
HAL Id: hal-00769464
https://centralesupelec.hal.science/hal-00769464v1

Submitted on 8 Jan 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Cloud Storage for Small Cell Networks
Ejder Bastug, Jean-Louis Guénégo, Mérouane Debbah

To cite this version:
Ejder Bastug, Jean-Louis Guénégo, Mérouane Debbah. Cloud Storage for Small Cell Networks. Cloud-
Net 2012, Nov 2012, Paris, France. 5p. �hal-00769464�

https://centralesupelec.hal.science/hal-00769464v1
https://hal.archives-ouvertes.fr


Cloud Storage for Small Cell Networks

Ejder Baştuğ?, Jean-Louis Guénégo?, and Mérouane Debbah?

? Alcatel-Lucent Chair - SUPÉLEC, Gif-sur-Yvette, France
{ejder.bastug, jean-louis.guenego, merouane.debbah}@supelec.fr

Abstract—The Massive dense deployment of Small
Cell Networks (SCNs) is a promising way of increasing
capacity. Interestingly, by having such a huge amount of
user devices as well as small cells deployed in indoor or
outdoor areas, one can take benefit of such distributed
network for storage purposes. Hence, Depending on the
deployed scenario, these storage units can also be used
for content caching to relieve the backhaul constraints
and increase the peak rate. In this work, by extending
concepts of cloud storage to SCNs, we discuss the
theoretical challenges in order to embed small cells with
storage capabilities. We also briefly introduce Open
Cloud Protocol (OCP) as a unified software storage
framework.

Index Terms—cloud storage, private cloud, content
caching, distributed storage, Small Cell networks, open
cloud protocol.

I. Introduction

In the years of social networks, high demand of rich
content streaming by the users and/or machines is pushing
the capacity of the legacy mobile wireless networks up
to the limits [1]. Beside advances in legacy macro cell
networks (MCNs), massively dense deployment of small
cell networks (SCNs) has a particular interest to overcome
this issue [2]. Moreover, the market forecasts expect almost
fully SCNs scenarios in the near future [3].

Although their attractiveness, several challenges still
exist. For instance, as the cell density increases, these
low-cost, energy-efficient, self-configurable SCNs become
more dependent to backhaul communications, due to their
lower processing ability compared to MCNs. Assuming
limited backhaul capacity, even using fiber-optic cables,
connecting all small cells to the network is expensive.
Therefore, by proposing SCNs as a solution, one should
also take into account the capacity of the backhaul. One
novel approach for this is to put high storage units to small
cells and using cheap low-rate backhauls, rather than high-
rate expensive alternatives [4].

In this work, we extend the idea of [4] by introducing
concept of cloud storage on SCNs, and discuss possible
scenarios. We then give theoretical challenges from the
point of information theory, in the context of distributed
storage. We present Open Cloud Protocol (OCP) as a
unified software framework, and we finally conclude.

II. Scenarios

According to National Institute of Standards and Tech-
nology (NIST) definition of cloud computing [5], we can

build up many scenarios depending on the deployment
strategy (see Fig. 1).

A. Private cloud

It is a type of cloud where a single organization serves
multiple customers in the network. In our case, this is
typically a network operator that uses resources of user
devices (i.e. mobile phone, laptop), small cells, data center
or any combination of them as a distributed storage node.
The operator can use this distributed storage for content
streaming or persistent storage purposes. The work [4], [6]
can be assumed as a private cloud, where fixed number of
small cells are used for the content streaming.

B. Community cloud

This is the scenario where specific types of consumers
in the community make a cloud for their missions. For
instance, any user in the mobile network can socially share
its mobile storage with other users in order to join this
cloud.

C. Public cloud

The cloud is open to use and it might be owned,
managed, and operated by a business, academic or gov-
ernment organization or combination of them. The local
information of a city with augmented reality can be stored
in the small cells or in other type of nodes, and the public
users can take benefit of this service.

D. Hybrid cloud

Any combination of the clouds above can also be a cloud.
In some sense, cloud of clouds might be called as hybrid
cloud.

III. Challenges

By using the notion of information theory, we can
describe possible challenges into four categories: 1) code
design, 2) secrecy, 3) distributed storage allocation, and
4) proactive scheduling. Hereafter, we describe them step
by step. Note that the metrics in the design can change
depending on the small cell and backhaul deployment
strategies. For example, we might have different metrics
with different variability for small cells deployed in indoor,
outdoor, hot-spot or rural areas.



a) Private

b) Community

c) Public

d) Hybrid

Figure 1: Possible scenarios on SCNs.

A. Code design

When we want to store the information to a distributed
medium, some of the nodes may be in fail and/or they
may not be available. In order to be able to overcome
these failure events, and be able to obtain this distributed
information later on in a reliable way, we might need
to introduce some redundancy. The most redundant but
reliable case would be to store that information between all
the nodes, but in this case, the amount of the traffic over-
head as well as storage efficiency might be non-desirable.
Taking into account these constraints, we need to design
the codes to distribute the information among the network,
and we need to be able to repair and/or decode it under
the given performance.

For the state of art, maximum distance separable (MDS)
codes offer such a reliability by encoding k packets of the
information into the n packets, where n > k. Then, we
can sufficiently recover the original data. In the context of
the distributed storage, n encoded packets can be stored
in n nodes distributed in the network. After that, when
a node fails, current nodes or incoming nodes can start
a repair process in order to keep the constant reliability.
The repair process is categorized as functional repair,
exact repair and exact repair for the systematic part [7].
The functional repair has been studied theoretically in
[8], but it has some practical implications due to the
continuous update of the repairing and decoding functions.
Indeed, such an operation may not be desirable, since an
eavesdropper can detect the functionality that decreases
the confidentiality of the private data. On the other hand,
the exact repair problem is much harder and yet open
in general. Significant amount of work has done in [8]
and [7] according to the different performance metrics.
The most important metrics are ”repair bandwidth” and
”storage efficiency”. For the solution these extreme cases,

exact minimum storage regenerating (MSR) codes [9] and
exact minimum storage regenerating (MBR) codes [10],
[11] have been proposed.

B. Secrecy

In the distributed scenario, an eavesdropper can actively
read the data stored in a subset of storage nodes, or it
may passively access the information generated during
encoding, repairing and decoding processes. For such cases,
the distributed storage system should be able to satisfy
desired secrecy rate to protect the information.

Previously, [12], [13] have studied a passive eavesdropper
case, where it reads the data stored in a subset of l < k
storage nodes, and it gets the information from l′ < l
nodes during the functional repair process. The work
[12] characterized the upper bound on the number of
message symbols that we can store secretly, and showed
that the MSR code can achieve the secrecy under an
appropriate setting. On the other hand, [13] extended the
idea and gave an explicit construction way for both MSR
and MBR codes. The results of these works are built on
undesired functional repair. Although, they are the first
step towards the characterization of the secrecy capacity
in the distributed storage. In complicated scenarios, like
considering an open distributed storage system where the
information of intended node must be kept secret to others,
existing codes cannot be applied. Any information leakage
from the intended node may result with detection of the
deterministic encoding function from other nodes. Hence,
one may suggest a secret key communication on top of the
regenerating codes.

C. Distributed storage allocation

Consider a network where the nodes are not fully con-
nected to each other, and the links between the nodes are
capacity-limited. Once a node requests its distributed data



Crypt Split

Send

Figure 2: Storing and retrieving data in OCP.

from another node in the network, there might be a single
or several links from the source to the destination. In such
a case, the best option may not be the direct link -or
the shortest path- due to the capacity constraints and the
random failure probability, where subset of indirect paths
with some caching nodes may achieve optimal information
flow. Therefore, the distributed storage allocation problem
arises on how to pick the best paths and how to allocate
the information on the temporary nodes during the flow.

In [4], [6], the problem has been studied assuming that
a central macro base station is sending information to its
connected user, where a fixed amount of small-cells are in
charge of caching the information to help the macro base
station. The information cached inside the high storage
capacity small cells is made of files with a given popularity
distribution, and the links from the user to each small
cell has a finite transmission rate. Under this setting, the
optimal allocation to minimize the delay with respect to
users and files has been found both for the coded and
uncoded files. On the other hand, for the capture of the
bursty and random behavior of the small cell availability,
the works [14], [15] have modeled the link between the
user and small cell as an erasure channel, i.e. the link is
either switched on or switched off with some probability,
and the statics is known to the allocation controller. More
specifically, [14] supposes that only a random set of the
small cells are accessible, while [15] models each link as
the Bernoulli process with a given erasure probability.

D. Proactive scheduling

We have described above the distributed storage alloca-
tion problem for a given time instance assuming that the
location of the nodes is fixed. However, in practice, some
nodes may have mobility and make requests dynamically
in different locations across time instances. If mobility and
request pattern can be learned by the system [16] in a
relatively long time scale (seasons, weeks, days, hours)
and/or in a specific event, then, we can design our caching
and transmission mechanisms more efficiently. Such a
caching and scheduling would offer a great flexibility in
the network.

A recent framework [17], [18] significantly reduces the

outage capacity by predicting nodes’ requests and antici-
pating the data transmission prior to the actual requests
compared to a non-proactive case. Nevertheless, the model
is a simplified queue system with aggregate capacity and
does not consider the storage problem.

IV. Open Cloud Protocol

In this section, we introduce OCP as a unified software
framework to securely and reliably store data in the
network [19]. More precisely, each OCP installed device
in the network is called as an OCP agent. The idea is to
enable any electronic device with a memory and broad-
band internet access to be a node of a distributed system.
Desired user experience has to be achieved through the
following benefits: low cost storage, persistency, security,
and performance of storing and retrieving data. OCP is
designed to allow an online storage market with many
actors: consumers, providers and traders, it includes billing
functionality. On the other hand, it targets to have a
flexible working architecture starting from physical layer
to the top, including ability of working for different deploy-
ment scenarios as described above. A rough visualization
of storing and retrieving data in OCP is shown in Fig. 2.

A. Address topology

Every storage system has the concept of address, that
allows it to know where an object can be stored inside its
containers. Any distributed storage system has an address
topology, which is a triplet(F,U,R) with F representing
the address format, U the set of all possible addresses,
called the address universe, and R being the repartition
rules that specify for each address which node is responsi-
ble for it and when. Any distributed hash table (DHT) has
an address topology. For instance CHORD [20], Kademlia
[21] and Tapestry [22] have a single ring address topology.
The DHT content addressable network (CAN) has a multi-
dimensional box address topology [23]. The particularity
of OCP is to have a multi-ring address topology.

B. Multiple Ring address topology

The multi-ring address topology is a triplet(F,U,R)
with F defined as a one field address, U as a finite set,



n8

n6 n10

n7
n2

n5 n3 n9

n1

n4

a a a

Figure 3: Multiple Ring address topology.

and R as follows. Let us consider N rings, each ring being
a U representation as a counter-clockwise directed ring.
To each node, is assigned a ring r and an element e of
the ring which has an address format. The couple(r, e)
is called node id. This gives to each node a position on
one ring. A node B is successor of a node A if and
only if they are on the same ring, and there is no node
between them on this ring, and node B is after A in the
specified ring direction. A node is responsible for all object
with an address between it and its successor. The set
of addresses under the responsibility of a node is called
node responsibility area. This kind of topology allows to
easily manage redundancy, and the action to perform on
node disappearing events. An example of this topology
is shown in Fig. 3. In the figure, we can see a three
ring address topology with 10 nodes. The black square
represents an object located at the address a. According
to the repartition rules R, a is under the responsibility of
nodes n6, n5 and n9. The responsibility area of these nodes
are indicated with the arrows on the figure.

C. Immutable objects

c s
obj

c s

obj

c s
obj

c s
obj

c s
obj

Owner
agent

Client

Cache Storage

Figure 4: Cache on the road.

OCP particularity is to extensively use immutable ob-
jects and directed acyclic graph (DAG) like GIT versioning
system. An immutable object is an object that cannot
be modified. This is done by linking its content to its
address with a relation such as address = hash(content).
An immutable object cannot be updated while keeping
its address. So it becomes difficult for a node to modify
an object. Another advantage of using immutable objects
is that they can be cached on any node. This allows a
mechanism that we call as caching on the road : when
retrieving an object, the object can be cached on all

devices between the client and the responsible node (see
Fig. 4). When a node receives an object, it stores in its
cache if it is not responsible of it, else it stores in its
persistent storage area. Cache policies remove the object
from the cache when needed. Moreover, if the user client
has mobility, the caching on the road mechanism will have
an effect to keep data geographically close to the client.

D. Mutable objects

OCP, however, uses mutable objects for connection
objects. A connection object is an object stored at a
specific address that can be retrieved by a user without
specific information. For instance, OCP uses public user
object. For a given user with a login, the public user
object is located at address = hash(login). OCP uses
as well private user object. For a given user with a login
and a password, the private user object is located at
address = hash(f(login, password)). The private user
object is a password crypted object containing a pointer
to the root of the user container, represented and stored
under a DAG. OCP mutable objects cannot be cached.

E. User objects

In OCP, all objects belong to a specified user. This
allows the agent to publish billing report. All immutable
objects are encrypted with a user secret key located in the
private user object. When a user stores a file, the file is
splitted in many relatively small blocks that will be spread
around the agents.

F. Storing data

To store data on an OCP network, the user starts an
OCP agent acting as a client. It creates an account or uses
its existing one. The user can login with an authentication
challenge. The login step consists to determine the address
of its public and private user objects. Storing a data (file,
stream, etc.) consists of encrypting the data then splitting
the encrypted data into blocks and adding redundancy
through an erasure code, and finally sending the blocks
on the OCP multiple ring address topology DHT as im-
mutable objects organized in DAG (see Fig. 2). Caching
on the road mechanism is used.

G. Retrieving data

To retrieve data, the connected user retrieves all the
addresses of immutable objects via the DAG root address
stored in the private user object. Data is rebuilt from
different blocks using erasure code, and then decrypted
in order to be manipulated by the user.

H. Cache and persistent storage

OCP agent has two kinds of containers: one for storing
data the agent is responsible for and another one for
cached immutable objects. As a consequence, an OCP
network can be composed of cache oriented agent and
persistent storage data agent. This helps to have a storage
network with independent persistence and performance
aspects.



V. Conclusion

By increasing the capacity of wireless networks with
SCNs, we have shown that we can take benefit of such a
huge network for distributed storage. We have called this
concept as cloud storage on SCNs. Giving these possible
scenarios and existing technical challenges, we believe that
there will be extensive research and engineering work in
this direction, in the near future.

VI. Acknowledgment

This research has been supported by the ERC Start-
ing Grant 305123 MORE (Advanced Mathematical Tools
for Complex Network Engineering), and Alcatel-Lucent,
within the Alcatel-Lucent Chair in Flexible Radio,
Supélec.

References

[1] Cisco, “Cisco visual networking index: Global mobile data
traffic forecast update, 2011–2016,” White Paper, [Online]
http://goo.gl/lLkTl, 2012.

[2] J. Hoydis, M. Kobayashi, and M. Debbah, “Green small-cell
networks,” IEEE Vehicular Technology Magazine, vol. 6(1),
pp. 37–43, 2011.

[3] Small Cell Forum, “Small cells to make up almost 90% of all
base stations by 2016,” [Online] http://goo.gl/qFkpO, 2012.

[4] N. Golrezaei, K. Shanmugam, A. G. Dimakis, A. F. Molisch,
and G. Caire, “Femtocaching: Wireless video content de-
livery through distributed caching helpers,” arXiv preprint:
1109.4179, 2011.

[5] P. Mell and T. Grance,“The nist definition of cloud computing,”
National Institute of Standards and Technology, 2011.

[6] N. Golrezaei, A. F. Molisch, A. G. Dimakis, and G. Caire, “Fem-
tocaching and device-to-device collaboration: A new architec-
ture for wireless video distribution,” arXiv preprint: 1204.1595,
2012.

[7] A. G. Dimakis, K. Ramchandran, Y. Wu, and C. Suh, “A survey
on network codes for distributed storage,” Proceedings of the
IEEE, vol. 99, 2011.

[8] A. G. Dimakis, B. Godfrey, Y. Wu, M. J. Wainwright, and
K. Ramchandran, “Network coding for distributed storage sys-
tems,” Information Theory, IEEE Transactions on, vol. 56,
no. 9, pp. 4539 –4551, 2010.

[9] K. V. Rashmi, N. B. Shah, P. V. Kumar, and K. Ramchandran,
“Exact regenerating codes for distributed storage,” in Commu-
nication, Control, and Computing (Allerton 2009). 47th Annual
Allerton Conference on, pp. 1243 –1249, 2009.

[10] C. Suh and K. Ramchandran, “Exact regeneration codes for
distributed storage repair using interference alignment,” arXiv
preprint: 1001.0107, 2010.

[11] Y. Wu and A. Dimakis, “Reducing repair traffic for erasure
coding-based storage via interference alignment,”in Information
Theory, (ISIT 2009). IEEE International Symposium on, vol. 4,
pp. 2276 –2280, 2009.

[12] S. Pawar, S. Y. E. Rouayheb, and K. Ramchandran, “On secure
distributed data storage under repair dynamics,” in Information
Theory Proceedings (ISIT), 2010 IEEE International Sympo-
sium on, p. 2543–2547, 2010.

[13] N. B. Shah, K. V. Rashmi, and P. V. Kumar, “Information-
theoretically secure regenerating codes for distributed storage,”
in GLOBECOM, Auisting, Texas, pp. 1–5, 2011.

[14] D. Leong, A. G. Dimakis, and T. Ho, “Distributed storage
allocation for high reliability,” in Communications (ICC), 2010
IEEE International Conference on, pp. 1 –6, 2010.

[15] V. Ntranos, G. Caire, and A. G. Dimakis, “Allocations for het-
erogenous distributed storage,” in Information Theory Proceed-
ings (ISIT), 2012 IEEE International Symposium on, pp. 2761
– 2765, 2012.

[16] V. Etter, M. Kafsi, and E. Kazemi, “Been There, Done That:
What Your Mobility Traces Reveal about Your Behavior,” in
Mobile Data Challenge by Nokia Workshop, in conjunction with
Int. Conf. on Pervasive Computing, 2012.

[17] H. E. Gamal, J. Tadrous, and A. Eryilmaz, “Proactive resource
allocation: Turning predictable behavior into spectral gain,” in
Communication, Control, and Computing (Allerton), 2010 48th
Annual Allerton Conference on, pp. 427 – 434, 2010.

[18] J. Tadrous, A. Eryilmaz, and H. E. Gamal, “Proactive resource
allocation: Harnessing the diversity and multicast gains,” arXiv
preprint: 1110.4703, 2011.

[19] “Open Cloud Protocol,” [Online] http://www.flexible-
radio.com/ocp, 2012.

[20] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Bal-
akrishnan, “Chord: A scalable peer-to-peer lookup service for
internet applications,” SIGCOMM Comput. Commun. Rev.,
vol. 31, pp. 149–160, Aug. 2001.

[21] P. Maymounkov and D. Mazières, “Kademlia: A peer-to-peer
information system based on the xor metric,” in Revised Pa-
pers from the First International Workshop on Peer-to-Peer
Systems, IPTPS ’01, (London, UK, UK), pp. 53–65, Springer-
Verlag, 2002.

[22] B. Zhao, L. Huang, J. Stribling, S. Rhea, A. Joseph, and
J. Kubiatowicz, “Tapestry: a resilient global-scale overlay for
service deployment,” vol. 22, pp. 41– 53, 2004.

[23] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker,
“A scalable content-addressable network,” SIGCOMM Comput.
Commun. Rev., vol. 31, pp. 161–172, Aug. 2001.


