
Dr.Hair: Reconstructing Scalp-Connected Hair Strands without Pre-Training
via Differentiable Rendering of Line Segments

Yusuke Takimoto1∗ Hikari Takehara1∗ Hiroyuki Sato1∗ Zihao Zhu1,2† Bo Zheng1

1Huawei Technologies Japan K.K. 2Keio University

Image LPMVS [35] Strand Integration [33] NeuralHaircut [50] Ours

Figure 1. Results of existing strand-based 3D reconstruction methods and our method tested with the data captured by a multi-camera
system. In the upper row, color and colored arrows represent 3D orientation of hair strands. The overlaid black arrows were drawn
manually to visualize rough orientations. The lower row shows individual strands with random color. LPMVS and Strand Integration failed
to estimate consistent direction, and their strands are too short not to connect to the scalp. The absolute orientation of strands estimated
by NeuralHaircut is mostly the opposite of the actual hair orientation. Our method demonstrates better precision in reconstructing the
directional flow of scalp-connected hair.

Abstract

In the film and gaming industries, achieving a realis-
tic hair appearance typically involves the use of strands
originating from the scalp. However, reconstructing these
strands from observed surface images of hair presents sig-
nificant challenges. The difficulty in acquiring Ground
Truth (GT) data has led state-of-the-art learning-based
methods to rely on pre-training with manually prepared syn-
thetic CG data. This process is not only labor-intensive
and costly but also introduces complications due to the do-
main gap when compared to real-world data. In this study,
we propose an optimization-based approach that eliminates
the need for pre-training. Our method represents hair
strands as line segments growing from the scalp and op-
timizes them using a novel differentiable rendering algo-
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rithm. To robustly optimize a substantial number of slender
explicit geometries, we introduce 3D orientation estimation
utilizing global optimization, strand initialization based on
Laplace’s equation, and reparameterization that leverages
geometric connectivity and spatial proximity. Unlike exist-
ing optimization-based methods, our method is capable of
reconstructing internal hair flow in an absolute direction.
Our method exhibits robust and accurate inverse rendering,
surpassing the quality of existing methods and significantly
improving processing speed.

1. Introduction

High-quality 3D hair data is essential for depicting realistic
human figures in movies, games, and metaverse. However,
capturing real hair is notoriously difficult due to its intri-
cate properties, including its elongated shape, overlapping
strands, transparency, reflectivity, and uniformity, which
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challenge even the most advanced computer vision stereo
techniques at a sub-pixel resolution. As a result, hair pro-
cessing is one of the most formidable tasks in image-based
3D human modeling.

Hair-specific reconstructions methods have been studied
for many years [18, 33, 35, 38, 39, 53, 60]. These ap-
proaches are characterized by applying a Gabor filter to the
hair image to calculate the 2D orientation, which is then
combined with 3D measurements for optimization. How-
ever, these methods require accurate calibration of the illu-
mination and cameras, making it difficult to scale them to
casual shooting environments. In addition, since only the
hair’s surface can be measured, it is not easy to estimate the
form of the hair connected to the scalp, which is commonly
used in industry.

Data-driven reconstructions, particularly those using
volumetric representations via neural networks, have re-
cently gained traction in 3D hair modeling, and many stud-
ies on humans with hair [5, 28] are conducted. Among
them, hair-specific methods using one or a few views
[9, 17, 23, 46, 61, 66, 67, 70, 71] have been actively stud-
ied. The recently proposed methods [44, 50] use pre-trained
priors and perform strand fitting through differentiable ren-
dering [26, 43, 45, 63] against the multi-view images at run-
time. However, creating the CG data used for pre-training
is not only costly and requires manual work by artists but
also has the problem of domain gaps.

In response, we propose Dr.Hair, an optimization-based
pipeline that recovers individual strands connected to the
scalp from multi-view images to address the above prob-
lems. We start with conventional hair representation used
in real-time rendering and standard CG tools. After fitting a
scalp to the raw hair mesh, we compute consistent 3D ori-
entations from 2D orientation images. From the results, the
guide strands are initialized based on a differential equation.
Finally, a hierarchical relationship called guide-child is uti-
lized for optimization based on differentiable rendering. To
summarize, our contributions are:

• 3D orientation estimation using global optimization, esti-
mating consistent surface orientation;

• Laplace’s equation-based strand initialization, filling in-
terior hair flow smoothly from surface observations;

• Rasterization-based differentiable rendering algorithm
for line segments, generating smooth gradient in image
space while maintaining high-frequency detail;

• Reparameterization of strand shapes, propagating dense
gradients throughout the geometry;

• An optimization framework using hierarchical relations
of guide and child hair.

Finally, we validate the effectiveness of our method on syn-
thetic and real data.

2. Related Work
2.1. Optimization-based methods

Since the early 2000s, to measure the strands on hair sur-
face, optimization methods combining 3D geometry with
2D orientation extracted from multiple images have been
explored [18, 38, 39, 60]. These methods utilized Gabor fil-
ters to address the high specularity arising from the cylindri-
cal shape and semi-transparent material and have been ex-
tended to dynamic scenarios [30, 31]. Subsequently, Line-
based PatchMatch MVS (LPMVS) [35] have enabled more
accurate strand geometry acquisition. Strand Integration
[33] further refines the strands of LPMVS. Joint measure-
ment of material properties has been achieved [53]. How-
ever, these methods require controlled lighting conditions
and struggle with the 180° ambiguity of 2D/3D orientation.

Some methods have addressed this ambiguity issue using
user stroke input [8], Markov Random Field optimization
[32], and pre-trained models [68] to estimate long strands
connected to the scalp. Specialized techniques for braided
hair [14] and for estimating simulation parameters [16] also
exist. Although handling various hairstyles is challenging
for these approaches, our global optimization robustly es-
timates consistent 3D orientations. To extrapolate internal
hair flow from surface observations, second order differen-
tial equations [18, 39] and 3D PatchMatch [68] have been
used. These interpolation techniques are valuable for seam-
lessly integrating hair strands onto the scalp.

Most existing methods stray from the conventional hair
modeling process conducted by human artists employing
tools such as XGen [3], Ornatrix [12], and Blender Hair
Curves [4]. In these tools, hair manipulation commonly
involves a hierarchical arrangement of guide and child
strands. Artists primarily manipulate guides, while children
are generated through interpolation. EnergyHair [69] facil-
itates image-based interactive hair modeling utilizing this
hierarchical structure. Our pipeline brings this guide-child
hierarchy into a fully automatic hair strand reconstruction.

Differentiable rendering (DR) has been attracting atten-
tion as a method for reconstructing 3D scenes. Not only
implicit functions [27, 34, 57], but also methods for explicit
geometric primitives such as meshes [11, 19, 24, 26, 36, 37,
43, 54] and point clouds [45, 63] have been studied exten-
sively. However, DR of line primitives used for hair has not
been well studied. We propose a DR framework for line
segments to robustly optimize hair strands.

2.2. Learning-based methods

Data-driven hair strand reconstruction has been widely
studied. An early work used simulated examples [13], and
the field has gained popularity after the release of a syn-
thetic dataset created by hand at significant cost, USC-
HairSalon [15].
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Figure 2. The overview of our pipeline. Our approach combines traditional real-time rendering techniques with recent advances in
differentiable rendering. First, we fit a template to a raw mesh. Next, we compute consistent 3D orientations from 2D orientation images
and initialize guide strands based on a differential equation. Finally, optimization based on differentiable rendering is applied by leveraging
the hierarchical relationship between guides and children.

(a) Raw mesh (b) Before optim. (c) MST (d) After optim.

Figure 3. Surface 3D orientation estimation by global optimiza-
tion: Hair regions are visualized on a gray scalp. (a) A raw mesh.
(b) Surface 3D orientations before our optimization. The color
stands for 3D orientation. Because of 180° ambiguity, orienta-
tions flip intermittently. (c) Minimum Spanning Tree (MST). The
nodes are downsampled points, which are visualized as colored
lines after propagation. Black lines represent edges. (d) Surface
3D orientations after our optimization. Consistent hair flow from
the whorl to the ends is established.

Many methods attempt to overcome the ambiguity of
thin hair strands through volumetric representation, particu-
larly in simple setups like single-view [9, 17, 46, 61, 66, 70,
71], sparse views [23, 67], and sketches [48]. However, due
to the small number of views, their 3D consistency is lim-
ited. Fine-tuning to deform strands against views [15, 23]
is utilized to enhance high-frequency details. Neural-based
volumetric representations [34] have been applied to head
and hair reconstruction [5, 27, 28]. CT2Hair [49] recon-
structs high-quality strands from wig CT data. Dynamic
scenes are handled as well [58, 59, 62]. Generative models
for hair strands have been recently proposed [51, 72].

In a multi-view setup, some methods train priors such
as strand generators and perform the geometry texture [56]
optimization against input images. NeuralStrands [44] uses
surface 3D orientation [35] as a constraint and rasterizes
strands generated from neural shape texture using point-
based DR [45, 63]. It achieves photorealistic hair appear-

ance using neural appearance texture and a UNet-based
neural renderer. However, manual annotation is needed to
resolve the 180° orientation ambiguity. NeuralHaircut [50]
uses volumetric reconstruction [57] as the first stage. Then,
regularizing the geometry texture with a pre-trained diffu-
sion model, broad gradient propagation by mesh-based soft
rasterization [26, 43] is performed for sparse strands. It fi-
nally generates realistic images using UNet. These methods
offer excellent rendering quality, but strand geometry accu-
racy is limited by blurred images of soft rasterization and
domain gaps. Moreover, both pre-training and optimiza-
tion are time-consuming. Recently proposed GaussianHair
[29] utilizes gaussian splatting [21] along with a pre-trained
strand decoder.

3. Method

Figure 2 illustrates the overview of the proposed method.

3.1. Initialization

In this step, the scalp and the hair strands connected to it
are initialized. We use a head mesh and a separate scalp
mesh with a different topology as templates as shown in
Figure 2. A separate scalp with uniform vertex distribution
and clear sideburn shapes is convenient for hair growth. The
scalp mesh has a correspondence with the scalp region of
the head mesh, and their vertex positions can be mutually
transformed by linear interpolation.

The input comprises multi-view images, camera param-
eters, and a raw mesh. As a preprocessing step, the head is
automatically fitted to the face region of the raw mesh by
non-rigid ICP utilizing landmarks and segmentation. The
scalp is then optimized to lay inside the hair region of the
raw mesh, and the hair region is extracted. Details of this
scalp fitting are provided in the supplementary material.
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3D Orientation Estimation by Global Optimization

First, using Gabor filters [38], the 2D orientation and con-
fidence are calculated from the color images of each view.
Next, 3D-oriented points are reconstructed by using a mod-
ified version of LPMVS [35]. For fast computation, depth
values were fixed by rendering the raw mesh from each
viewpoint, and only the 3D orientation was optimized.
Then, to reduce noise, mean-shift is applied to the points
by following [35]. The resulting orientation contains a
180° ambiguity in the Euclidean space, so global consis-
tency from the roots to the tips should be sought.

We make a graph structure that connects neighboring
points using edge weights determined by the absolute value
of the inner product of orientations. On this graph, an MST
[41] is constructed. The orientation is then sequentially
propagated from the initial point until all points are reached
on the MST; if the inner product of neighboring orientations
is negative, the destination is rotated by 180°. Since a sin-
gle run may potentially lead to local optima, adding random
perturbations to the edge weights of the graph, an MST cre-
ation and propagation are performed 100 times. We define
the score of the graph as the sum of inner products of adja-
cent points’ orientations and choose the best in the trials as
the global optimal solution. At this stage, the orientation is
globally consistent but uncertain in absolute terms. In other
words, opposite directions, from the tips to the roots, may
be estimated. Therefore, the heuristic that most hair strands
should face the direction of gravity is used. The above pro-
cess is applied to downsampled points, and the orientation
is reflected back to the original resolution. Original points
that differ much in orientation from the optimized points are
removed as noise. Our global optimization process is shown
in Figure 3.

Gradient-Domain Strand Initialization

We leverage gradient domain processing [20, 40] to esti-
mate spatially smooth internal hair flow through volumetric
representaiton [23, 66]. A visualization of this process is
given in Figure 4.

Boolean operators extract the space Ω filled with hair,
enclosed by the boundary of hair regions in the raw mesh
and the scalp mesh. We consider filling Ω with a smooth
hair flow field. fo(p) = (nx, ny, nz) denotes the orienta-
tion at a position p = (x, y, z) ∈ Ω. It should satisfy the
following properties:

∇2fo(p) = 0 subject to ∥fo(p)∥2 = 1,

fo(ph) = H(ph), ph ∈ H, fo(ps) = S(ps), ps ∈ S
(1)

fo(p) follows a type of Laplace’s equation, a special case
of Poisson’s equation, whose solution can be determined by
boundary conditions. There are Dirichlet boundary condi-
tions with multiple types: Ω = {H,S,U}. H represents the

(a) Boundary cond. (b) Optimized volume (c) Extracted strands
Figure 4. Gradient-domain strand initialization: (a) Boundary con-
dition. Colored region represents H and S, and black region rep-
resents U. (b) Optimized volume sliced by certain planes. The
Interior is smoothly filled. (c) Extracted strands from the opti-
mized volume.

hair surface boundary, and H(ph) is the estimated 3D ori-
entation of the hair surface obtained in the previous step. S
and S(ps) are the scalp boundary and the orientation of the
scalp surface, respectively. Based on the observation that
hair on the top of the head grows upwards, but the hair on
the back and sides tends to point downwards due to bio-
logical characteristics of scalp pores and gravity, we define
S(ps) heuristically with a down vector d as follows:

S(ps) = normalize(ns(ps)+dmin(ns(ps) ·d+1, 1)) (2)

U is an undefined boundary without specific conditions. For
example, it accompanies neck collision and no valid 3D
orientation. We discretize fo(p) on a regular grid, initial-
ize it by filling the interior space with zeros, and iteratively
solve it for each element of XYZ with a successive over-
relaxation method. To avoid instability, the norm constraint
is enforced after the iterations.

Finally, we convert the 3D orientation field into guide
strands. Starting from root vertices of V on S, we traverse
the orientation of the voxels in sequence until reaching H,
generating guide strands.

3.2. Hierarchical Strand Optimization

We optimize hair line segments with a novel DR algorithm
with reparameterization. Guide-child hierarchy is incorpo-
rated into our optimization framework.

Hair Strands as Line Segments

The representation of hair follows the common practice in
real-time rendering [64]. Figure 5 displays our hair ge-
ometry. The geometry of hair G = {V ,F} is a collec-
tion of line segments. Here, V refers to the vertex posi-
tions corresponding to the division points, and F repre-
sents the connectivity between upper and lower vertices,
expressing spline curves [6]. During rendering, after tes-
sellation, G is further converted into camera-facing triangle
strips G = {V,F} and rasterized. The tip becomes a single
triangle. V and F denote the vertex positions and indices,
respectively.
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Figure 5. Line segments G are subdi-
vided and converted into billboard mesh
G for rasterization. The G thickness is
typically less than one pixel.
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Figure 6. Adja-
cency used in our
Laplacian (k = 4).

A two-stage structure of guide and child hair is employed
to express hairstyles. Guide hair grows from each vertex of
the scalp mesh, while child hair grows from sampled posi-
tions by Sobol sequence [52]. Child hair shape is linearly
interpolated with the nearest four guide hairs. 653 guide
strands and 50,000 child strands are used in this paper. For
children, the geometry Gc = {Vc,Fc} are defined in the
same way, and the same rasterization is applied.

Differentiable Rendering of Line Segments

After billboard mesh G is generated, those triangles are ras-
terized with the help of hardware, and anti-aliasing (AA)
for hair is applied to the rasterized screen-space buffer.

We designate the rasterized color at pixel position s as
c(s). N8 and sn, n ∈ N8 denote the 8 neighboring pixels
and their positions, respectively. cbl(s, sn,G) represents the
blended color. The function tri(s) returns the triangle ID,
while 0 ≤ r(s, sn,G) ≤ 1 defines a function that returns
the distance from pixel s to the edge of the triangle spanning
sn. If multiple edges cross a pixel boundary, the one with
the closest depth is chosen. The screen-space gradient that
can move V is generated via this function that accesses G.
The AA color caa(s,G) is the average of the blended colors.

caa(s,G) = (c(s) +
∑
n∈N8

cbl(s, sn,G))/(|N8|+ 1) (3)

cbl(s, sn,G) =

{
cbl′(s, sn,G) if tri(s) ̸= tri(sn)
c(s) otherwise

(4)

cbl′(s, sn,G) = r(s, sn,G)c(s) + (1− r(s, sn,G))c(sn)
(5)

While we have referred to c∗ as colors for convenience, this
approach can be extended to handle any rasterized vertex
attributes, such as silhouette and depth.

Our approach draws inspiration from nvdiffrast [24], a
DR for meshes. The AA of nvdiffrast generates gradients
only on the edge pixels where the occlusion actually oc-
curs. Instead, all pixels with different IDs of adjacent tri-
angles are updated for smoother gradients. AA can keep
finer geometric details than soft rasterization [26, 43] used

in NeuralHaircut [50]. As opposed to splatting [11], we
leverage the distance between pixels and geometric edges
for stronger gradient propagation. The comparison of AAs
is available in the supplementary material.

Reparameterization

Even if AA smoothes the gradients in the screen-space,
severe occlusions and non-deterministic rasterization of
strands with less than one pixel width result in sparse prop-
agation of gradients into the geometry. To address this is-
sue, we propose a reparameterization of hair geometries as
regularization, which is inspired by a mesh reparameteriza-
tion [36]. We introduce a Laplacian matrix L for line seg-
ments, considering both geometric connectivity and spatial
proximity, to transform the parameter space for optimiza-
tion. An example of the Laplacian we propose is shown in
Figure 6.

(L)ij =


−wij if (i, j) ∈ {F ∪ N }
Σ(i,k)∈{F∪N }wik if i = j

0 otherwise
(6)

Here, N is a set of combinations of neighboring vertices
obtained by searching for the k-Nearest Neighbors (kNN)
based on Euclidean distance for each line segment. The
number of neighbors k allows us to control the effect of spa-
tial proximity relations. In all experiments presented in this
paper, wij = 1 is used. Let x be a matrix assembled from
x ∈ V . Using L, we reparameterize the vertex positions
x in Cartesian coordinate into the values u in the differen-
tial coordinate, where dense gradients are delivered. I is the
identity matrix, and the parameter λ controls regularization
effect.

u = (I+ λL)x (7)

Guide Hair Optimization

We efficiently perform strand optimization following the
Coarse-to-Fine strategy. First, the vertex positions of guide
hair V are optimized. Reparameterization with k = Kg is
applied for guide hair. We rasterize the strands at a thick-
ness close to the actual hair, 0.2 mm. Lg is minimized using
the Adam optimizer [22] in Ig iterations.

Rb = wstick ∗Rstick + wroot ∗Rroot + wc ∗Rc (8)

Lg = wd ∗ Ld + wm ∗ Lm + wt ∗ Lt +Rb (9)

Here, Rb constitutes a base regularizer, and it consists of
three parts. Rstick is an L1 regularizer to prevent the hair
from penetrating the scalp, which is computed from the
depth of the penetrated strands and that of the scalp. Rroot

is an L1 regularizer to ensure that the roots of the hair keep
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their initial positions as possible. Rc is a curvature regular-
izer for guide hair, representing the sum of the curvatures
formed by adjacent line segments. Ld is an L1 depth loss
calculated between the depth values rendered by the raw
mesh and the strands. Lm is an L1 mask loss computed be-
tween the hair mask extracted from the input image and one
of the rendered strands. Lt is a 3D tangent loss computed
as the sum of cosine losses between the estimated 3D ori-
entation and the strands both rendered in screen-space. w∗
are the weights for each loss.

Child Hair Optimization

In this step, we abandon the guide interpolation and opti-
mize the vertex positions of child hair, Vc, for finer align-
ment in the two stages. First, We apply reparameterization
with k = Kc for child hair and perform optimization in I0c
iterations. After the first stage, we relax the conditions by
setting k = 0 and execute the final alignment in I1c itera-
tions. Both of these steps share a common loss term, Lc,
which is minimized using the Adam optimizer.

Lc = wd ∗ Ld + wm ∗ Lm + wo ∗ Lo +Rb (10)

Lo is a 2D orientation loss computed as the sum of absolute
cosine losses between the 2D orientation extracted from the
input image and that of the rendered strands.

4. Experiments
Qualitative and quantitative comparisons were carried out
with state-of-the-art strand reconstruction methods that use
multi-view images: LPMVS [35], Strand Integration
[33], and NeuralHaircut [50]. An open CPU implemen-
tation made by the authors of Strand Integration was used
for LPMVS, while the other methods were tested with offi-
cial implementations. All methods require multi-view im-
ages with camera parameters as input. NeuralHaircut was
trained for 300k iterations in Stage 1 (surface) and 200k it-
erations in Stage 2 (strand). The proposed method is imple-
mented on the top of Blender, PyTorch, and Dressi-AD, a
Vulkan-based DR framework with hardware rasterizer [54].
For Adam, learning rate was set to 0.001 with β1 = 0.9 and
β2 = 0.999. Other hyperparameters were set as follows:
λ = 50, wroot = 1.0, wstick = 0.1, wd = 0.01, wc = 0.01,
wm = 1, wt = 1, wo = 1, Kg = 4, Kc = 4, Ig = 2000,
I0c = 2000, and I1c = 1000. Our input raw mesh is recon-
structed by OpenMVS [7] unless otherwise noted. Detailed
experimental settings and more results are available in the
supplementary material.

4.1. Synthetic data

We numerically evaluated our method on hair models pre-
pared by Yuksel et al. [65]. The 58 images were ray-

Table 1. Speed comparison on synthetic data. We measured the
time taken to generate strands starting from multiple image and
camera parameter inputs on the same machine. The time taken for
our surface reconstruction by OpenMVS is set to 1, and relative
times are shown for the others.

Method LPMVS Strand Integ. NeuralHaircut Ours
Surface recon. N/A N/A 1080 1
Strand recon. 57 81 2160 25

traced in Blender Cycles using a virtual camera on a hemi-
sphere under uniform lighting. We did not use GTs as
input, except for camera parameters. We follow previous
studies [35, 44, 50] that measure precision, recall, and F-
score between reconstructed strands and GTs. Neverthe-
less, we chose the 3D correspondence to evaluate the in-
ternal strands. 3D space is searched per source sample to
judge whether at least one destination sample is within the
distance and angle error thresholds, and the quantities are
computed. Moreover, while angular error evaluation in the
previous studies accepts an ambiguity of 180°, we evaluated
it in a range of 360° to assess absolute hair flow.

Quantitative comparison with existing methods and ab-
lation study are shown in Table 2. Our full pipeline shows
better values than the other methods in all criteria. In partic-
ular, the much higher recall values indicate that our method
successfully recovers internal hair directions that were dif-
ficult to handle with existing methods. The effectiveness of
each component in the proposed pipeline is also validated.
For straight hair with simple internal flow, our strand initial-
ization worked well and showed good scores even without
DR. For complex curly hair, the influence of other modules,
global optimization, reparameterization, and guide-child hi-
erarchy becomes more pronounced.

The performance of each method was also compared.
Table 1 shows the time taken to process Curly Hair. Typ-
ically, NeuralHaircut takes a couple of days, and LPMVS
and Strand Integration require a few hours, but our pipeline
finishes in less than one hour.

4.2. Real data

We show comparisons on H3DS dataset [42] in Figure 7.
GT raw meshes and camera parameters are used for all
methods but they are not very accurate. Our method is capa-
ble of reconstructing reasonable results despite the limited
accuracy of the input data.

Figure 8 visualizes results on a monocular video se-
quence. In even worse calibrations, our method robustly re-
constructs the strands. Hair length editing is also performed
to prove that our method can reconstruct accurate hair flow.

We also conducted comparisons on a well-calibrated stu-
dio setup. The 58 images taken by cameras positioned on
a hemisphere under uniform illumination are used. The re-
sults are shown in Figure 1. Ours reconstructs better strands
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Table 2. Quantitative comparison with existing methods and ablation study on synthetic data. P, R, and F1 denote precision, recall, and F1
score, respectively. Higher is better. The lower rows describe the values of our full pipeline and ours without individual modules. w/o DR:
DR optimization is not applied, and the initialized strands are evaluated. w/o guide opt.: Child strands are optimized from the beginning
of the DR step. w/o reparam.: Reparameterization is disabled. w/o N : Only N is abandoned in the reparameterization. w/o strand init.:
Strands are initialized by straight lines parallel to the normal of the scalp. w/o global opt.: Only gravity heuristic is applied to the initial
3D orientation, and 180° ambiguity is accepted on the other steps.

Straight Hair Curly Hair
Threshold 1mm/10° 2mm/20° 3mm/30° 1mm/10° 2mm/20° 3mm/30°

Measure P R F1 P R F1 P R F1 P R F1 P R F1 P R F1
LPMVS [35] 29.9 27.5 28.6 39.7 52.2 45.1 42.9 66.8 52.2 18.4 6.1 9.1 32.8 15.3 20.9 37.2 23.9 29.1
Strand Integration [33] 33.4 34.1 33.7 42.4 55.4 48.1 44.8 66.8 53.6 19.4 6.7 9.9 34.3 16.1 21.9 38.5 23.6 29.3
NeuralHaircut [50] 50.2 14.9 23.0 76.1 29.2 42.2 85.6 38.4 53.1 20.9 3.9 6.6 58.1 14.5 23.2 80.0 27.3 40.7
Ours 60.3 46.4 52.5 88.2 84.3 86.2 94.5 93.6 94.1 38.3 23.6 29.2 79.1 61.0 68.9 90.0 81.0 85.3
Ours (w/o DR) 65.4 41.8 51.0 88.6 78.8 83.4 93.3 88.6 90.9 22.1 15.7 18.4 59.2 56.1 57.6 75.8 82.0 78.8
Ours (w/o guide opt.) 61.1 46.8 53.0 86.8 86.1 86.5 92.7 95.0 93.9 36.8 22.9 28.2 77.4 60.6 68.0 88.8 80.7 84.6
Ours (w/o reparam.) 7.9 42.5 13.4 24.0 97.1 38.5 38.8 99.9 55.9 6.4 29.5 10.6 23.1 93.5 37.1 39.3 99.6 56.4
Ours (w/o N ) 59.5 46.9 52.5 86.6 85.4 86.0 92.8 94.3 93.5 36.5 23.2 28.3 76.4 60.7 67.6 87.6 80.7 84.0
Ours (w/o strand init.) 5.3 1.0 1.6 23.4 7.0 10.7 37.7 18.6 24.9 9.3 4.9 6.4 22.3 23.8 23.0 32.4 48.0 38.7
Ours (w/o global opt.) 58.1 45.7 51.2 85.5 85.8 85.7 91.8 94.7 93.2 26.1 13.6 17.9 63.5 46.4 53.6 75.3 68.5 71.8

Image LPMVS Strand Integration NeuralHaircut Ours
Figure 7. Comparison on a real-world multi-view dataset, H3DS [42]1. Color and arrows represent 3D orientation of each strand. In the
upper row, our method identifies the hair parting. In the middle row, ours reconstructs dense hair with no visible white scalp. In the bottom
row, a smooth hair flow is estimated by ours. NeuralHaircut struggles in all cases. LPMVS and Strand Integration are prone to flying noise.

than the existing methods in terms of direction. Figure 9
displays our other results that the challenging hairstyles
are successfully handled. Re-rendering comparison with
reconstructed strands is shown in Figure 10. Our strands
are shaded photorealistic, indicating that our method’s out-
put is portable among rendering engines. Furthermore, the
density distribution of our hair is more reasonable than
NeuralHaircut’s. Figure 11 visualizes the comparison of
physics simulation starting from the reconstructed strands.
Although NeuralHaircut suffers from incorrect directions,
ours exhibits reasonable behavior.

1The images of this dataset are only used for testing and comparison
with existing methods and not used for algorithm improvement or training.

4.3. Limitations

Our method is affected by the input raw mesh quality. If
the raw mesh shape has a notable difference from the sub-
ject, our strand reconstruction deteriorates, as shown in Fig-
ure 12. In addition, the assumption of a smooth flow makes
it challenging to handle discontinuous hairstyles such as
braids. Moreover, protruding strands can disrupt the overall
flow, limiting our accuracy, particularly for highly curly or
spiky hair. Finally, as shown in Figure 10, shaded hair color
deviates from the actual one because our method does not
recover material and lighting.
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Image NeuralHaircut original / half length Ours original / half length

Figure 8. Comparison on a hand-held monocular video captured by a smartphone [50]. On each method, the left image shows the original
reconstruction, and the diagram on the right shows the hair length edited in half. Our method demonstrates robust reconstruction even
under a severe capturing condition. Moreover, the half length image indicates our hair is editable thanks to the correct direction.

(a) Half bald head (b) Tied hair
Figure 9. Robustness against challenging hairstyles. Our method
can reconstruct (a) a half bald head and (b) tied hair.
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Figure 10. Left and middle: Re-rendering comparison. The cam-
era image is put on the top for hairstyle reference. The images are
ray-traced by Blender Cycles, using the common hair material and
lighting. Incorrect orientation of NeuralHaircut made artifacts at
meeting points of opposite hair flow, which ours does not have.
Right: Volumetric slice of the middle view with certain near and
far planes. NeuralHaircut’s hair is concentrated on the surface and
scanty inside, whereas our method fills inside uniformly.

5. Conclusion

In this paper, we have introduced Dr.Hair, a novel method
for reconstructing detailed human hair strands from multi-
view images. Our approach recovers consistent surface
orientations, estimates the internal flow using differential
equations, and performs optimization based on differen-
tiable rendering, leveraging the hierarchical relationship
between guide and child strands. Our method’s effective-

N
eu

ra
lH

ai
rc

ut
O

ur
s

Initial state After simulation

Figure 11. Physics simulation with gravity and certain hair stiff-
ness applied to the same subject in Figure 1. The left image is
the initial state given by reconstruction, and the right one is after
simulation. NeuralHaircut’s hairs are oriented from bottom to top,
so the simulated result is severely affected by unnatural sagging.
Thanks to the correct direction, our hair behaves naturally.

Image Raw mesh Reconstruction

Figure 12. A limitation of our method. Raw mesh with inaccurate
top geometry degenerates hair flow.

ness has been demonstrated through both qualitative and
quantitative evaluations. Our method is capable of recon-
structing a wide variety of hairstyles grown from a scalp
without relying on priors trained on synthetic datasets,
which are typically created through labor-intensive manual
work. Moreover, our proposed method outperforms existing
methods in terms of processing speed. We believe that our
method can significantly contribute to the development of
a cost-effective, photorealistic human digitization system.
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Dr.Hair: Reconstructing Scalp-Connected Hair Strands without Pre-Training
via Differentiable Rendering of Line Segments

Supplementary Material

6. Experimental settings
6.1. Synthetic data: Cem Yuksel’s hair models [65]

We used wStraight, wCurly, and wWavy models, all of
which have 50,000 strands. The head model, accompanied
by the hair models, was attached for rendering by Blender
Cycles. A white uniform environment map was used for
illumination. Camera parameters were set the same as the
real studio data discussed later.

6.2. Real data

H3DS [42]

H3DS is a real-world multi-view dataset for head recon-
struction. GT Head meshes were scanned by a laser scanner,
and independently captured multi-view images surrounding
the subject in 360° were registrated against the mesh. About
70 images are provided per subject. Top views are not well
captured in both the mesh and the images. Moreover, some
views are affected by strong flash lighting that deteriorates
image quality. For NeuralHaircut, by following the official
implementation setting, 32 clean views manually annotated
by the dataset authors were used. For the other methods, all
views were inputted.

Monocular hand-held video [50]

A subject asked to be as static as possible on a chair was
captured in circular motion by a smartphone. Subsampled
60 frames are provided. Camera parameters were estimated
with COLMAP [47].

Studio data

Original 58 images were captured in 1824x2736 pixels by
DSLRs with hardware synchronized shooting. The cameras
were evenly put on a hemisphere, and similarly positioned
LEDs were illuminated for uniform lighting. Camera pa-
rameters and a raw mesh were estimated by MetaShape [2].
The images were resized to a height of 684 pixels for LP-
MVS and Strand Integration and 512 pixels for NeuralHair-
cut and ours.

6.3. Existing methods’ settings

LPMVS [35] and Strand Integration [33]

Default values were used for most parameters. Reasonable
values were set to scene-dependent minimum and maxi-

mum depth according to the distance between the camera
and the subjects.

NeuralHaircut [50]

We followed the instructions to run the official implemen-
tation, including some manual processes. 50,000 strands
were sampled for visualization and quantitative evaluation
while 1,900 strands were used for training as in the default
setting.

7. Additional Results
We show additional results on synthetic and real data.

7.1. Additional comparison and ablations on syn-
thetic data

Qualitative comparison with existing methods is shown in
the upper rows of Figure 13 and Figure 14. These results
correspond to the quantitative comparison in the main pa-
per, Table 2. The frontal scalp alignment of NeuralHair-
cut is not accurate, and for Straight Hair, NeuralHaircut
confuses hair with the head. The results of LPMVS and
Strand Integration are almost similar, showing many short
strands, inconsistent 3D orientation, and no distinction be-
tween head and hair. Our full pipeline shows better preci-
sion for both cases.

The lower rows of Figure 13 and Figure 14 visualize the
ablation study. Even in w/o DR, the outline is well esti-
mated, but it leaves room for improvement in fine details.
In w/o guide opt., child strands become too smoother. In
w/o reparam., hair moves freely to improve recall value
but causes noised shapes due to a lack of regularization. In
w/o N , individual strands move freely. In the case of curly
hair, the strands are easily entangled in close observation
and quickly become stuck in the local minima. The same
behavior was observed for straight hair, but the uniformity
of the hair flow had less negative impact on the numeri-
cal evaluation. In w/o strand init., because initial strands
are far from actual, hair growing stops in the middle of a
stretch. Note that increasing the learning rate may improve
hair growth, but shape collapse may also happen. In w/o
global opt., the boundary condition becomes heuristic, and
all 3D orientations on surface are treated as downward fac-
ing, resulting in partially wrong, opposite guide hair flow.
Even if the DR process allows 180° ambiguity, it will never
be the correct orientation because the initial value will set-
tle to the local minima of the direction it is facing. Turning
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GT LPMVS Strand Integration NeuralHaircut Ours

w/o DR w/o guide opt. w/o reparam. w/o N w/o strand init. w/o global opt.
Figure 13. Qualitative evaluation on synthetic Straight Hair, corresponding to Table 2 of the main paper and Table 3 of this material. Four
views per method are displayed with different strand visualization: Blender Cycles shading, 3D orientation, and random color. The upper
row shows a comparison with existing methods, and the lower row displays the ablation study.
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GT LPMVS Strand Integration NeuralHaircut Ours

w/o DR w/o guide opt. w/o reparam. w/o N w/o strand init. w/o global opt.
Figure 14. Qualitative evaluation on synthetic Curly Hair, corresponding to Table 2 of the main paper and Table 3 of this material. Four
views per method are displayed with different strand visualization: Blender Cycles shading, 3D orientation, and random color. The upper
row shows a comparison with existing methods, and the lower row displays the ablation study.
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Figure 15. Additional results on synthetic Wavy hair with different colors. From top to bottom, black, blue, brown, gold, gray, and red
colors are tested. From right to left, top view GT, top view guide with 3D orientation, top view child with 3D orientation, side view GT,
side view guide with random color, and side view child with random color are shown. The results are almost same and accurate, which
indicate our method is less sensitive to the color of the input hairs.
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Table 3. Quantitative comparison with existing methods and ablation study on synthetic data tolerating 180° ambiguity, which have been
used in the previous studies. P, R, and F1 denote precision, recall, and F1 score, respectively. Higher is better. The lower rows describe
the values of our full pipeline and ours without individual modules. w/o DR: DR optimization is not applied, and the initialized strands are
evaluated. w/o guide opt.: Child strands are optimized from the beginning of the DR step. w/o reparam.: Reparameterization is disabled.
w/o N : Only N is abandoned in the reparameterization. w/o strand init.: Strands are initialized by straight lines parallel to the normal of
the scalp. w/o global opt.: Only gravity heuristic is applied to the initial 3D orientation, and 180° ambiguity is accepted on the other steps.

Straight Hair Curly Hair
Threshold 1mm/10° 2mm/20° 3mm/30° 1mm/10° 2mm/20° 3mm/30°

Measure P R F1 P R F1 P R F1 P R F1 P R F1 P R F1
LPMVS [35] 61.0 37.1 46.1 81.1 62.8 70.8 87.5 76.0 81.4 36.9 8.1 13.3 65.6 18.6 28.9 74.0 28.1 40.7
Strand Integration [33] 68.3 42.0 52.0 86.9 62.2 72.5 91.6 72.6 81.0 38.7 8.8 14.3 68.2 18.8 29.4 76.2 26.6 39.4
NeuralHaircut [50] 50.3 15.0 23.1 76.4 29.3 42.4 85.9 38.6 53.3 21.0 3.9 6.6 58.6 14.7 23.6 80.8 28.1 41.7
Ours 60.3 46.4 52.5 88.2 84.3 86.2 94.5 93.6 94.1 38.4 23.6 29.2 79.2 61.1 69.0 90.1 81.2 85.4
Ours (w/o DR) 65.4 41.8 51.0 88.6 78.8 83.4 93.3 88.6 90.9 22.3 15.9 18.6 60.0 56.8 58.4 77.5 83.0 80.1
Ours (w/o guide opt.) 61.1 46.8 53.0 86.8 86.1 86.5 92.7 95.0 93.9 36.9 22.9 28.3 77.5 60.7 68.1 88.8 81.0 84.7
Ours (w/o reparam.) 8.2 43.2 13.8 24.9 97.4 39.7 40.5 99.9 57.6 8.1 33.5 13.1 30.1 95.5 45.8 52.1 99.9 68.5
Ours (w/o N ) 59.5 46.9 52.5 86.6 85.4 86.0 92.8 94.3 93.5 36.5 23.2 28.4 76.4 60.8 67.7 87.6 80.9 84.1
Ours (w/o strand init.) 5.6 1.0 1.7 24.3 7.1 11.0 40.2 19.1 25.8 10.1 5.1 6.8 27.6 24.8 26.2 45.0 50.2 47.5
Ours (w/o global opt.) 58.1 45.7 51.2 85.5 85.8 85.7 91.8 94.8 93.3 28.5 15.4 20.0 68.9 51.1 58.7 82.6 74.8 78.5

off the individual modules causes reasonable degradation,
which indicates that the effectiveness of each component of
our pipeline is validated.

Next, Figure 15 illuminates the robustness against hair
color. Hair color mainly affects the former part of our
pipeline, such as raw mesh reconstruction and 2D/3D ori-
entation estimation. Six colors with the same hair geometry
were tested, and our method reconstructed similar, accurate
strands for all colors, which indicates that our method can
handle various hair colors.

In Table 2 of the main paper, a quantitative comparison
was performed in 360° range to evaluate absolute hair flow
with synthetic data [65]. To align with the criteria used in
the previous papers [35, 44, 50], we show the evaluation tol-
erating 180° ambiguity in Table 3. Note that only evaluation
metrics were updated, and the same geometries shown in
Figure 13 and Figure 14 were used. The values of LPMVS
and Strand Integration become better because they are not
aware of 180° ambiguity. NeuralHaircut keeps the most val-
ues because it estimates the correct absolute hair direction
in this case. Ours is still best in most values.

7.2. Additional results on studio data

To demonstrate our method’s robustness on various real
hairstyles, Figure 16 and Figure 17 show more results on
studio data. In addition to final child hair, guide hair is also
shown for each subject. The robustness of our framework
against diverse natural hairstyles is proven.

7.3. Additional physics simulation results

In Figure 18, the physics simulations with head movement
were compared in time series. The full sequence is avail-
able in the supplementary video. The natural behavior of

our strands indicates that our method is capable of recon-
structing simulation-ready hair strands.

7.4. Additional results on USC-HairSalon [15]

To address robustness against artistic hairstyles, we con-
ducted experiments using USC-HairSalon [15]. A total of
58 synthetic images were generated following the same pro-
cedure as Cem Yuksel’s hair models as input. Figure 19
illustrates that our approach adeptly reconstructs artistic
hairstyles.

8. Anti-aliasing validation

8.1. Comparison with existing AAs

Our anti-aliasing (AA) for line segments is validated on a
toy problem that grows a strand by DR. The toy problem
is to fit a minimum line segment with two vertices, one at
the root and one at the tip, into the target image, where the
silhouette of a long strand is depicted. The line segment is
initialized with the length in 20% of the target strand. Its
root is fixed, and the tip position is optimized. To validate
gradient quality itself, we used a simple optimizer, stochas-
tic gradient descent without momentum. The learning rate
was set to 1.0, and DR optimization with an L2 silhouette
loss was performed in 25,000 iterations. Per iteration, the
line segment is converted to a triangle, as shown in Figure
5 of the main paper. The triangle is rasterized in 128x128
pixels, and then each AA is applied.

In the experiments of the main paper, the width of our
strand is set to 0.2 mm, which is often thinner than one
pixel. So, in this validation, we tested root thickness in 1.0,
0.8, and 0.6 pixels. Thin width is prone to cause jumping
pixels by the nature of rasterization.
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Figure 16. Additional results on studio data 1 / 2. From left to right, top view image, top view guide with 3D orientation, top view child
with Blender Cycles shading and 3D orientation, side view image, side view guide with random color, and side view child with Blender
Cycles shading and random color are shown. From top to bottom, the subjects with short hair, long hair, half bald head, and short-tied hair
are displayed. Our method enables realistic reconstruction for a wide range of hairstyles in the wild.

Figure 21 shows the quantitative comparison with nvd-
iffrast [24] and splatting [11], which are AAs for meshes.
Similar to ours, nvdiffrast is based on geometric AA, but
its gradient generation is selective. Splatting is another ap-
proach that propagates gradients through the weighted sum
of neighbor pixels with differentiable screen space position
interpolation. Our AA generates gradients for all line edges
and propagates them to vertex positions via pixel-to-edge
distance. Ours can reduce loss monotonically, while the
other AAs show difficulty in handling tiny geometry. The

qualitative comparison is displayed in Figure 20. Our AA
generates a smooth gradient even with a very thin geometry,
which leads to successful line segment alignment.

8.2. “CVPR” drawing by hair growing

Although the proposed pipeline utilizes the AA for fine-
tuning following initialization, it possesses sufficient capa-
bility for growth. The depiction of the “CVPR” drawing
with strands is presented in Figure 22. Each GT letter is
constructed using one, two, two, and three bundles for “C”,
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Figure 17. Additional results on studio data 2 / 2. From left to right, top view image, top view guide with 3D orientation, top view child
with Blender Cycles shading and 3D orientation, side view image, side view guide with random color, and side view child with Blender
Cycles shading and random color are shown. From top to bottom, the subjects with long-tied hair, short straight hair, wavy hair, stiff hair
that is not squished by gravity are displayed. Our method enables realistic reconstruction for a wide range of hairstyles in the wild.

“V”, “P”, and “R” respectively, wherein a bundle comprises
500 strands with 50 segments functioning as child hair, each
capable of independent movement. Target images were ren-
dered from random views of GT hairs on a per-letter ba-
sis. GT hairs were shortened to 10% of their original length
as starting values for optimization utilizing DR. Each let-
ter was optimized independently by Adam optimizer. The
loss comprised Lm, Lo, Rroot, Rc, alongside regularizer for
equalizing segment lengths. For reparameterization, kNN
with k = 10 was performed for N at 50% of the origi-

nal length to address artifacts occurring at junctions. The
“CVPR” drawing demonstrates that our AA can optimize
complex shapes effectively.

9. Implementation details

9.1. Scalp fitting and hair region extraction

We describe the details of scalp fitting and hair region ex-
traction, corresponding to 3.1. Initialization of the main
paper. We project semantic segmentation [25] onto a raw
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Figure 18. Comparison of physics simulation with head motion. Full sequences are available in the supplemental video. Starting from the
reconstructed strands, gravity, hair stiffness and head rotation are applied to NeuralHaircut and ours. On the top two rows, the subjects of
studio data in Figures 1 and 10 of the main paper are shown. The bottom row shows the subject of H3DS in the top row of Figure 7 of the
main paper. Thanks to the correct hair growing direction, our hair shows more natural behavior under strong head movement. The original
scalp shapes and hair root positions are kept while the head model is replaced for privacy protection.

Figure 19. Additional results on USC-HairSalon [15]. From right to left, top view GT, top view guide with 3D orientation, top view child
with 3D orientation, top view shaded child, side view GT, side view guide with random color, side view child with random color, and side
view shaded child are shown. Our method successfully handles various hairstyles.
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(a) 1.0 pixel width

(b) 0.8 pixel width

(c) 0.6 pixel width
GT init / target nvdiffrast [24] init / final splatting [11] init / final Ours init / final

Figure 20. Qualitative validation of our AA. Digital zoom is recommended. The fixed root vertex is on the top left, and the tip vertex to
be optimized is placed on the lower left of the root. Initial and final strands of various pixel widths are visualized. Our broader gradient
compared to other AAs demonstrates that the strands grow even when the width is much narrower than one pixel.
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(a) 1.0 pixel width
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(b) 0.8 pixel width
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(c) 0.6 pixel width

Figure 21. Quantitative validation of our AA. Error curves of various pixel widths are shown. The proposed method reduces errors in the
long term, whereas the existing method is stuck in the early stages of optimization.

mesh from each view while extracting the hair region by
vertex-wise voting. Facial landmarks [1] are also projected.
Subsequently, 3D correspondences between the raw mesh
and the head template model are established, and similar-
ity transform is estimated using Umeyama’s method [55].
Non-rigid registration by deforming vertices is then carried
out. During the non-rigid registration process, as the raw
mesh included hairs, but some scalp regions were not vis-
ible, we only considered regions other than the hair, such
as the ears, face, and neck. More specifically, we rendered
depth images from each view and optimized the vertex po-
sitions with reparameterization [36] via differentiable ren-
dering to minimize an L1 depth loss within the facial area
and an L2 3D landmark loss. At this stage, the scalp area
might extend beyond the hair region in the raw mesh. To
address this, we performed a post-process to push the scalp
area into the raw mesh. Based on the same non-rigid regis-
tration framework, an L1 silhouette loss between the head
model’s scalp area and the raw mesh’s hair region is mini-
mized with a regularization term to keep facial depth values.
The final scalp mesh is obtained from the scalp area of the
head mesh through linear interpolation.

9.2. Detailed description of the scalp boundary con-
dition

To clarify S(ps) in the Equation 2 of the main paper, Fig-
ure 23 illustrates the contrast between the scalp normal
ns(ps) and S(ps). Our S(ps) reflects the natural directions
of scalp pores.

9.3. Detailed description of the motivation for repa-
rameterization

We will explain our motivation of 3.2. Hierarchical Strand
Optimization | Reparameterization of the main paper in
detail. Our hair is represented as a set of thin geometries
of less than one pixel, and the visibility in screen-space
is stochastic due to the nature of hardware rasterization.
The outermost strands are not always rasterized, and the

inner strands may show through. Naı̈ve DR optimization
can easily collapse hairstyles since it makes only the visi-
ble division points of strands move at each iteration as w/o
reparam. in Figure 13 and Figure 14. On the other hand,
reparameterization, countermeasures for sparse gradients in
geometry, has been studied in the context of meshes [36].
We, therefore, proposed the reparameterization for line seg-
ments, where each Laplacian element has the following reg-
ularizing effect: F : If a small part of a strand is visible,
the whole strand moves smoothly based on the visible part;
N : Always, even if a strand is not visible at all, the strand
moves smoothly based on the other visible strands in the
neighborhood.

9.4. Hair mask for DR loss

At 3.2. Hierarchical Strand Optimization | Guide/Child
Hair Optimization of the main paper, we generate hair
masks for Lm through the hair region of the raw mesh in
a similar manner to NeuralStrands [44]. First, silhouettes
are rendered with the hair region mesh onto each view. Be-
cause a multi-view voting scheme estimates the hair region
mesh, our silhouette extraction is more tolerant of severe
failures than applying 2D silhouette extraction to the input
images individually. Then, the tri-map is made by erosion
and dilation. KNN Matting [10] with the tri-map and an in-
put color image is finally applied to generate an alpha hair
mask.

9.5. Module-level performance measurement

We report relative time spent on each module in Table 4.
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(a) GT

(b) Initial strands (10% length of the GT)

(c) Intermediate strands

(d) Optimized strands

Figure 22. “CVPR” drawing by DR-based hair growing. The en-
tire sequence is available in the supplementary video. The images
were ray-traced by Blender Cycles after each letter was optimized
independently.

Table 4. Time consumption ratio per module

Raw mesh reconstruction 4%
Scalp fitting 20%
3D Orientation estimation 18%
Strand initialization 5%
Hair mask generation 15%
Strand optimization by DR 38%

(a) Normals at scalp, ns(ps) (b) Our S(ps)
Figure 23. Comparison of scalp normal and our S(ps). (a) Nor-
mals at the scalp, ns(ps). Growing directions at the side and back
are different from real humans. (b) Our hair orientation at scalp
S(ps). Strands can grow more naturally at the side and back.
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