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Abstract—Maximum likelihood estimation is an important
statistical technique for estimating missing data, for example
in climate and environmental applications, which are usually
large and feature data points that are irregularly spaced. In
particular, the Gaussian log-likelihood function is the de facto
model, which operates on the resulting sizable dense covariance
matrix. The advent of high performance systems with advanced
computing power and memory capacity have enabled full sim-
ulations only for rather small dimensional climate problems,
solved at the machine precision accuracy. The challenge for
high dimensional problems lies in the computation requirements
of the log-likelihood function, which necessitates O(n2) storage
and O(n3) operations, where n represents the number of given
spatial locations. This prohibitive computational cost may be
reduced by using approximation techniques that not only enable
large-scale simulations otherwise intractable, but also maintain
the accuracy and the fidelity of the spatial statistics model.
In this paper, we extend the Exascale GeoStatistics software
framework (i.e., ExaGeoStat1) to support the Tile Low-Rank
(TLR) approximation technique, which exploits the data sparsity
of the dense covariance matrix by compressing the off-diagonal
tiles up to a user-defined accuracy threshold. The underlying
linear algebra operations may then be carried out on this
data compression format, which may ultimately reduce the
arithmetic complexity of the maximum likelihood estimation
and the corresponding memory footprint. Performance results
of TLR-based computations on shared and distributed-memory
systems attain up to 13X and 5X speedups, respectively, compared
to full accuracy simulations using synthetic and real datasets (up
to 2M), while ensuring adequate prediction accuracy.

Index Terms—massively parallel algorithms, machine learning
algorithms, applied computing mathematics and statistics, max-
imum likelihood optimization, geo-statistics applications

I. INTRODUCTION

Current massively parallel systems provide unprecedented
computing power with up to millions of execution threads.
This hardware technology evolution comes at the expense of
a limited memory capacity per core, which may prevent sim-
ulations of big data problems. In particular, climate/weather
simulations usually rely on a complex set of Partial Differential

1https://github.com/ecrc/exageostat

Equations (PDEs) to estimate conditions at specific output
points based on semi-empirical models and assimilated mea-
surements. This conventional approach translates the original
big data problem into a large-scale simulation problem, solved
globally, en route to particular quantities of interest, and it
relies on PDE solvers to extract performance from the targeted
architectures.

An alternative available in many use cases is to estimate
missing quantities of interest from a statistical model. Until
recently, the computation used in statistical models, like using
field data to estimate parameters of a Gaussian log-likelihood
function and then evaluating that distribution to estimate
phenomena where field data are not available, was intractable
for very large meteorological and environmental datasets. This
is due to the arithmetic complexity, for which a key step
grows as the cube of the problem size [1], i.e., increasing the
problem size by a factor of 10 requires 1, 000X more work
(and 100X more memory). Therefore, the existing hardware
landscape with its limited memory capacity, and even with
its high thread concurrency, still appears unfriendly for large-
scale simulations due to the aforementioned curse of dimen-
sionality [2]. Piggybacking on the renaissance in hierarchically
low rank computational linear algebra, we propose to exploit
data sparsity in the resulting, apparently dense, covariance
matrix by compressing the off-diagonal blocks up to a specific
application-dependent accuracy.

This work leverages our Exascale GeoStatistics software
framework (ExaGeoStat [2]) in the context of climate and
environmental simulations, which calculates the core statistical
operation, i.e., the Maximum Likelihood Estimation (MLE),
up to the machine precision accuracy for only rather small spa-
tial datasets. ExaGeoStat relies on the asynchronous task-
based dense linear algebra library Chameleon [3] associated
with the dynamic runtime system StarPU [4] to exploit the
underlying computing power toward large-scale systems.

However, herein, we reduce the memory footprint and the
arithmetic complexity of the MLE to alleviate the dimension-
ality bottleneck. We employ the Tile Low-Rank (TLR) data
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format for the compression, as implemented in the Hierarchical
Computations on Manycore Architectures (HiCMA2) numeri-
cal library. HiCMA relies on task-based programming model
and is deployed on shared [5] and distributed-memory sys-
tems [6] via StarPU. The asynchronous execution achieved
via StarPU is even more critical for HiCMA’s workload,
characterized by lower arithmetic intensity, since it permits
to mitigate the latency overhead engendered by the data
movement.

A. Contributions

The contributions of this paper are sixfold.
• We propose an accurate and amenable MLE framework

using TLR-based approximation format to reduce the
prohibitive complexity of the apparently dense covariance
matrix computation.

• We provide a TLR solution for the prediction operation
to impute values related to non-sampled locations.

• We demonstrate the applicability of our approximation
technique on both synthetic (up to 1M locations) and real
datasets (i.e., soil moisture from the Mississippi Basin
area and wind speed from the Middle East area).

• We port the ExaGeoStat simulation framework to a
myriad of shared and distributed-memory systems using
a single source code to enhance user productivity, thanks
to its modular software stack.

• We conduct a comprehensive performance evaluation to
highlight the effectiveness of the TLR-based approxi-
mation method compared to the original full accuracy
approach. The experimental platforms include shared-
memory Intel Xeon Haswell / Broadwell / KNL / Skylake
high-end HPC servers and the distributed-memory Cray
XC40 Shaheen-2 supercomputer.

• We perform a thorough qualitative analysis to assess the
accuracy of the estimation of the Matérn covariance pa-
rameters as well as the prediction operation. Performance
results of TLR-based MLE computations on shared and
distributed-memory systems achieve up to 13X and 5X
speedups, respectively, compared to full machine pre-
cision accuracy using synthetic and real environmental
datasets (up to 2M), without compromising the prediction
quality.

The previous works [5], [6] focus solely on the standalone
linear algebra operation, i.e., the Cholesky factorization. They
assess its performance using a simplified version of the Matérn
kernel on synthetic datasets. Herein, we integrate and leverage
these works into the parallel approximation of the maximum
likelihood estimation for the prediction of large-scale geo-
statistics simulations.

The remainder of the paper is organized as follows. Sec-
tion II covers different MLE approximation techniques that
have been proposed in the literature. Section III illustrates the
climate modeling structure used as a backbone for this work.
Section IV recalls the necessary background on the Matérn

2https://github.com/ecrc/hicma

covariance functions. Section V describes the Tile Low-Rank
(TLR) approximation technique and the HiCMA TLR approx-
imation library and its integration into the ExaGeoStat
framework. Section VI highlights the ExaGeoStat frame-
work with its software stack. Section VII defines both the
synthetic datasets and the two climate datasets obtained from
large geographic regions, i.e., the Mississippi River Basin
and the Middle-East region that are used to evaluate the
proposed TLR method. Performance results and accuracy
analysis are presented in Section VIII, using both synthetic and
real environmental datasets, and we conclude in Section IX.

II. RELATED WORK

Approximation techniques to reduce arithmetic complexities
and memory footprint for large-scale climate and environmen-
tal applications are well-established in the literature. Sun et
al. [7] have discussed several of these methods such as Kalman
filtering [8], moving averages [9], Gaussian predictive pro-
cesses [10], fixed-rank kriging [11], covariance tapering [12],
[13], and low-rank splines [14]. All these methods depend on
low-rank models, where a latent process is used with lower
dimension, and eventually result in a low-rank representation
of the covariance matrix. Although these methods propose
several possibilities to reduce the complexity of generating and
computing the domain covariance matrix, several restrictions
limit their functionality [15], [16].

On the other hand, low-rank off-diagonal matrix approx-
imation techniques have gained a lot of attention to cope
with covariance matrices of high dimension. In the liter-
ature, these are commonly referred as hierarchical matri-
ces or H-matrices [17], [18]. The development of various
data compression techniques such as Hierarchically Semi-
Separable (HSS) [19], H2-matrices [20]–[22], Hierarchically
Off-Diagonal Low-Rank (HODLR) [23], Block/Tile Low-
Rank (BLR/TLR) [5], [6], [24], [25] increases their impact on
a wide range of scientific applications. Each of the aforemen-
tioned data compression formats has pros and cons in terms of
arithmetic complexity, memory footprint and efficient parallel
implementation, depending on the application operator. We
have chosen to rely on TLR data compression format, as
implemented in the HiCMA library. TLR may not be the
best in terms of theoretical bounds for asymptotic sizes.
However, thanks to its flat data structure to store the low-
rank off-diagonal matrix, TLR is more versatile to run on
various parallel systems. This may not be the case for data
compression formats (i.e., H/H2-matrices, HSS, and HODLR)
with recursive tree structure based on nested and non-nested
bases, especially when targeting distributed-memory systems.
It is also noteworthy to mention the differences between BLR
and TLR. While these data formats are conceptually identical,
BLR has been developed in the context of multifrontal sparse
direct solvers (i.e., MUMPS [26]). The MUMPS-BLR variant
takes only dense input matrices (i.e., the fronts), computes
the Schur complement, and compresses on-the-fly individual
blocks once all their updates have been applied. Therefore,
the MUMPS-BLR variant reduces the algorithmic complexity



but not the memory footprint, which may not be a problem
since the size of the fronts are typically much smaller than the
problem size. In contrast, the TLR variant in HiCMA accepts
dense or already compressed matrices as inputs, and therefore,
permits to reduce arithmetic complexity and memory footprint.
The latter is paramount when operating on dense matrices.

III. MLE-BASED CLIMATE MODELING AND PREDICTION

Climate and environmental datasets consist of a set of
locations regularly or irregularly distributed across a specific
geographical region where each location is associated with a
single read of a certain climate and environmental variable, for
example, wind speed, air pressure, soil moisture, and humidity.

They are usually modeled in geostatistics as a realization
from a Gaussian spatial random field. Specifically, let Z =
{Z(s1), . . . , Z(sn)}> be a realization of a Gaussian random
field Z(s) at a set of n spatial locations s1, . . . , sn in Rd,
d ≥ 1. We assume the mean of the random field Z(s) is
zero for simplicity and the stationary covariance function has
a parametric from C(h;θ) = cov{Z(s), Z(s+h)}, where h ∈
Rd is a spatial lag vector and θ ∈ Rq is an unknown parameter
vector of interest. Denote by Σ(θ) the covariance matrix with
entries Σij = C(si− sj ;θ), i, j = 1, . . . , n. The matrix Σ(θ)
is symmetric and positive definite. Statistical inference about
θ is often based on the Gaussian log-likelihood function as
follows:

`(θ) = −n
2

log(2π)− 1

2
log |Σ(θ)| − 1

2
Z>Σ(θ)−1Z. (1)

The main goal is to compute θ̂, which represents the maximum
likelihood estimator of θ in equation (1). In the case of large-
scale applications, i.e., n is large and locations are irregularly
distributed across the region, the evaluation of equation (1)
becomes computationally challenging. The log determinant
and linear solver involving an n-by-n dense and unstructured
covariance matrix Σ(θ) require O(n3) floating-point opera-
tions (flops) on O(n2) memory. Herein lies the challenge. For
example, assuming a dataset on a grid with approximately 103

longitude values and 103 latitude values, the total number of
locations will be 106. Using double-precision floating-point
arithmetic, the total number of flops will be then equal to one
Exaflop with a corresponding memory footprint of 1012 × 8
bytes ∼ 80 TB, which renders the simulation impossible.

Once θ̂ has been computed, we can use it to predict
unknown measurements at a given set of new locations (i.e.,
supervised learning). For instance, we can predict m unknown
measurements Z1, where Z2 represents a set of n known
measurements instead. Thus, the problem can be represented
as a multivariate normal joint distribution [27], [28] as follows[

Z1

Z2

]
∼ Nm+n

([
µ1

µ2

]
,

[
Σ11 Σ12

Σ21 Σ22

])
, (2)

with Σ11 ∈ Rm×m, Σ12 ∈ Rm×n, Σ21 ∈ Rn×m, and
Σ22 ∈ Rn×n. The associated conditional distribution can be

represented as

Z1|Z2 ∼ Nm(µ1 + Σ12Σ
−1
22 (Z2 −µ2),Σ11 −Σ12Σ

−1
22 Σ21).

(3)
Assuming that the observed vector Z2 has a zero-mean func-
tion (i.e., µ1 = 0 and µ2 = 0), the unknown vector Z1 can
be predicted [28] by solving

Z1 = Σ12Σ
−1
22 Z2. (4)

Equation (4) also depends on two covariance matrices, i.e.,
Σ12 and Σ22. Thus, the prediction operation is as challenging
as the initial θ̂ estimation operation, since it also necessitates
the Cholesky factorization, followed by a forward and back-
ward substitution applied on several right-hand sides.

In this study, we aim at exploiting the data sparsity of
the various covariance matrices by applying a TLR-based
approximation technique to reduce the arithmetic complexity
and memory footprint of both operations, i.e., the MLE and
the prediction, in the context of climate and environmental
applications.

IV. MATÉRN COVARIANCE FUNCTION

To construct the covariance matrix Σ(θ) in equation (1), a
valid (positive definite) parametric covariance model is needed.
Among the many possible covariance models in the literature,
the Matérn family [29] has proved useful in a wide range
of applications. The class of Matérn covariance functions is
widely used in geostatistics and spatial statistics [30], machine
learning [31], image analysis, weather forecasting and climate
science. Handcock and Stein [32] introduced the Matérn form
of spatial correlations into statistics as a flexible parametric
class where one parameter determines the smoothness of the
underlying spatial random field. The history of this family of
models can be found in [33]. The Matérn form also naturally
describes the correlation among temperature fields that can be
explained by simple energy balance climate models [34]. The
Matérn class of covariance functions is defined as

C(r;θ) =
θ1

2θ3−1Γ(θ3)

(
r

θ2

)θ3
Kθ3

(
r

θ2

)
, (5)

where r = ‖s − s′‖ is the distance between two spatial
locations, s and s′, and θ = (θ1, θ2, θ3)>. Here θ1 > 0 is the
variance, θ2 > 0 is a spatial range parameter that measures
how quickly the correlation of the random field decays with
distance, and θ3 > 0 controls the smoothness of the random
field, with larger values of θ3 corresponding to smoother fields.
the spatial range θ2 parameter usually can be represented by
using 0.03 for weak correlation, 0.1 for medium correlation,
and 0.3 for strong correlation. The smoothness θ3 parameter,
which represents the data smoothness can be represented by
0.5 for a rough process, and 1 for a smooth process [35].

The distance between any two spatial locations can be
efficiently computed using Euclidian distance. However, in
the case of real datasets on the surface of a sphere, the
Great-Circle Distance (GCD) metric is more suitable. The best



representation of the GCD distance is the haversine formula
given in [36]

hav

(
d

r

)
= hav(ϕ2 − ϕ1) + cos(ϕ1) cos(ϕ2) hav(λ2 − λ1),

(6)
where hav is the haversine function hav(θ) = sin2

(
θ
2

)
=

1−cos(θ)
2 , d is the distance between the two locations, r is the

radius of the sphere, ϕ1 and ϕ2 are the latitude of location 1
and latitude of location 2, in radians, respectively, and λ1 and
λ2 are the counterparts for the longitude.

The function Kθ3 denotes the modified Bessel function of
the second kind of order θ3. When θ3 = 1/2, the Matérn
covariance function reduces to the exponential covariance
model C(r;θ) = θ1 exp(−r/θ2), and describes a rough field,
whereas when θ3 = 1, the Matérn covariance function reduces
to the Whittle covariance model C(r;θ) = θ1(r/θ2)K1(r/θ2),
and describes a smooth field. The value θ3 =∞ corresponds
to a Gaussian covariance model, which describes a very
smooth field infinitely mean-square differentiable. Realizations
from a random field with Matérn covariance functions are
bθ3−1c times mean-square differentiable. Thus, the parameter
θ3 is used to control the degree of smoothness of the random
field.

In theory, the three parameters of the Matérn covariance
function need to be positive real numbers. Empirical values
derived from the empirical covariance of the data can serve
as starting values and provide bounds for the optimization.
Moreover, the parameter θ3 is rarely found to be larger than 1
or 2 in geophysical applications, as those already correspond
to very smooth realizations.

V. TILE LOW-RANK APPROXIMATION

Tile algorithms have been used for the last decade on
manycore architectures to speedup parallel linear solvers algo-
rithms, as implemented in the PLASMA library [37]. Compared
to LAPACK block algorithms [38], tile algorithms permit to
bring the parallelism within multi-threaded BLAS to the fore
by splitting the matrix into dense tiles. The resulting fine-
grained computations weaken the synchronizations points and
create opportunities for look-ahead to maximize the hardware
occupancy. In this study, we propose an MLE optimization
framework, which operates on Tile Low-Rank (TLR) data
compression format, as implemented in the Hierarchical Com-
putations on Manycore Architectures (HiCMA) library. More
details about algorithmic complexity and memory footprint
can be found in [5], [6].

Figure 1 illustrates the TLR representation of a given covari-
ance matrix Σ(θ). Following the same principle as dense tile
algorithms [2], our covariance matrix Σ(θ) is divided into a
set of square tiles. The Singular Value Decomposition (SVD),
Randomized SVD (RSVD), or Adaptive Cross Approximation
(ACA) may be used then to approximate each off-diagonal tile
up to a user-defined accuracy threshold. This threshold is, in
fact, application-dependent and enables to truncate and keep
the most significant k singular values and their associated left

Fig. 1: TLR representation of a covariance matrix Σ(θ) with
fixed accuracy.

and right singular vectors, U and V , respectively. The number
k is the actual rank and is determined on a tile basis, i.e.,
one should expect variable ranks across the matrix tiles. A
low accuracy translates into small ranks (i.e., low memory
footprint), and therefore, brings the arithmetic intensity of the
overall algorithm close to the memory-bound regime. Con-
versely, a high accuracy generates large ranks (high memory-
footprint), which increases the arithmetic intensity and makes
the algorithm run in the compute-bound regime. Each tile
(i, j) can then be represented by the product of Uij and Vij ,
with a size of nb × k, where nb represents the tile size. The
tile size is a tunable parameter and has a direct impact on
the overall performance, since it corresponds to the trade-off
between arithmetic intensity and degree of parallelism.

The next section introduces the new extension of
ExaGeoStat framework [2] toward TLR matrix approximations
of the Matérn covariance functions and TLR matrix compu-
tations using the high performance HiCMA numerical library,
in the context of MLE calculations.

VI. EXAGEOSTAT SOFTWARE INFRASTRUCTURE

This work is an extension of our ExaGeoStat framework [2],
a high performance framework for geospatial statistics in
climate and environment modeling. In [2], we propose using
full machine precision accuracy for maximum likelihood esti-
mation. Besides demonstrating the hardware portability of the
framework, one of the motivations was to provide a reference
implementation for eventual performance and accuracy assess-
ment against different approximation techniques. In this work,
we extend the ExaGeoStat framework with a TLR approxima-
tion technique and assessing it with the full accuracy reference
solution. ExaGeoStat sits on top of three main components: (1)
the ExaGeoStat operational routines which generate synthetic
datasets (if needed), solve the MLE problem, and predict
missing values at non-sampled locations, (2) linear algebra
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Fig. 2: An example of 400 points irregularly distributed in
space, with 362 points (◦) for maximum likelihood estimation
and 38 points (×) for prediction validation.

libraries, i.e., HiCMA and Chameleon, which provide linear
solvers support for the ExaGeoStat routines, and (3) a dynamic
runtime system, i.e., StarPU [4], which orchestrates the
adaptive execution of the main computational routines on
various shared and distributed-memory systems.

Once the ExaGeoStat high-level tasks (i.e., matrix genera-
tion, log-determinant and solve operations) are defined with
their respective data dependencies, StarPU can enroll the
sequential code and may asynchronously schedule the various
tasks on the underlying hardware resources. By abstracting
the hardware complexity via the usage of StarPU, user-
productivity may be enhanced since developers can focus on
the numerical correctness of their sequential algorithms and
leave the parallel execution to the runtime system. Thanks
to an out-of-order execution, StarPU is also capable of
reducing load imbalance, mitigating data movement overhead,
and increasing occupancy on the hardware.

Last but not least, ExaGeoStat includes an optimization soft-
ware layer (i.e., The NLopt library) to optimize the likelihood
objective function.

VII. DEFINITIONS OF SYNTHETIC AND REAL DATASETS

In this study, we use both synthetic and real datasets to
validate our proposed TLR ExaGeoStat on different hardware
architectures.

Synthetic data are generated at irregular locations over
a predefined region over a two-dimensional space [16],
[39]. The synthetic representation aims at generating spatial
locations where no two locations are too close. The data
locations are generated using n1/2(r−0.5+Xrl, l−0.5+Yrl)
for r, l ∈ {1, . . . , n1/2}, where n represents the number of
locations, and Xrl and Yrl are generated using a uniform
distribution on (−0.4, 0.4).

A drawable example of 400 irregularly spaced grid locations
in a square region is shown by Figure 2. We only use such
a small example to highlight how we are generating spatial
locations, however, this work uses synthetic datasets up to
106 locations with a total covariance matrix size equals 1012

double precision elements – about 80 TB of memory.

Numerical models are essential tools to improve the under-
standing of the global climate system and the cause of different
climate variations. Such numerical models are able to well
describe the evolution of many variables related to the climate
system, for instance, temperature, precipitation, humidity, soil
moisture, wind speed and pressure, through solving a set
of equations. The process involves physical parameterization,
initial condition configuration, numerical integration, and data
output. In this study, we use the proposed methodology to
investigate the spatial variability of two different kinds of
climate variables: soil moisture and wind speed.

Soil moisture is a key factor in evaluating the state of the
hydrological process and has a wide range of applications in
weather forecasting, crop yield prediction, and early warning
of flood and drought. It has been shown that better character-
ization of soil moisture can significantly improve the weather
forecasting. In particular, we consider high-resolution daily
soil moisture data at the top layer of the Mississippi River
Basin in the United States, on January 1st, 2004. The spatial
resolution is of 0.0083 degrees and the distance of one-degree
difference in this region is approximately 87.5 km. The grid
consists of 1830×1329 = 2,432,070 locations with 2,153,888
measurements and 278,182 missing values. We use the same
model for the mean process as in Huang and Sun [16], and fit a
zero-mean Gaussian process model with a Matérn covariance
function to the residuals; see Huang and Sun [16] for more
details on data description and exploratory data analysis.

Furthermore, we consider another example of climate and
environmental data: wind speed. Wind speed is an important
factor of the climate system’s atmospheric quantity. It is
impacted by the changes in temperature, which lead to air
moving from high-pressure to low pressure layers. Wind speed
affects weather forecasting and different activities related to
both air and maritime transportations. Moreover, constructions
projects, ranging from airports, dams, subways and industrial
complexes to small housing buildings are impacted by the
wind speed and directions.

The advanced research core of WRF (WRF-ARW) is used
in this study to generate a regional climate dataset over the
Arabian Peninsula [40] in the Middle-East. The model is
configured with a domain of a horizontal resolution of 5
km with 51 vertical layers while the model top is fixed at
10 hPa. The domain covers the longitudes and latitudes of
20°E - 83°E and 5°S - 36°N, respectively. The data are
available daily through 37 years. Each data file represents 24
hours measurements of wind speed recorded each hour on 17
different layers. In our case, we have picked up one dataset
on September 1st, 2017 at time 00:00 AM on a 10-meter
distance above ground (i.e., layer 0). No special restriction
is applied to the chosen data. We only choose an example to
show the effectiveness of our proposed framework, but may
easily consider extending the datasets.

Since ExaGeoStat can handle large covariance matrix
computations, and the parallel implementation of the algorithm
significantly reduces the computational time, we propose to
use exact maximum likelihood inference for a set of selected



regions in the domain of interest to characterize and compare
the spatial variabilities of both the soil moisture and the wind
speed data.

VIII. PERFORMANCE

This section evaluates the performance and the accuracy
of the TLR ExaGeoStat framework for the MLE com-
putations. It presents performance and accuracy assessments
against the reference full accuracy implementation on shared
and distributed-memory systems using synthetic and real
datasets.

A. Experimental Settings

We evaluate the performance of the TLR ExaGeoStat
framework for the MLE computations on a wide range of
Intel hardware systems’ generation to highlight our software
portability: a dual-socket 28-core Intel Skylake Intel Xeon
Platinum 8176 CPU running at 2.10 GHz, a dual-socket 14-
core Intel Broadwell Intel Xeon E5-2680 V4 running at 2.4
GHz, a dual-socket 18-core Intel Haswell Intel Xeon CPU E5-
2698 v3 running at 2.30 GHz, Intel manycore Knights Landing
(KNL) 7210 chips with 64 cores, and a dual-socket 8-core Intel
Sandy Bridge Intel Xeon CPU E5-2650 running at 2.00 GHz.
For the distributed-memory experiments, we use Shaheen-2
from the KAUST Supercomputing Laboratory, a Cray XC40
system with 6,174 dual-socket compute nodes based on 16-
core Intel Haswell processors running at 2.3 GHz. Each node
has 128 GB of DDR4 memory. Shaheen-2 has a total of
197,568 processor cores and 790 TB of aggregate memory.
In fact, our software portability is in fact guaranteed, as long
as an optimized BLAS/LAPACK high performance library is
available on the targeted system.

Our framework is compiled with gcc v5.5.0 and linked
against latest Chameleon3 and HiCMA4 libraries with HWLOC
v1.11.8, StarPU v1.2.1, Intel MKL v11.3.1, GSL v2.4,
and NLopt v2.4.2 optimization libraries. All computations
are carried out in double precision arithmetic and each run
has been repeated three times. The accuracy and qualitative
analyses are performed using synthetic and two examples of
real datasets, i.e., the soil moisture dataset at Mississippi River
Basin region and the wind speed dataset from the Middle-East
region, as described in Section VII for more details.

B. Performance on Shared-Memory Systems

We present the performance analysis of TLR MLE compu-
tation on the four aforementioned Intel systems over various
numbers of spatial locations. We compare against the full
machine precision accuracy obtained from the block and tile
MLE implementations, with the Intel MKL LAPACK and
Chameleon libraries, respectively, as described in Section V.
In the following figures, the x-axis represents the number of
spatial locations, and the y-axis represents the total execution
time in seconds. We use four different TLR accuracy thresh-
olds, i.e., 10−5, 10−7, 10−9, and 10−12. Figure 3 shows the

3https://gitlab.inria.fr/solverstack/chameleon/
4https://github.com/ecrc/hicma
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Fig. 3: Time of one iteration of the TLR MLE operation on
different Intel architectures.
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Fig. 4: Time of one iteration of the TLR MLE operation on
Cray XC40 Shaheen-2 using different accuracy thresholds.

time to solution to perform the TLR MLE operation across
generations of Intel systems. Since the internal optimization
process is an iterative procedure, which usually takes a few
tens of iterations, we only report the time for a single
iteration as a proxy for the overall optimization procedure.
The elapsed time for the full machine precision accuracy
for the tile MLE outperforms the block implementations.
This is expected and has already been highlighted in [2].
Regarding the TLR MLE implementations, the time to solution
steadily diminishes as the requested accuracy decreases. This
phenomenon is reproduced on all shared-memory platforms.
The maximum speedup achieved by TLR MLE is significant
for all studied accuracy thresholds. In particular, the maximum
speedup obtained with 10−5 accuracy threshold is around 7X,
10X, 13X and 5X on the Intel Haswell, Broadwell, KNL
and Skylake, respectively. The speedup numbers have to be
cautiously assessed, since approximation obviously introduces
numerical errors and may not be bearable by the geospatial
statistics application beyond a certain threshold. So, the chal-
lenge is to maintain the model fidelity with high accuracy,
just enough, to outperform the full machine precision accuracy
MLE implementations by a non-negligible factor.

C. Performance on Distributed-Memory Systems

We also test our TLR ExaGeoStat framework on the
distributed-memory Shaheen-2 Cray XC40 system using 256
(∼ 8, 200 cores) and 1024 nodes (∼ 33, 000 cores), as high-
lighted in Figure 4. Similarly to the results on shared-memory

systems, significant speedups (up to 5X) are achieved when
performing TLR ExaGeoStat approximations for the MLE
computations using different numbers of spatial locations.
There are some points missing in the graphs, which correspond
to cases where the application runs out of memory. While
this is the case when performing no TLR approximation, this
may also occur with TLR approximation with high accuracy
thresholds. Tuning the tile size nb is of paramount importance
to achieving high performance when running in approximation
or full accuracy mode. For instance, for the full machine
precision accuracy (i.e, full-tile) variant of the ExaGeoStat
MLE calculations, we use a tile size of 560, while a much
higher tile size of 1900 is required for the TLR variants to be
competitive. This tile size discrepancy is due to the resulting
arithmetic intensity of the main computational tasks for each
variant. For the full-tile variant, since the main kernel is the
dense matrix-matrix multiplication, nb = 560 is large enough
to keep single cores busy caching data located at the high
level of the memory subsystem, and small enough to provide
enough concurrency for the overall execution of the MLE
application. For the TLR variants, large tile size is necessary,
since the shape of the data structure depends on the actual
rank obtained after compression. These ranks are usually much
smaller than the tile size nb. Moreover, the main computational
kernel for TLR MLE computations is the TLR matrix-matrix
multiplication, which involves several successive linear algebra
calls [5]. As a result, the resulting arithmetic intensity of
that kernel is rather low, close to memory-bound regime. In
distributed-memory systems, this mode translates into latency-
bound since data motion happens between remote node mem-
ories. This engenders significant overheads, which can not
be compensated since computation is very limited. We may
therefore increase the tile size just enough to slightly shift
the regime toward compute-bound, while preserving a high
level of parallelism to maintain hardware occupancy. We tuned
the tile size nb on our target distributed-memory Shaheen-2
Cray XC40 system to gain the best performance of our MLE
implementation.

Moreover, we investigate the performance of the prediction
operation (i.e., 100 unknown measurements), as introduced
in equation (4). Figure 5 shows the execution time for the
prediction on different synthetic datasets up to 1M × 1M
matrix size using 256 nodes. The most time-consuming part of
the prediction operation is the Cholesky factorization in this
configuration, since the number of unknown measurements to
calculate is rather small and triggers only a small number of
triangular solves. Thus, the performance curves show a similar
behavior as the MLE operation using the same number of
nodes, as shown in Figure 4(a).

D. Accuracy Verification and Qualitative Analysis

We evaluate the accuracy of TLR approximation techniques
for the MLE calculations with different accuracy thresholds
and compare against its full machine precision accuracy vari-
ant. The accuracy can be verified at two different occasions:
estimating the MLE parameter vector and predicting missing
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Fig. 5: Time of TLR prediction operation on Cray XC40
Shaheen-2 with 256 nodes.

measurements at certain locations. Here, we use both syn-
thetic and real datasets to perform this accuracy verification
and analyze the effectiveness of the proposed approximation
techniques.

1) Synthetic Datasets (Monte Carlo Simulations): The
overall goal of the MLE model is to estimate the unknown
parameters of the underlying statistical model (θ1, θ2, θ3) of
the Matérn covariance function, then to use this model for
future predictions. Monte Carlo simulation is a common way
to estimate the accuracy of the MLE operation using syn-
thetic datasets. ExaGeoStat data generator is used to generate
synthetic datasets. The input of the data generator is an
initial parameter vector to produce a set of locations and
measurements. This initial parameter vector can be reproduced
by the MLE operation using the generated spatial data. More
details about the data generation process can be found in [2].
We generate a 40K synthetic data, one location matrix and 100
different measurement vectors, in exact computation. We rely
on exact computation on this step to ensure that all techniques
are using the same data for the MLE operation.

As described in Section IV, the Matérn covariance function
depends on three parameters, variance θ1, range θ2, and
smoothness θ3. The correlation strength can be determined
using the range parameter θ2 (i.e., strong correlated data
(θ2 = 0.3), medium correlated data (θ2 = 0.1), weak
correlated data (θ2 = 0.03). These correlations values are
restricted by the smoothness parameter (θ3 = 0.5). Thus,
we select three combination of the three parameters, i.e.,
((1, 0.3, 0.5), (1, 0.1, 0.5), and (1, 0.03, 0.5)). The correlation
has obviously a direct impact on the compression rate, and
therefore, the actual ranks of the TLR covariance matrix for
the MLE computation.

Figure 6 shows three boxplots for each initial parameter
vector representing the estimation accuracy using different
computation techniques. The true value of each θ is denoted
by a dotted red line. It is clearly seen from the figure that with
weak correlation (i.e., θ2 = 0.03), TLR approximation is able
to retrieve the initial parameter vector with the same accuracy
as the exact computation.

The medium correlation (i.e., θ2 = 0.1) also shows bet-
ter accuracy with TLR approximation up to accuracy 10−9.
However, TLR with accuracy 10−7 is less compared to other

accuracy levels. With stronger correlation (i.e., θ2 = 0.3),
TLR with accuracy 10−7 and 10−9 are not able to retrieve
the parameter vector efficiently. In this case, only TLR with
accuracy 10−12 can be compared with the exact solution. In
summary, TLR requires higher accuracy if the data is strongly
correlated.

Prediction is key to checking the TLR approximation ac-
curacy compared to the full-tile variant. Here, we conduct
another experiment to predict 100 missing values from syn-
thetic datasets generated from our three parameter vectors
(i.e., (1, 0.03, 0.5), (1, 0.1, 0.5), and (1, 0.3, 0.5)). The missing
values are randomly picked from the generated data so that
it can be used as a prediction accuracy reference. To assess
the accuracy, we use the Mean Square Error (MSE) metric as
follows:

MSE =
1

100

100∑
i=1

(Yi − Ŷi)2. (7)

The three boxplots are shown in Figure 7. The TLR ap-
proximation variant perform well using the three accuracy
thresholds (i.e., 10−7, 10−9, and 10−12) with different pa-
rameter vector. This demonstrates the effectiveness of TLR
approximation with different data correlation degree in the
prediction, even if the estimated parameter is not as accurate
as the full-tile variant for some accuracy thresholds.

Another general observation for both TLR and full-tile
variants, prediction MSE becomes lower in magnitude, if data
is strongly correlated, as expected. For example, the average
prediction MSE is 0.124 in the case of weak correlated data
(i.e., (1, 0.03, 0.5) , 0.036 in the case of medium correlated
data (i.e., (1, 0.1, 0.5)), and 0.012 in the case of strong
correlated data (i.e., (1, 0.3, 0.5)).

2) Real Datasets: Qualitative assessment using real
datasets is critical to ultimately assess the effectiveness of TLR
approximation for the MLE computations against the full-tile
variant. Here, we use the two different datasets, introduced in
Section VII.

Figure 8(a) shows the soil moisture dataset with 2M loca-
tions. We divide the data map into eight regions, from R0 to R7
to reduce the execution time of estimating the MLE operation
especially in the case of exact computation. Furthermore,
Figure 8(b) shows the wind speed dataset with 1M locations.
As the soil moisture dataset, we chose to divide the wind speed
map into four regions from R0 to R3. Generally, in both maps,
each region contains about 250K locations.

Tables I and II record the estimated parameters using TLR
approximation techniques with different accuracy thresholds
as well as the reference one obtained with full-tile variant. We
report the estimated values to facilitate the reproducibility of
this experiment. Using soil moisture datasets, we can use a
TLR accuracy up to 10−12 which is still faster than full-tile
technique while in wind speed dataset the highest accuracy
used is 10−9 to maintain better performance compared to full-
tile variant.

Both tables show that highly correlated regions require
high TLR accuracy thresholds to reach the same parameter
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Fig. 6: Boxplots of parameter estimation (θ1, θ2, and θ3).
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Fig. 7: Prediction mean square error (MSE) using synthetic datasets with three different parameter vector.

estimation quality as the full-tile variant, e.g., the soil moisture
data, R7 and R8, and the wind dataset, R1, R2, and R3.
Moreover, the results show that the smoothness parameter is
the easiest parameter to be estimated with any TLR accuracy
thresholds, even in presence of highly correlated data.

Moreover, we estimate the prediction MSE of 100 missing
values, which are randomly chosen from the same region. We
select two regions from each dataset, i.e., R1 and R4 from
the soil moisture data, and R1 and R3 from the wind speed
data. We conduct this experiment 100 times and Figure 9
shows the four boxplots with different computation techniques.

The figure shows that TLR approximation technique for MLE
provides a prediction MSE close to the full-tile variant with
different accuracy thresholds, even if the estimated parameters
slightly differ, as shown in Tables I and II.

IX. CONCLUSION

This paper introduces the Tile Low-Rank approximation
into the open-source ExaGeoStat framework (TLR support
to be released soon) for effectively computing the Maximum
Likelihood Estimation (MLE) on various parallel shared and
distributed-memory systems, in the context of climate and en-



(a) Soil moisture data (8 geographical regions). (b) Wind speed data (4 geographical regions).

Fig. 8: Two examples of real geospatial datasets.

TABLE I: Estimation of the Matérn covariance parameters for 8 geographical regions of the soil moisture dataset.

Matérn Covariance
R Variance (θ1) Spatial Range (θ2) Smoothness (θ3)

TLR Accuracy TLR Accuracy TLR Accuracy
10−5 10−7 10−9 10−12 Full-tile 10−5 10−7 10−9 10−12 Full-tile 10−5 10−7 10−9 10−12 Full-tile

R1 0.855 0.855 0.855 0.855 0.852 6.039 6.034 6.034 6.033 5.994 0.559 0.559 0.559 0.559 0.559
R2 0.383 0.378 0.378 0.378 0.380 10.457 10.307 10.307 10.307 10.434 0.491 0.491 0.491 0.491 0.490
R3 0.282 0.283 0.283 0.283 0.277 11.037 11.064 11.066 11.066 10.878 0.509 0.509 0.509 0.509 0.507
R4 0.382 0.38 0.38 0.38 0.41 7.105 7.042 7.042 7.042 7.77 0.532 0.533 0.533 0.533 0.527
R5 0.832 0.837 0.837 0.837 0.836 9.172 9.225 9.225 9.225 9.213 0.497 0.497 0.497 0.497 0.496
R6 0.646 0.615 0.621 0.621 0.619 10.886 10.21 10.317 10.317 10.323 0.521 0.524 0.524 0.524 0.523
R7 0.430 0.452 0.452 0.452 0.553 14.101 15.057 15.075 15.075 19.203 0.519 0.516 0.516 0.516 0.508
R8 0.661 1.194 0.769 0.769 0.906 18.603 37.315 22.168 22.168 27.861 0.469 0.462 0.467 0.467 0.461

TABLE II: Estimation of the Matérn covariance parameters for 4 geographical regions of wind speed dataset.

Matérn Covariance
R Variance (θ1) Spatial Range (θ2) Smoothness (θ3)

TLR Accuracy TLR Accuracy TLR Accuracy
10−5 10−7 10−9 Full-tile 10−5 10−7 10−9 Full-tile 10−5 10−7 10−9 Full-tile

R1 7.406 9.407 12.247 8.715 29.576 33.886 39.573 32.083 1.214 1.196 1.175 1.210
R2 11.920 13.159 13.550 12.517 26.011 28.083 28.707 27.237 1.290 1.267 1.260 1.274
R3 10.588 10.944 11.232 10.819 18.423 18.783 19.114 18.634 1.418 1.413 1.407 1.416
R4 12.408 17.112 12.388 12.270 17.264 17.112 17.247 17.112 1.168 1.170 1.168 1.170
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(b) Soil moisture data R3.
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(c) Wind speed data R1.
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(d) Wind Speed data R4.

Fig. 9: Prediction Mean Square Error (MSE) using Synthetic Datasets with three different parameter vector.

vironmental applications. This permits to reduce the arithmetic
complexity and memory footprint of MLE computations by
exploiting the data sparsity structure of the Matérn covariance
matrix of size up to 2M. The resulting TLR approximation for
the MLE computation outperforms its full machine precision
accuracy counterpart up to 13X and 5X on synthetic and real

datasets, respectively. A comprehensive qualitative assessment
of the accuracy of the statistical parameter estimation as well
as the prediction (i.e., supervised learning) demonstrates the
limited compromise required to achieve high performance,
while maintaining proper accuracy.
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