Communication Dans Un Congrès Année : 2006

Shape Representation based on Integral Kernels: Application to Image Matching and Segmentation

Résumé

This paper presents a shape representation and a variational framework for the construction of diffeomorphisms that establish ?meaningful? correspondences between images, in that they preserve the local geometry of singularities such as region boundaries. At the same time, the shape representation allows enforcing shape information locally in determining such region boundaries. Our representation is based on a kernel descriptor that characterizes local shape. This shape descriptor is robust to noise and forms a scale-space in which an appropriate scale can be chosen depending on the size of features of interest in the scene. In order to preserve local shape during the matching procedure, we introduce a novel constraint to traditional energybased approaches to estimate diffeomorphic deformations, and enforce it in a variational framework.

Fichier principal
Vignette du fichier
Hong-Prados-etal-CVPR_2006.pdf (1.08 Mo) Télécharger le fichier
Vignette du fichier
Hong-Prados-etal-cvpr2006.jpg (175.74 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Format Figure, Image
Loading...

Dates et versions

inria-00377421 , version 1 (21-04-2009)

Identifiants

Citer

Byung-Woo Hong, Emmanuel Prados, Stefano Soatto, Luminita Vese. Shape Representation based on Integral Kernels: Application to Image Matching and Segmentation. IEEE Conference on Computer Vision and Pattern Recognition, Jun 2006, New York, United States. pp.833- 840, ⟨10.1109/CVPR.2006.277⟩. ⟨inria-00377421⟩
198 Consultations
266 Téléchargements

Altmetric

Partager

  • More