proposed
methodology is shown. The input is the application (or a
part of the application) which is described in a high-level
language like C/C++. The application’s source code is
considered as the output of a hardware/software partitioning
stage, which defines the parts that they are going to be
executed in the reconfigurable hardware.

In the first step, the Control Data Flow Graph (CDFG)
representation is created from the source code. This model

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05)
1530-1591/05 $ 20.00 IEEE

of computation is extensively used in mapping applications
on reconfigurable hardware. The CDFG is the input in the
steps of mapping to fine and coarse-grain hardware and in
the partitioning engine. In step 2, the application is mapped
to the fine-grain hardware and the execution time is
calculated. If the overall execution time of the application
meets the timing constraints, then the methodology exits,
since there is no need to continue with the next steps, i.e. to
partition the application into fine and coarse-grain
hardware. If the timing constraints are not satisfied, then we
proceed to step 3, which is the analysis procedure.

Coarse-grain
and fine-grain

hardware
characterization

Mapping to fine-grain
hardware

Timing constraints met?Exit
YES

Analysis
 Dynamic and static
 Kernel extraction and ordering

Candidate parts to be executed
in the coarse-grain hw

Candidate parts to be executed
in the fine-grain hw

Select one kernel for mapping
to coarse-grain hw each-time

Map to coarse-grain
hardware

Map to fine-grain
hardware

Exit

NO

Timing constraints met?

YES

Partitioning engine

NO

Step 2

Step 3

Step 4
Step 5

Code to be mapped on
reconfigurable hw (C/C++)

Control-Data Flow Graph
(CDFG) creation

CDFG

Step 1

Figure 2. Block diagram of the proposed partitioning
methodology.

In the analysis procedure (step 3), the application’s
source code is processed, so as to identify the dominant
kernels, which are the candidates to be mapped to the
coarse-grain hardware. The rest of the application code is
mapped to the fine-grain part of the architecture. The
identification of kernels is a combination of dynamic and
static analysis. The kernels are ordered in decreasing order
of computational complexity.

In the partitioning engine (step 4), kernels are moved
one by one for execution (and thus acceleration) in the
coarse-grain hardware. After the movement of each kernel
in the coarse-grain part, the total execution time of the
application is calculated to check if the timing constraints
are met. To compute the execution time, the mapping to the
fine and coarse-grain hardware takes place. The time
required for communicating data values through the shared
data memory of Figure 1, between the two types of
hardware is also taken into account.

The mapping to the coarse-grain part of the architecture
is the step 5 of the proposed methodology. If there is still a
violation in the overall execution time of the application,

the procedures of moving kernels to the coarse-grain
hardware and mapping the parts of the application onto the
fine and coarse-grain parts, are repeated until the timing
constraints are satisfied. As the mapping procedures to both
types of reconfigurable hardware determine the execution
time, we have developed appropriate algorithms to perform
these procedures.

3.1 Analysis step
The analysis step is the procedure for identifying the

kernels of the input application and provides the input to
the partitioning engine block, as it is shown in Figure 2.
More specifically, it identifies the critical and non-critical
parts of the application. The critical part is the set of
kernels, which are the basic blocks inside loops that cause
performance overheads. These kernels are candidates to be
mapped to the coarse-grain hardware, while the non-critical
parts of the application are executed in the fine-grain
hardware.

The inherent computational complexity (counts of basic
operations and memory accesses) is a meaningful measure
to identify dominant kernels. This information can be
obtained through a combination of: (a) dynamic analysis
(profiling), and (b) static analysis within basic blocks of the
input specification. Since operations in a basic block do not
have a uniform cost, a weighted sum is calculated and
aggregated at the basic block level to indicate the
computational complexity within the application. The
weights indicate the delay allocated to each basic operator.

For the dynamic analysis, the source code is executed
with appropriate input and profiling information is gathered
at the basic block level. For performing dynamic analysis,
we have used Lex [10], which a lexical analyzer used for
parsing the input code. By developing the proper scripts in
Lex, we can identify loop (for, while and do-while) and
conditionals (if-then-else) structures in the source code.
Then, Lex automatically places a counter for each basic
block in a loop. The modified source code (after counter
placement) is compiled and executed with the input vectors
that represent the typical operation of the application. The
placed counter gives the access count for each basic block
of the input program.

Lex is also used for the static analysis. It identifies the
basic operations and the memory accesses inside the basic
blocks and generates a detailed and illustrative overview of
the distribution of the algorithm complexity over basic
operators. The total weight (complexity) of a basic block is
computed as the product of the basic block execution
frequency (exec_freq) times the weight of the operations of
this basic block (bb_weight), i.e.:

_ _ _total weight exec freq bb weight (1)

After all critical basic blocks have been identified, an
ordering of these critical basic blocks takes place. These
kernels are sorted in descending order of computational
complexity. Thus, the first kernel which is going to be

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05)
1530-1591/05 $ 20.00 IEEE

mapped onto the coarse-grain hardware, if the overall
execution requirement is not met, is the most computational
intensive one.

3.2 Mapping to fine-grain hardware
The proposed mapping methodology for the fine-grain

part of the architecture is a temporal partitioning algorithm.
The temporal partitioning resolves the hardware
implementation of an application that does not fit into the
fine-grain reconfigurable hardware by time-sharing the
hardware in a way that each partition fits in the available
resources (for example the CLBs of an FPGA). This time-
sharing of the hardware is achieved through the dynamic
reconfiguration of the device, which is the case in
contemporary FPGA devices, either commercial [11] or
academic ones.

The mapping methodology classifies the nodes in the
Data Flow Graph (DFG) of the input application according
to their As Soon As Possible (ASAP) levels [12]. The
ASAP levels expose the parallelism hidden in the DFG, i.e.
all the DFG nodes with the same level can be considered
for parallel execution without any dependency check. There
also exists some degree of parallelism among the nodes
with different levels, i.e. if they are not connected by a data
edge. The approach followed is that the nodes are executed
in increasing order relative to their ASAP levels. This
ensures stable inputs for every DFG node at the next ASAP
level. The mapping methodology also handles CDFG, by
iteratively mapping the DFGs composing the CDFG.

The pseudocode of the proposed mapping algorithm to
the fine-grain hardware is illustrated in Figure 3.
Partition(ui) denotes the temporal partition to which the
node ui belongs (1 iu N , N is the number of DFG

nodes) and max_level denotes the maximum ASAP level of
any node in the DFG. The algorithm traverses each node of
the DFG, level by level, and assigns them to a partition.
The DFG nodes are assigned to partitions numbered 1 and
beyond. All the nodes from level 1 to max_level are
traversed. Nodes of the same ASAP level are placed in a
single partition and if the available area in the fine-grain
hardware is exhausted then the nodes are assigned to the
next partition. If the nodes in the current ASAP level are all
assigned to a partition, then the next level nodes are
considered. Initially, a partition has no nodes.

The AFPGA is the area available for mapping the DFG
operations in the fine-grain (FPGA) reconfigurable
hardware. To ensure that the routing of the resources is
feasible, the AFPGA is a percentage of the total FPGA area. A
typical value is a 70% of the overall FPGA area. The
size(ui), which is the area occupied by the mapped DFG
node, and the AFPGA are dependent from the fine-grain
technology (e.g. a specific FPGA device [11]). Since these
are parameters in our methodology, the proposed
methodology is applicable to every type of reconfigurable
fine-grain hardware.

i = 1;
level = 1;
area_covered = 0;
while(level max_level)
 for each node ui with level(ui)= level
 current_area = size(ui);
 if (area_covered + current_area AFPGA)
 partition(ui) = i;
 area_covered = area_covered + current_area;
 end if;
 else
 i = i + 1;
 partition(ui) = i;
 area_covered = current_area;
 end else;
 level = level + 1;
 end for;
end while;

Figure 3. Mapping algorithm to fine-grain hardware.

The shared data memory of the hybrid reconfigurable
platform (Figure 1) is used for storing the input and output
values among the temporal partitions. For each temporal
segment a configuration bit-stream is generated. According
to the application’s data- and control-flow, the appropriate
configuration bit-stream is loaded to the FPGA device. For
each temporal partition, full reconfiguration of the fine-
grain hardware is performed. Thus, the reconfiguration time
has the same value for each partition and it is added to the
execution time of each temporal partition.

3.3 Mapping to coarse-grain hardware
For the coarse-grain hardware, the high-performance

coarse-grain data-path and the mapping methodology
presented in [6] are considered. This data-path consists of a
set of Coarse-Grain Components (CGCs) implemented in
ASIC technology, a reconfigurable interconnection
network, and a register bank. The CGC is an nxm array of
nodes, where n is the number of rows and m the number of
columns. The connections among the CGC nodes are
reconfigured by appropriate steering logic. This allows to
easily realize any complex operations (like a multiply-add
operation) and increase system’s performance [6]. Each
CGC node contains a multiplier and ALU where only one
of them is activated in a clock cycle.

Due to the flexible structure of the CGC-based data-
path, any required computational structure can be easily
implemented; thus the CGC data-path can realize the
behaviour of any existing coarse-grain data-path, like the
ones in [2], [3]. This is the main reason why we have
considered in this work this specific type of coarse-grain
hardware. Also, due to the CGC data-path’s features, the
stages of the mapping methodology are accommodated by
simple, yet efficient algorithms. The steps of the mapping
process are: (a) scheduling of DFG operations, and (b)
binding with the CGCs. A proper list-based scheduler has
been developed. After CGC binding [6], the overall latency
of the DFG is measured in clock cycles having period TCGC.

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05)
1530-1591/05 $ 20.00 IEEE

This period is set for having unit execution delay for the
CGCs. For handling CDFG, the mapping procedure is
iterated through the DFGs comprising the CDFG of an
application.

3.4 Partitioning engine
The partitioning engine moves kernels one by one to the

coarse-grain hardware until the performance requirements
are satisfied. After the movement of each kernel to the
coarse-grain hardware, the total execution time of the
application is calculated to check if the timing constraints
are met. The mapping procedures to the fine and coarse-
grain hardware are required for computing the execution
time. If the timing constraints are not met, the process of
moving kernels to the coarse-grain hardware is repeated
until the timing constraints are satisfied. The total execution
time is:

ttotal = tFPGA + tcoarse +tcomm (2)
where tFPGA is the execution time in the FPGA (fine-grain)
hardware, tcoarse is the execution time in the coarse-grain
data-path and tcomm is the time required for transferring data
between the two types of reconfigurable hardware, through
the shared data memory (Figure 1).

The tcoarse equals to:

_ () ()coarse to coarse i i
i

t t BB Iter BB (3)

where tto_coarse is the time required for executing the basic
block BBi in the coarse-grain hardware, and Iter(BBi) is the
number of times that the BBi is invoked. Similarly, tFPGA

equals to:

_ () ()FPGA to FPGA i i
i

t t BB Iter BB (4)

The tFPGA includes the reconfiguration time for all the
generated temporal partitions after the mapping of the basic
blocks.

4. Experimental results
We have developed a prototype framework in C++ to

implement the flow of Figure 2. For the software
development, we have also used academic open source
tools. For example, the SUIF2 [13] and MachineSUIF [14]
compiler infrastructures has been used and proper passes
have been developed for the CDFG creation. As already
mentioned, Lex has been used for the dynamic and static
analysis.

In this paper, we apply the proposed partitioning
methodology to two applications written in C language by
the AMDREL’s partners [5]. The first one is the front-end
of the baseband processing of an IEEE 802.11a OFDM
transmitter. The front-end consists of the Quadrature
Amplitude Modulation (QAM) unit, the IFFT block and the
cyclic prefix unit. The considered source code of the
OFDM transmitter is composed by 18 basic blocks (BBs).
The second application is a JPEG encoder. The main parts
of the JPEG encoder are the DCT transformation unit, the

quantizer, the zig-zag scanning unit and the entropy
(Huffman) encoder. The considered JPEG encoder source
code consists of 22 BBs.

Table 1 reports the total weights of both applications
(last column), in decreasing order of value, of the 8 most
computational intensive basic blocks, extracted by the
analysis step of the partitioning methodology. The second
column of this Table reports the execution frequency of the
specific basic block, while the third column gives the
weights of the operations in the basic block. The execution
frequency values are taken for a number of 6 payload
symbols for the OFDM transmitter, while for the JPEG
encoder for transforming an image of size 256 256 bytes.
These inputs of the applications also hold for the clock
cycles results of Table 2 and 3. The DFGs of the basic
blocks of both applications consist of arithmetic operations
of type ALU and multiplication; thus no divisions are
present in the DFGs. In the analysis process, we give a
weight equal to 1 for the ALU operations and a weight
equal to 2 for the multiplication ones, since the later ones
have a larger computational complexity.

Table 1. Ordered total weights of basic blocks

Basic Block
no.

Basic Block
exec. freq.

Operations
weight

Total
weight

OFDM transmitter
22 336 115 38640
12 1200 25 30000
3 864 6 5184
5 370 12 4440
42 800 5 4000
32 560 6 3360
29 448 7 3136
21 147 18 2646

JPEG encoder
6 355024 3 1065072
2 8192 85 696320
1 8192 83 679936
22 65536 5 327680
8 30927 8 247416
3 65536 3 196608
16 63540 3 190620
17 63540 2 127080

Table 2 and 3 show the results of the partitioning
methodology, in terms of clock cycles, after using the
developed partitioning framework for the OFDM
transmitter and the JPEG encoder. The following
assumptions hold for both applications. The clock cycle
period is set to the clock period of the fine-grain (FPGA)
hardware. We have considered that the clock cycle period
of the FPGA hardware is three times larger than the CGC
data-path’s clock period, i.e. TFPGA = 3 TCGC. This is a
rather moderate assumption for the performance gain of an
ASIC technology compared to an FPGA one. For these
experiments, two values of AFPGA are considered: 1500 and
5000 units of area. For each case of the AFPGA, the coarse-

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05)
1530-1591/05 $ 20.00 IEEE

grain data-path consists of two and three 2x2 CGCs. Thus,
four different cases are considered in this experiment. For
all of these cases, a timing constraint of 60000 clock cycles
has to be satisfied for the OFDM transmitter, while for the
JPEG encoder a timing constraint of 11 106 clock cycles
has to be met.

Table 2. OFDM partitioning results for timing constraint of
60000 clock cycles

AFPGA=1500 AFPGA=5000
Initial
Cycles

263408 124080

CGCs no. two 2x2 three 2x2 two 2x2 three 2x2
Cycles in
CGC 53184 41472 53184 41472

BB no. 22, 12, 3 22, 12 22, 12, 3 22, 12
Final cycles 57088 47856 56864 46512
% cycles
reduction

78.3 81.8 54.1 62.5

Table 3. JPEG partitioning results for timing constraint of
11 106 clock cycles

AFPGA=1500 AFPGA=5000
Initial Cycles
(106)

18434 12399

CGCs no. two 2x2 three 2x2 two 2x2 three 2x2
Cycles in
CGC (106) 5817 5699 5817 5669

BB no. 6, 2, 1 6, 2, 1 6, 2, 1 6, 2, 1
Final cycles
(106)

10558 10411 10423 10227

% cycles
reduction

42.7 43.5 15.9 17.5

The first row of Table 2 and 3 shows the number of
cycles for an all-FPGA implementation of the considered
applications. It is evident that an all-FPGA solution cannot
satisfy the timing constraint. The third row of Table 2 and 3
shows the clock cycles required for the implementation of
the BBs (their number is shown in the fourth row of the
Table 2 and 3) when these are mapped to the CGC data-
path. The number and type of CGCs are given in the second
row. The BBs of the fourth row have been chosen from the
partitioning methodology for execution on the coarse-grain.

The final clock cycles, after the partitioning, are shown
in the fifth row of Table 2 and 3. It is clear from these
results, that by choosing costly BBs to be mapped in the
coarse-grain reconfigurable hardware, system’s
performance is largely improved and the timing constraint
is satisfied. These results prove the effectiveness of both the
proposed partitioning methodology and the automated
framework. Also, as the FPGA area grows, the reduction of
clock cycles is smaller since a larger FPGA exploits better
the parallelism of an application due to the considered fine-
grain mapping algorithm shown in Figure 3. A maximum
clock cycles reduction of approximately 82% relative to the
all-FPGA solution of the OFDM transmitter, is reported for

the case of AFPGA=1500 and three 2x2 CGCs present in the
CGC data-path.

5. Conclusions - Future work
A methodology for partitioning applications between

fine and coarse-grain reconfigurable blocks of a hybrid
granularity architecture, was presented. We also gave
specific mapping algorithms for the fine and coarse-grain
reconfigurable blocks. The experiments showed that the
timing constraints of an application can be satisfied by
proper functional partitioning. On going-work considers
multiple threads of execution for parallel operation of the
fine and coarse-grain reconfigurable blocks. Future work
focuses on partitioning an application for satisfying energy
consumption constraints.

References
[1] R. Hartenstein, “A Decade of Reconfigurable Computing: A

Visionary Retrospective”, in Proc. of DATE, pp. 642-649,
2001.

[2] R. Kastner, A. Kaplan, S.O. Memik, E. Bozorgadeh,
“Instruction Generation for Hybrid Reconfigurable Systems”,
in ACM TODAES, vol. 7, no.4, pp. 605-627, October 2002.

[3] M. Wan, H. Zhang, V. George, M. Benes, A. Abnous, V.
Prabhu, J. Rabaey, “Design methodology of a low-energy
reconfigurable single-chip DSP system”, in Journal of VLSI
Signal Processing, vol.28, no.1-2, pp.47-61, May-June 2001.

[4] P. J.M. Havinga, L. T. Smit, G. J.M. Smit, M. Bos, P. M.
Heysters, “Energy Management for Dynamically
Reconfigurable Heterogeneous Mobile Systems”, in
Heterogeneous Computing Workshop, San Francisco, USA,
April 2001.

[5] Architectures and Methodologies for Dynamic
REconfigurable Logic (AMDREL) project, IST-2001-34379,
http://vlsi.ee.duth.gr/amdrel/, 2004.

[6] M. D. Galanis, G. Theodoridis, S. Tragoudas, D. Soudris, and
C.E. Goutis, “Mapping DSP Applications to a High-
Performance Reconfigurable Coarse-Grain Data-Path”, in
Proc. of Intl. Conf. FPL ‘04, LNCS 3203, pp. 868-873, 2004.

[7] T. J. Callahan, J. R. Hauser, J. Wawrzynek, “The Garp
Architecture and C Compiler”, in IEEE Computer, vol. 33,
no. 4, pp. 62-69, April 2000.

[8] A. Ye, N. Shenoy, P. Baneijee, “A C Compiler for a
Processor with a Reconfigurable Functional Unit”, in Proc. of
FPGA, pp. 95-100, 2000.

[9] D.C. Suresh, W.A Najjar, F. Vahid, J.R. Villareal, G. Stitt,
“Profiling tools for Hardware/Software Partitioning of
Embedded Applications”, in Proc. of LCTES, pp.189-198,
2003.

[10] J. R. Levine, T. Mason and D. Brown, Lex & Yacc, O’ Reilly
Publishers, 1995.

[11] Xilinx Virtex-II Platform FPGAs, www.xilinx.com, 2004.
[12] G. De Micheli, Synthesis and Optimization of Digital

Circuits, McGraw-Hill, International Editions, 1994.
[13] M. W. Hall et al., “Maximizing multiprocessor performance

with the SUIF compiler”, IEEE Computer, vol. 29, no. 12, pp.
84-89, Dec. 1996. (URL: http://suif.stanford.edu)

[14] M. D. Smith and G. Holloway, “An introduction to Machine
SUIF and its portable libraries for analysis and optimization”,
Technical Report, Harvard University, July 2002.

Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’05)
1530-1591/05 $ 20.00 IEEE

