
HAL Id: inria-00539874
https://inria.hal.science/inria-00539874v1

Submitted on 25 Nov 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Scheduling, Binding and Routing System for a
Run-Time Reconfigurable Operator Based Multimedia

Architecture
Erwan Raffin, Christophe Wolinski, François Charot, Krzysztof Kuchcinski,

Stéphane Guyetant, Stéphane Chevobbe, Emmanuel Casseau

To cite this version:
Erwan Raffin, Christophe Wolinski, François Charot, Krzysztof Kuchcinski, Stéphane Guyetant, et al..
Scheduling, Binding and Routing System for a Run-Time Reconfigurable Operator Based Multimedia
Architecture. Design and Architectures for Signal and Image (DASIP), Oct 2010, Edinburgh, United
Kingdom. �inria-00539874�

https://inria.hal.science/inria-00539874v1
https://hal.archives-ouvertes.fr

Scheduling, Binding and Routing System for a
Run-Time Reconfigurable Operator Based

Multimedia Architecture
E. Raffin∗¶, Ch. Wolinski∗†, F. Charot†, K. Kuchcinski§, S. Guyetant‡, S. Chevobbe‡ and E. Casseau∗†

∗University of Rennes I. Rennes, France. Email: wolinski@irisa.fr
†INRIA. Rennes, France. Email: charot@irisa.fr

‡CEA, LIST. Gif-sur-Yvette, France. Email: stephane.guyetant@cea.fr
§Dept. of Computer Science, Lund University, Sweden. Email: krzysztof.kuchcinski@cs.lth.se
¶Technicolor Research & Innovation, Rennes, France. Email: erwan.raffin@technicolor.com

Abstract—This paper presents a system for application

scheduling, binding and routing for a run-time reconfigurable op-

erator based multimedia architecture (ROMA). We use constraint

programming to formalize our architecture model together with a

specific application program. For this purpose we use an abstract

representation of our architecture, which models memories, re-

configurable operator cells and communication networks. We also

model network topology. The use of constraints programming

makes it possible to model the application scheduling, binding

and routing as well as architectural and temporal constraints in

a single model and solve it simultaneously. We have used several

multimedia applications from the Mediabench set to evaluate

our system. In 78% of cases, our system provides results that

are proved optimal.

Keywords-Constraint Programming; Reconfigurable Architec-

tures; Embedded Platforms for Multimedia;

I. INTRODUCTION

Nowadays, modern highly parallel architectures are com-
posed of many parallel processing units (homogenous or
heterogenous) connected through communication networks.
The processing elements are usually equipped with local
memories. For about ten years, they have been containing,
more and more frequently, run-time reconfigurable data-paths
well tailored for selected classes of specific applications. These
architectures are very efficient but tools to compile application
programs for these new application-specific architectures are
still missing. To do application scheduling, binding and routing
for such systems is not a trivial task. To tackle this problem,
we proposed a new generic system based on the constraint
programing paradigm (CP) that enables execution of all above
discussed tasks simultaneously. For the purpose of this paper,
our system was adopted to support a run-time reconfigurable
operator based multimedia architecture (ROMA).

The general flow of the proposed system is presented in
Figure 1. It uses a generic compilation platform GECOS
recently extended with polyhedral transformations [1]. Our
system uses Hierarchical Conditional Dependency Graphs
(HCDGs) as the internal design representation. HCDG cap-
tures both the application control-flow and data-flow [2], [3].
It supports formal graph transformations and optimizations.

GECOS compiler framework

Scheduling
Binding
routing

C Front-end

HCDG builder Dataflow analyser

Polyhedral

transformations
Selection

CDFG

HCDG

HCDG
Polyhedric

HCDG

HCDG

HCDG

part of the DURASE flow

C

program

Generic Design Flow

AHCDG

New realized part

of the system

Main

Controller

(C program)

Configuration(S)C

GRA (Binary)

Back-End Compiler

Complex highly parallel
architecture composed of
run-time reconfigurable
operators connected trough
the communication networks
and using local memories

Fig. 1. Global design flow overview.

In the HCDG, graph nodes are guarded by boolean conditions
and polyhedrons depending on loop indexes and parameters.
After data-flow analysis [4], each read statement in a graph has
a set of possible source contributions relying on its execution
contexts and polyhedral conditions. Finally, loops are unrolled
totally or partially to generate an HCDG which is an input to
the remainder part of the system.

As shown in Figure 1, the inputs to our system are an
application program written in C and an abstract generic par-
allel run-time reconfigurable architecture model. The outputs
are the C program and the configuration information (binary
files) needed to manage the run-time reconfigurable ROMA

architecture.
The newly developed system, presented in this paper, is

part of the DURASE system [5], [6] (see Figure 1). It
implements our new method, based on CP, that enables to
model complex run-time reconfigurable architectures together
with their application programs. The model can then be used
to perform scheduling, binding and routing while optimizing
application’s execution time. Our system contains also the tar-
get dependent back-end compiler (in our case, the supporting
ROMA architecture).

This paper is organized as follows. In section II, related
works on scheduling and mapping are discussed. The targeted
architecture and its abstract model is presented in section III
and III-E. Section IV introduces briefly constraint program-
ming, that is used in our approach. The constraint program-
ming model to solve the resource constraint scheduling, bind-
ing and routing simultaneously for the abstract architecture
model is discussed in V. Section VI presents experimental
results. Finally, conclusions are presented in section VII.

II. RELATED WORK

Application scheduling, binding and routing for a run-time
reconfigurable architectures are complex problems. Each of
these problems is known to be NP-complete. In general two
trends are dominant to deal with these kind of problems, both
coming from high-level synthesis (HLS) domain.

First trend represents simple and dedicated algorithms to
solve practical instances of the problem effectively and effi-
ciently. List scheduling, for example, and its derivatives are
the most commonly used and adapted algorithms. In [7],
near optimal results are obtained quickly using a list-based
scheduler thanks to a tight cohesion between partitioning
and scheduling steps. More recently, [8] targets an industrial
distributed reconfigurable instruction cell based architecture
considering binding and routing effect, register assignment and
operation chaining. Branch-and-Bound algorithm have been
proposed in [9] and delivered good results but addressing
scheduling and allocation separately.

Second trend represents methods for solving these problems
optimally. Integer linear programming (ILP) and Mixed integer
programming (MIP) are common methods for mixed con-
strained version of these problems. They are also frequently
used to compare results from heuristic-based methods. The
contribution presented in [10] is particularly in line with our
work because an ILP formulation for solving optimally and
simultaneously the mapping, routing and scheduling of a given
data flow graph on a coarse-grain architecture is presented.
The main difference, apart the formulation type, resides in the
targeted architecture model, which consists of homogeneous
processing elements and mesh-like interconnection network.
In [11], a MIP formulation is proposed for optimal mapping
of digital signal processing algorithms on commercially VLIW
DSPs, both homogeneous and heterogeneous architecture are
addressed.

The constraint programming (CP) approach is one of the
most relevant in the second trend and particularly developed

during last years for different purpose. Kuchcinski and Wolin-
ski, have widely participated in this development through their
research, mainly in HLS [3], [12], [13]. More recently they
also contributed to generation of optimized application specific
reconfigurable processor extensions [14], [15]. This approach
has also been used in the context of embedded distributed
real-time systems [16].

According to a recent survey on methods and tools for
embedded reconfigurable systems [17], CP and evolution-
ary/genetic algorithms presented in [18] belong to the most
promising approaches to efficiently produce high-quality so-
lutions for the complex architecture synthesis problems in-
volving multi-objective optimization. To illustrate this, [19]
compares three static schedulers. First one, list-based, has high
efficiency but the least accuracy; the second, based on CP,
ensures optimal solutions but with significant searching effort;
the last one, based on a genetic algorithm, shows reasonable
efficiency and better accuracy than the first one.

To our knowledge, this is the first paper addressing the prob-
lem of solving simultaneously binding, routing and scheduling
a data flow graph for the run-time reconfigurable operator
based embedded architecture using CP. With this approach, it
is possible to solve simultaneously application binding, routing
and scheduling problems under architectural and temporal
constraints. Moreover, we use the JaCoP solver [20], which
provides classical primitive constraints but also conditional and
highly efficient global ones particularly useful for our problem
formulation.

III. DESCRIPTION OF ROMA PROCESSOR

The ROMA processor is composed of a set of coarse grain
reconfigurable operators, data memories, configuration mem-
ories, operator network, data network, control network and
a centralized controller. The centralized controller manages
the configuration steps and the execution steps. The ROMA
processor has three different interfaces: one data interface
connected to the operator network, one control interface and
one debug interface connected to the main controller.

A. Reconfigurable datapath
The reconfigurable datapath of the ROMA processor is

made up of a set of heterogeneous or homogeneous recon-
figurable operators. Their number can be statically changed
from 4 to 12 depending on the computing power needed for
a particular application domain. Each reconfigurable operator
has its own configuration memory and its own control interface
to the main controller, each of them being able to be configured
and controlled independently.

These reconfigurable operators are connected together via
a dedicated network (called operator-operator network) and to
the data memories via another network (called data memory-
operator network). The local memories have their own pro-
grammable address generators. Figure 2 shows the block
diagram of the ROMA processor. The main controller (Global
CTRL) executes a C program defining synchronisations be-
tween the configuration and execution sequences.

!"#$%&'$(

!"#$%&'""$()'"*"$#+'%,

)%&%
*#+

,-(&
*#+

./'0%/
1234

)#056
,7 !-./012

&#%3

45*&#%3

26
&#%3

1&$/
,7

27$%8#'%*9*'7$%8#'%

:8#8*;$;'%<*9*'7$%8#'%

26= 26> 26? 26@

1AB 1AB 1AB 1AB

)%&%8+#+'$980%-:(

:8#8
C8",

45

:8#8
C8",

45

:8#8
C8",

45

:8#8
C8",

45

:8#8
C8",

45

:8#8
C8",

45

)%&%
,7

Fig. 2. Architecture of ROMA processor : the control structure includes
a Global CTRL and dedicated controllers designated for each module of
the reconfigurable datapath. The reconfigurable datapath is composed of
data memory banks, two interconnection networks and a set of coarse grain
reconfigurable operators.

B. Coarse grain reconfigurable operator

The coarse grain reconfigurable operators are four pipeline
stage operators that can execute standard arithmetic (such as
ADD, SUB, MUL, ABS), logic (such as AND, OR, XOR) and
shift operations. The operators can also compute accumulation
operations (such as SAD and MAC). The datapath of the
operators has 32/40 bit wide inputs and outputs. The multiplier
is a 16x16 bit multiplier that can be split into two 8x8 bit
multipliers.

C. Interconnection networks

The transfers inside the ROMA processor are organized
according to the type of communication. There are data, con-
figuration and control communications and the interconnection
networks were split according to these types. These intercon-
nection networks allow partial reconfiguration, to prepare the
next communication pattern without stopping the execution.
The interconnection networks are configurable in one cycle.

D. Data interconnection network

The data transfers can be done either between data mem-
ories and operators or between operators themselves. Dedi-
cated interconnection networks were designed to connect data
memories to operators (data memory - operator network) and
operators together (operator - operator network). The data
width is parametrizable between 32 bit and 40 bit according
to the needs. The data interconnection does not add any clock
cycles during the communication, but a fixed latency between
1 and 3 cycles according to the number of operators and
data memory banks. A communication pattern is defined by
two configurations, for both types of networks. The goal of
this solution is to minimize the hardware complexity of the
interconnection network and avoid a costly crossbar intercon-
nection.

Data memory - operator interconnexion network

Op Op Op...

...Memory Memory Memory

Operator - Operator interconnexion network

Fig. 3. Generic architecture model.

1) Operator - operator interconnection network: The op-
erator - operator interconnection network is able to achieve
all acyclic connection patterns between reconfigurable oper-
ators, connecting N operators with 2 inputs and 1 output.
This interconnection network is optimized to minimize the
hardware cost and the latency. Each output of each operator
can be connected to each N/2 inputs of the next operators
(i.e., operators with higher identification number). An output
can be connected to several inputs of the next operators. Each
connector is configured by one bit.

2) Data memory - operator interconnection network: The
data memory - operator interconnection network has to support
connections between data memory banks and the operators and
can achieve several communication patterns simultaneously.
This flexibility is needed to ease the data placement in the data
memory banks. This interconnection network should minimize
the critical path. Thus, 1 to 3 latency cycles are needed to
cross the data memory - operator interconnection network.
These latency cycles are managed during the compilation
of an application. The latency is variable according to the
distance between the memory bank and the operators that are
connected.

E. Architecture Abstract Model
The abstract architecture model of the ROMA architecture

is depicted in Figure 3. It is composed of local memories,
a memory-operator interconnection network, reconfigurable
operators and a specific operator-operator interconnection net-
work. The architecture is defined as follows.

• the number and size of the local memories are
parametrized,

• each memory has one true port; it means that only one
read/write operation can be executed at the same time,

• the read/write operation latencies are constant,
• each memory is identified by a unique number,
• each operator is identified by a unique number,
• the operators can be heterogenous (each operator can

execute a specific set of complex operations),
• each operator has at most two input ports and one output

port,

• the memory-operator interconnection network is a full
crossbar network,

• the operator-operator interconnection network is
parametrized; it can be defined by a connection matrix
containing the information about point to point operator
connections,

• the operator-operator interconnection network is charac-
terized by a constant read/write latency.

This abstract architecture has been implemented in our
framework as a meta-model with its own editor allowing easy
and quick specification of the resource constraints. In this way,
it is possible to specify the amount of functional resources and
supported operations, each with a delay, amount of memory,
etc.

IV. CONSTRAINT PROGRAMMING

In our system, we use constraint satisfaction methods im-
plemented in constraint programming environment JaCoP [20],
[21]. Below we provide a very short introduction to constraint
programming but the more thorough discussion can be found
in [22], for example.
A constraint satisfaction problem (CSP) is defined as a 3-tuple
S = (V,D, C) where V = {x1, x2, . . . , xn} is a set of vari-
ables, D = {D1,D2, . . . ,Dn} is a set of finite domains (FD),
and C is a set of constraints. Finite domain variables (FDV) are
defined by their domains, i.e. the values that are possible for
them. A finite domain is usually expressed using integers, for
example x :: 1..7. A constraint c(x1, x2, . . . , xn) ∈ C among
variables of V is a subset of D1×D2× . . .×Dn that restricts
which combinations of values the variables can simultaneously
take. Equations, inequalities and even programs can define a
constraint.
A solution to a CSP is an assignment of a value from variable’s
domain to every variable, in such a way that all constraints are
satisfied. The specific problem to be modeled will determine
whether we need just one solution, all solutions or an optimal
solution given some cost function defined in terms of the
variables.
The solver is built using constraints own consistency methods
and systematic search procedures. Consistency methods try
to remove inconsistent values from the domains in order to
reach a set of pruned domains such that their combinations
are valid solutions. Each time a value is removed from a FD,
all the constraints that contain that variable are revised. Most
consistency techniques are not complete and the solver needs
to explore the remaining domains for a solution using search.
Solutions to a CSP are usually found by systematically as-
signing values from variables domains to the variables. It is
implemented as depth-first-search. The consistency method is
called as soon as the domains of the variables for a given
constraint are pruned. If a partial solution violates any of the
constraints, backtracking will take place, reducing the size of
the remaining search space.
The constraint programming approach has been recently used
in UPaK (Abstract Unified Patterns Based Synthesis Kernel for

Architectural
constraints

AG

Abstract Architecture Model

Coarse Grain
Operator library

C
program

Resource

constraints

Main Processor
Program (C)

CGRA

Configuration(S
) (Binary)

Graph
too

big ?

Parallelism

degree

Constraints

Structural
Analysis

Graph Covering
using accumulation

patterns

Mapping
Constraint

(# config = 1)

NOT mappable in
1 configuration

Main
Processor

Program (C)

CGRA
Configuration

(Binary)

Multi-Scheduling

Binding

Clustering

Scheduling

Binding

No solution

Control

Unit
RPU0 ?1 RPUN-2 RPUN-1

$0 $1 $M-2 $M-1

Routing Routing

Back-end Compiler

ROMA
Design Flow
Front-End

Fig. 4. Detailed scheduling, binding and routing and flow.

Hardware and Software Systems) [15] for automatic design of
application-specific reconfigurable processor extensions.

V. SCHEDULING AND BINDING CONSTRAINT MODEL

The place of scheduling, binding and routing steps in the
whole design flow are presented in detail in Figure 4. The
inputs for these steps are the application graph (AG), the
library of the functionally reconfigurable operators and the
architectural constraints (derived from the ROMA multi-media
architecture). The outputs are the main processor program (C
file) and the configuration information (binary files).

The ROMA architecture supports two modes of execution.
The first one corresponds to the data flow model of execution.
This mode can be used when only one configuration is used
during the processing. In the second mode, the configuration
of the communication networks and configuration of operators
can be changed each cycle. In this paper, we consider both
modes of execution but the accumulation operations available
in mode one are not considered.

A. Application Graph
Formally, the AG is modeled as a direct acyclic graph AG =

(N,E) where each node n ∈ N represents a computation
(n ∈ OPs) or an input/output memory access (n ∈ IOs) and
each direct edge e ∈ E a data transfer.

B. Finite Domain Variables Definition
In order to model the scheduling, binding and routing we

use the following primary FDVs defined for all nodes n ∈ N

and all edges e ∈ E.
• nstart :: {0..∞} defines the start time of processing of

node n,

• ndelay defines the processing time of node n (in the
ROMA processor an execution time of node n is constant
for all reconfigurable operators),

• nend :: {0..∞} defines the processing completion time
of node n,

• nop :: {i|opi ∈ {0..|operators| − 1} ∧ opi can execute
n} defines the operator binding to node n,

• nopactivity
:: {0..∞} defines the time when operator op

is occupied to execute node n ∈ OPs; this time includes
node processing time and the time needed to transfer the
data,

• nmem :: {0..|memories| − 1} defines the memory used
to store the data from node n,

• nstartW R :: {0..∞} defines the starting time of the
memory data write operation for the data coming from
node n,

• eijstartRD
:: {0..∞} defines the start time of the memory

data read operation for the computation represented by
node nj , (data produced by node ni),

• nstoreMn
:: {0, 1} defines whether the data from node n

needs to be saved in memory Mn (value 1) or not (value
0),

• nlife_time :: {0..∞} defines the life time of the data
produced by node n,

• emem_ope :: {0, 1} defines whether the memory-operator
interconnection network is used (value 1) for the data
transfer represented by edge e,

• eope_ope :: {0, 1} defines whether the operator-operator
interconnection network is used (value 1) for the data
transfer represented by edge e.

Secondary FDVs variables are introduced, when needed, later
in this paper..

C. Communication Constraints

In AG, an edge represents a data transfer on one of the
two communication networks, either through the memory-
operator interconnection network or through the operator-
operator interconnection network. For each edge e ∈ E we
define exclusive choice of the network using constraint (1).

∀e ∈ E : emem_ope + eope_ope = 1 (1)

If an edge represents a data transfer from an input node to a
computation node, then we impose constraint (2) to use the
memory-operator interconnection network. Similar constraints
are imposed for data transfers from a computation node to an
output node.

∀eij = (ni, nj) ∈ E|ni ∈ IOs ∧ nj ∈ OPs∨
ni ∈ OPs ∧ nj ∈ IOs :
ei,jmem_ope

= 1 (2)

In the ROMA architecture, the memory-operator intercon-
nection network is implemented as a full crossbar network. For
this reason we do not need to impose any additional resource
sharing constraints to model these connections.

On the contrary, the operator-operator interconnection net-
work imposes some communication limitations according to
the network topology presented in III-D1 and III-E. In this
case, constraint (3) must be fulfilled for each edge eij =
(ni, nj) ∈ E when ni, nj ∈ OPs.

If eijope_ope
= 1 then njop = niop + eijopr

(3)

Note that we introduced variable eijopr
:: {1..

|operators|
2 } for

all edges. This variable models which operators (represented
as operators’ numbers) are reachable from operator niop . The
finite domain of this variable can be equal to {0..

|operators|
2 }

if a loop back link on operator exists.
In general, to model the topology of a specific network,

a dedicated communication matrix ComMat can be used.
This matrix represents a relation between nodes niop and njop

and contains information about all possible point to point
connections between these nodes. In this case, constraint (3)
is replaced by constraint (4). In practice, it is implemented as
ExtensionalSupport constraint [21].

If eijope_ope
= 1 then njop = ComMat[niop] (4)

D. Timing Constraints

The completion time of the processing of node n ∈ OPs

(nend) is defined by equation (5). Note that if n ∈ IOs then
ndelay = 0.

nend = nstart + ndelay (5)

The node precedence relations imposed by the partial order
of AG are modeled by constraints (6) or (7) depending on
which communication network was selected for data transfer.

In order to transfer the data between two nodes ni, nj ∈
OPs (ei,j = (ni, nj) ∈ E) through the memory-operator
communication network, memory write and read operations
must be modeled (see Figure 5). In the ROMA architecture,
each operator produces one result that can be communicated
to other nodes. Therefore, only one memory write operation
for all output edges is modeled. The memory read operations
are modeled for each out-coming edge e ∈ noutputs using the
memory-operator communication network for data transfers.

The start times of memory write and read operations are
modeled by FDVs nistartW R

for all nodes ni ∈ N and
ei,jstartRD

for all edges from ni, respectively. Inequality (6a)
constraints the start time of a memory write operation in
relation to the completion time of the operation represented
by node ni. In the same way, the memory read operation of
the previously saved data is defined in constraint (6b). In this
case, the read operation takes place when a corresponding
write operations is completed. Finally, the next operation
can begin only when its input data are loaded (constraint
(6d)). The delays of both memory write and read operations,
∆eijW R

and ∆eijRD
, are computed using constraints (6c) and

(6e) respectively. This is done according to the write and

ni

nl

nj

nk

nm

W
R

la
t

R
D

la
t

R
D

la
t

memories activities operators activities

ni startWR

eij startRD

eik startRD

e
ij

lif
e
_
ti
m

e

e
ik

 li
fe

_
ti
m

e

MAX MAX

MAX

!
e
im

 o
p
e
_
o
p
e

!
e
il

o
p
e
_

o
p
e

n
i

a
c
ti
v
it
y
_
1

n
i

a
c
ti
v
it
y
_
2

R
E

C
(n

i o
p
)

memory-operator

communication

network

operator-operator

communication

network

ti
m
e

Fig. 5. Example with communications on both networks.

read latencies (denoted WRlat and RDlat) derived from the
architecture model and the constants considered here.

nistartW R
≥ niend (6a)

eijstartRD
≥ nistartW R

+ ∆eijW R
(6b)

∆eijW R
= WRlat ∗ ei,jmem_ope

(6c)
eijstartRD

+ ∆eijRD
= njstart (6d)

∆eijRD
= RDlat ∗ ei,jmem_ope

(6e)

The precedence constraints between nodes ni and nj ∈
OPs (eij = (ni, nj) ∈ E) imposed when a data transfer
is done through the operator-operator network are specified
by formulas (7), where FDV ∆eijope_ope

:: {0..∞} represents
the time when the network is occupied. We consider that the
operator-operator interconnection network is occupied from
the completion time of the processing of source node ni

to the start time of the processing of destination node nj .
This is formalized by (7a). In (7b) the operator-operator
interconnection network latency ope_opelat, derived from the
architecture model is used to constrain the occupation time.
Variable ninet_acces = 1 if at least one data transfer through
the operator-operator interconnection network is executed.

∆eijope_ope
= njstart − niend (7a)

∆eijope_ope
≥ ope_opelat ∗ eijope_ope

(7b)

ninet_acces ∈ {0, 1}⇔
�

∀eij∈nioutputs

eijope_ope
> 0 (7c)

E. Resource Sharing Constraints
In our CP model, we model the resources sharing process

by using the combinatorial constraint Diff2 presented in [20].
This constraint prohibits simultaneous usage of resources by
imposing relations between a set of 2D rectangles in a time-
resource space. These 2D rectangles are defined with a syntax
Rec = [x, y, ∆x,∆y]. Variables y, x and ∆x represent the
resource number, the operation start time and the occupation
time of the resource, respectively. In general, ∆y = 1 if a
resource is used and ∆y = 0 otherwise. For each type of
resource (as operator, memory etc.), we define a separate
Diff2 constraint.

a) Memory Unit Activity Modeling: In order to model
the potential memory access for each node ni, we defined
one rectangle corresponding to the memory write operation
Rec(niW R) (8a) and one rectangle corresponding to the mem-
ory read operation Rec(eijRD

). They are defined for each out-
coming edge eij (8c) from node ni.

For rectangle Rec(niW R) (8b), ∆y is replaced by variable
nimem_access that is equal 1 if at least one output edge repre-
sents a data transfer to the memory. For rectangle Rec(eijRD

),
∆y is replaced by variable eijope_ope

.

Rec(niW R) = [nistartW R
, nimem , WRlat, nimem_access] (8a)

nimem_acces ∈ {0, 1}⇔
�

∀eij∈nioutputs

eijmem_ope
> 0 (8b)

Rec(eijRD
) = [eijstartRD

, nimem , RDlat, eijmem_ope
] (8c)

TABLE I
RESULTS OBTAINED FOR RESOURCE-CONSTRAINED SCHEDULING AND MAPPING FOR SELECTED MULTIMEDIA APPLICATIONS.

Application DFG nodes edges input nodes output nodes Cycles Optimal Runtime (ms) Time Out (s)
JPEG IDCT (col) 1 35 40 13 4 16 yes 7693 30

-//- 2 57 65 22 5 26 yes 15117 30
Total DFGs for JPEG IDCT (col 1+2 92 105 35 9 42 yes 22810 30

JPEG IDCT (row) 3 106 127 34 17 29 no TO 30
Write BMP Header 4 73 72 29 16 13 yes 875 10

-//- 5 19 18 8 4 5 yes 15 10
-//- 6 27 26 12 4 9 yes 47 10
-//- 7 27 26 12 4 9 yes 46 10
-//- 8 9 8 4 2 5 yes 0 10

Total DFGs for Write BMP Header 4+..+8 155 150 65 30 41 yes 983 10
sobel 7x7 (unrolled 2x2) 9 52 54 24 2 24 yes 360 10

MESA Matrix Mul 10 52 60 20 4 16 no TO 30
IIR biquad N sections (unrolled x4) 11 66 73 29 1 55 no TO 30

Roma H filter 12 43 42 21 2 28 yes 297 10

Constraint (9), defined for all nodes ni ∈ N and for all out-
coming edges eij ∈ nioutputs , ensures exclusive access to the
memory.

Diff2([...Rec(niW R), Rec(eijRD
)...]) (9)

To handle the possibility of performing several memory read
operations on the same data at the same time, we defined
Diff2 exceptions (10). These exceptions define possibility
for some rectangles to overlap and are specified by a list of
rectangle pairs [Recj , Reck].

∀ni ∈ E ∧ eij , eik ∈ nioutputs ∧ j �= k

[Recj , Reck] = [Rec(eijRD
), Rec(eikRD)] (10)

For nodes representing input/output variables we do not
define specific rectangles. Rectangles Rec(nW R) and are not
considered for input nodes and rectangles Rec(eijRD

) are not
needed for output nodes.

b) Memory Unit Occupation Modeling: FDV variables
eijlife_time

(defined for all edges) and nilife_time (defined
for all nodes in the AG) are used to model data life-time
in memory. We consider that data produced by node ni

transferred via memory nimem occupies memory from the
start time of its write operation until completion of the last
read operation. The life-time of the data represented by eij is
expressed by the constraint (11a). According to the fact that all
edges from a node represent data transfers of a unique data,
we can simply define the life-time of the data produced by
node ni by the constraint (11b).

eijlife_time
= njstart − nistartW R

(11a)
nilife_time = max(..., eijlife_time

∗ eijmem_ope
, ...)

where eij ∈ nioutputs (11b)

In order to not exceed the memory size (m_size), we
use the cumulative constraint Cumulative(t, ∆t, ra, m_size)
[21], where variable t defines, in our case, the start time
of memory cell occupation, ∆t corresponds to the cell’s
occupation time and finally ra defines how many cells are
used. ra is 1 if memory mi is used to store the data (0
otherwise), in our case.

∀mi ∈ {0..|Mem|− 1},∀ni ∈ N : (12)
(ti = nistartW R

∧∆ti = nilife_time∧
m_usedi :: {0, 1}⇔ nimem = mi)

Cumulative(t,∆t, m_used,m_size) (13)

c) Operator Unit Activity Modeling: Concerning the op-
erator sharing constraints, we defined for each node ni ∈ OPs

a rectangle modeling the operator activity. We do similar
definitions for output operations. The time of operator activity
niopactivity

is defined by constraint (14c). As we mentioned
previously, the data can be transferred either by memory-
operator or operator-operator interconnection networks. Vari-
ables: niactivity_1 :: {0..∞} and niactivity_2 :: {0..∞} are used
to model the operator unit occupation time for the first and the
second networks, respectively. They are defined by constraints
(14a) and (14b);

niactivity_1 = nistartW R
+ WRlat − nistart (14a)

niactivity_2 = max(...,∆eijope_ope
, ...) + nidelay (14b)

where eij ∈ nioutputs

niopactivity
= max(niactivity_1 ∗ nimem_acces ,

niactivity_2 ∗ ninet_acces) (14c)

The rectangles representing operator activities and the corre-
sponding Diff2 constraints are defined by (15a) and (15b).

∀ni ∈ OPs : Rec(niop) = [nistart , niop , niopactivity
, 1]

(15a)
Diff2([Rec(n1op), Rec(n2op), . . .]) (15b)

d) Cost Function: The cost function CostFunc that
enables the optimization of the application time is defined by
constraint (16).

CostFunc = max(..., niend , ...) (16)

This constraint makes it possibly to minimize the schedule
lenght. It is defined for all AG output nodes.

VI. EXPERIMENTAL RESULTS

We have carried out extensive experiments to evaluate the
quality of our method. All experiments have been run on 2GHz
Intel Core Duo under the Windows XP operating system. In
our experiments, the ROMA abstract model has been instan-
tiated with 8 memories and 4 operators. All operators support
the same types of computations and the delay of a computation
is the same, independently to its resource assignment. The
following latencies have been assumed WRlat = RDlat =
ope_opelat = 1. We have also assumed that all data is stored
in memories before processing starts.

Table I presents results obtained for applications from dif-
ferent multimedia benchmarks. Some of these applications are
composed of several non-connected data flow graphs. Thus,
the results are presented for all these non-connected subgraphs
and for the whole application. The runtime includes the time
necessary for finding the solution and the time needed to prove
its optimality, if the optimality has been proved. Otherwise it
is the time for finding the solution. In 78% of the cases, our
system provides optimal results, confirming the high quality
of our scheduling, binding and routing system.

VII. CONCLUSION

Our new, CP based, scheduling, binding and routing system
for run-time reconfigurable, coarse grain architectures has been
proposed in this paper. The presented system was especially
adopted for the ROMA architecture but the proposed abstract
model is generic and supports more general interconnection
networks than the ones derived from our specific reconfig-
urable architecture. This makes our model more general and
applicable for other reconfigurable architectures. Thanks to the
CP model of the abstract architecture, we could do the schedul-
ing, binding and routing tasks simultaneously. This makes
it possible to reach globally optimal solutions and obtain
high quality results. For 78% of the considered multimedia
applications, coming from the Mediabench set, our system
generated optimal solutions and proved their optimality.

ACKNOWLEDGMENT

The work presented in this paper is supported by the French
Architectures du Futur ANR program ANR-06-ARFU-004.

REFERENCES

[1] GeCoS, “Generic compiler suite - http://gecos.gforge.inria.fr/.” [Online].
Available: http://gecos.gforge.inria.fr/

[2] A. A. Kountouris and C. Wolinski, “Efficient scheduling of conditional
behaviors for high-level synthesis,” ACM Trans. Des. Autom. Electron.
Syst., vol. 7, no. 3, pp. 380–412, 2002.

[3] K. Kuchcinski and C. Wolinski, “Global approach to assignment and
scheduling of complex behaviors based on hcdg and constraint pro-
gramming,” Journal of Systems Architecture, vol. 49, pp. 489 – 503,
2003.

[4] P. Feautrier, “Dataflow analysis of array and scalar references,” Interna-
tional Journal of Parallel Programming, vol. 20, 1991.

[5] K. Martin, C. Wolinski, K. Kuchcinski, A. Floch, and F. Charot,
“Constraint-driven identification of application specific instructions in
the DURASE system,” in SAMOS IX: International Workshop on Sys-
tems, Architectures, Modeling and Simulation, Samos, Greece, Jul. 20-
23, 2009.

[6] ——, “Constraint-driven instructions selection and application schedul-
ing in the DURASE system,” in 20th IEEE International Conference
on Application-specific Systems, Architectures and Processors (ASAP),
Boston, USA, Jul.7-9, 2009.

[7] K. S. Chatha, “An iterative algorithm for hardware-software partitioning,
hardware design space exploration and scheduling. design automation
for embedded systems,” Journal on Design Automation for Embedded
Systems,, vol. 5, pp. 281–293, 2000.

[8] Y. Yi, I. Nousias, M. Milward, S. Khawam, T. Arslan, and I. Lind-
say, “System-level scheduling on instruction cell based reconfigurable
systems,” in DATE ’06: Proceedings of the conference on Design,
automation and test in Europe, 2006.

[9] J. Jonsson and K. G. Shin, “A parametrized branch-and-bound strategy
for scheduling precedence-constrained tasks on a multiprocessor sys-
tem,” Parallel Processing, International Conference on, vol. 0, p. 158,
1997.

[10] J. Brenner, J. van der Veen, S. Fekete, J. Oliveira Filho, and W. Rosen-
stiel, “Optimal simultaneous scheduling, binding and routing for
processor-like reconfigurable architectures,” in International Conference
on Field Programmable Logic and Applications, 2006. FPL ’06., 2006.

[11] M. Sadiq and S. Khan, “Optimal mapping of DSP algorithms on
commercially available off-the-shelf (COTS) VLIW DSPs,” Consumer
Electronics, IEEE Transactions on, vol. 53, pp. 1061 –1067, 2007.

[12] K. Kuchcinski, “An approach to high-level synthesis using constraint
logic programming,” in Proc. 24th Euromicro Conference, Workshop on
Digital System Design, Västerås, Sweden, Aug. 25–27, 1998, pp. 74–82.

[13] C. Wolinski, K. Kuchcinski, E. Raffin, and F. Charot, “Architecture-
driven synthesis of reconfigurable cells,” in Proc. of the 12th Euromicro
conference on Digital System Design (DSD), Patras, Greece, Aug. 27-9,
2009, pp. 531–538.

[14] C. Wolinski, K. Kuchcinski, K. Martin, E. Raffin, and F. Charot, “How
constrains programming can help you in the generation of optimized
application specific reconfigurable processor extensions,” in Proc. of
The Intl. Conference on Engineering of Reconfigurable Systems and
Algorithms, Las Vegas, USA, (Invited paper), Jul. 13-16, 2009.

[15] C. Wolinski, K. Kuchcinski, and E. Raffin, “Automatic design of
application-specific reconfigurable processor extensions with UPaK syn-
thesis kernel,” ACM Trans. Des. Autom. Electron. Syst., vol. 15, no. 1,
pp. 1–36, 2009.

[16] C. Ekelin and J. Jonsson, “Solving embedded system scheduling prob-
lems using constraint programming,” Dept. of Computer Engineering,
Chalmers University of Technology, Tech. Rep., 2000.

[17] L. Jówiak, N. Nedjah, and M. Figueroa, “Modern development methods
and tools for embedded reconfigurable systems: A survey,” Integr. VLSI
J., vol. 43, pp. 1–33, 2010.

[18] J. Teich, T. Blickle, and L. Thiele, “An evolutionary approach to system-
level synthesis,” in CODES ’97: Proceedings of the 5th International
Workshop on Hardware/Software Co-Design. Washington, DC, USA:
IEEE Computer Society, 1997, p. 167.

[19] Y. Qu, J.-P. Soininen, and J. Nurmi, “Static scheduling techniques for
dependent tasks on dynamically reconfigurable devices,” Journal of
Systems Architecture, vol. 53, pp. 861 – 876, 2007.

[20] K. Kuchcinski, “Constraints-driven scheduling and resource assign-
ment,” ACM Transactions on Design Automation of Electronic Systems
(TODAES), vol. 8, no. 3, pp. 355–383, Jul. 2003.

[21] K. Kuchcinski and R. Szymanek, “JaCoP Library. User’s Guide,” http:
//www.jacop.eu, 2009.

[22] F. Rossi, P. v. Beek, and T. Walsh, Handbook of Constraint Programming
(Foundations of Artificial Intelligence). Elsevier Science Inc., 2006.

