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POISSON’S EQUATION IN NONLINEAR FILTERING

RICHARD S. LAUGESEN∗, PRASHANT G. MEHTA† ,

SEAN P. MEYN‡, AND MAXIM RAGINSKY§

Abstract. The aim of this paper is to provide a variational interpretation of the nonlinear filter
in continuous time. A time-stepping procedure is introduced, consisting of successive minimization
problems in the space of probability densities. The weak form of the nonlinear filter is derived
via analysis of the first-order optimality conditions for these problems. The derivation shows the
nonlinear filter dynamics may be regarded as a gradient flow, or a steepest descent, for a certain
energy functional with respect to the Kullback–Leibler divergence.

The second part of the paper is concerned with derivation of the feedback particle filter algorithm,
based again on the analysis of the first variation. The algorithm is shown to be exact. That is,
the posterior distribution of the particle matches exactly the true posterior, provided the filter is
initialized with the true prior.

1. Introduction. The goal of this paper is to gain insight into the equations
arising in nonlinear filtering, as well as into the feedback particle filter introduced in
recent research. To expose the main ideas, it is useful to restrict our attention to the
following special case in which the state evolution is constant:

dXt = 0, (1.1a)

dZt = h(Xt) dt+ dWt, (1.1b)

where Xt ∈ R
d is the state at time t, Zt ∈ R

1 is the observation process, h( · ) is
a C1 function, and {Wt} is a standard Wiener process. The state is constant, and
has initial condition distributed as X0 ∼ p∗0. Unless otherwise noted, the stochastic
differential equations (SDEs) are expressed in Itô form. Also, unless noted otherwise,
all probability distributions are assumed to be absolutely continuous with respect to
the Lebesgue measure, and therefore will be identified with their densities.

The objective of the filtering problem is to estimate the posterior distribution of
Xt given the history Zt := σ(Zs : s ≤ t). The posterior is denoted by p∗, so that for
any measurable set A ⊂ R

d,

∫

A

p∗(x, t) dx = P{Xt ∈ A | Zt}.

The evolution of p∗(x, t) is described by the Kushner–Stratonovich (K-S) partial dif-
ferential equation

dp∗ = (h− ĥ)( dZt − ĥ dt)p∗, (1.2)

with initial condition p∗0, where ĥt =
∫
h(x)p∗(x, t) dx. The theory of nonlinear filter-

ing is described in the classic monograph [6].
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Although our analysis is restricted to a particular model with a static state pro-
cess, it can be extended to broader classes of filtering problems, subject to technical
conditions discussed in Remark 1. The main technical condition concerns the exis-
tence of a solution and certain a priori bounds for Poisson’s equation that also arises
in simulation and optimization theory for Markov models [4, 7]. For the model consid-
ered in this paper, bounds are obtained based on a Poincaré, or spectral gap, inequality
(see the bound PI(λ0) in Assumption A2).

The contributions of this paper are two-fold: One, to show that the dynamics of
the K-S equation are a gradient flow for a certain variational problem, with respect
to the Kullback–Leibler divergence. Two, the variational problem is used to derive
the feedback particle filter, first introduced in [13] (see also [12, 11, 10]).

The first part of the paper concerns the construction of the gradient flow. The
analysis is inspired by the optimal transportation literature – in particular, the
work of Otto and co-workers on the variational interpretation of the Fokker–Planck–
Kolmogorov equation [5]. The construction described in Sec 2 begins with a discrete-
time recursion based on the successive solution of minimization problems involving
the so-called forward variational representation of the elementary Bayes’ formula (see
Mitter and Newton [8]). Lemma 3.1 describes the first order optimality condition for
the variational problem at each time-step.

In the continuous-time limit, these first-order conditions yield the nonlinear fil-
ter (1.2), as described in the proof of Theorem 3.2. The construction shows that
the dynamics of the nonlinear filter may be regarded as a gradient flow, or a steep-
est descent, for a certain energy functional (“information value of the observation”
according to [8]) with respect to the Kullback-Leibler divergence pseudo-metric.

The feedback particle filter algorithm is obtained using similar analysis in Sec 4.
This filter is a controlled system, where the control is obtained via consideration of
the first order optimality conditions for the variational problem. Theorem 4.2 shows
that the filter is exact, i.e., the posterior distribution of the particle matches exactly
the true posterior p∗, provided the filter is initialized with the true prior.

The remainder of this paper is organized as follows. The time-stepping procedure
is introduced in Sec 2, and properties of its solution established. The gradient flow
result – convergence is the solution of the time-stepping procedure to weak solution
of the K-S equation (1.2) – appears in Sec 3. The feedback particle filter algorithm
appears in Sec 4.

Notation:. Ck is used to denote the space of k-times continuously differentiable
functions; Ck

c denotes the subspace of functions with compact support. L∞ is used
to denote the space of functions that are bounded a.e. (Lebesgue).

The space of probability densities with finite second moment is denoted

P .
=

{

ρ : Rd → [0,∞)measurable
∣
∣
∣

∫

Rd

ρ(x) dx = 1,

∫

x2ρ(x) dx <∞
}

. (1.3)

L2(Rd; ρ) denotes the Hilbert space of functions on R
d that are square-integrable

with respect to density ρ; Hk(Rd; ρ) denotes the Hilbert space of functions whose
first k derivatives (defined in the weak or distributional sense) are in L2(Rd; ρ), and

H1
0 (R

d; ρ)
.
= {φ ∈ H1(Rd; ρ)

∣
∣
∣

∫
φ(x)ρ(x) dx = 0}.

For a function f , ∇f = ∂
∂xi

f is used to denote the gradient and D2f = ∂2

∂xixj
f is

used to denote the Hessian. The derivatives are interpreted in the weak sense.
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2. Time-Stepping Procedure. The time-stepping procedure involves a se-
quence of minimization problems in the space of probability densities P . We consider
a finite time interval [0, T ] with an associated discrete-time sequence {t0, t1, t2, . . . , tN}
of sampling instants, with t0 = 0 < t1 < . . . < tN = T . The corresponding increments
are given by ∆tn

.
= tn − tn−1, n = 1, . . . , N .

A realization of the stochastic process Zt, the solution of SDE (1.1b), sampled at
discrete times is written as {Z0, Z1, Z2, . . . , ZN}. We use ∆Zn

.
= Zn −Zn−1 to define

the discrete-time observation process, and let

Yn
.
=

∆Zn

∆tn
.

In discrete time, Yn is viewed as the observation made at time tn. We eventually let
N → ∞ and simultaneously let ∆̄N → 0, where

∆̄N = max{∆tn : n ≤ N} . (2.1)

The elementary Bayes theorem is used to obtain the posterior distribution, ex-
pressed recursively as

ρ0(x) = p∗0(x), (2.2)

ρn(x) =
ρn−1(x) exp(−φn(x))

∫
ρn−1(y) exp(−φn(y)) dy

, (2.3)

where φn(x)
.
= ∆tn

2 (Yn−h(x))2. Note that the {ρn} are random probability measures
since they depend on the discrete-time process {Zn}. In particular, ρn is measurable
w.r.t. σ(Zi : i = 0, . . . , n). This observation should be kept in mind when dealing
with various parameters associated with the ρn, e.g., norm bounds for functions in
Lp(Rd; ρn).

The variational formulation of the Bayes recursion is the following time-stepping
procedure: Set ρ0 = p∗0 ∈ P and inductively define {ρn}Nn=1 ⊂ P by taking ρn ∈ P to
minimize the functional

In(ρ)
.
= D(ρ | ρn−1) +

∆tn
2

∫

ρ(x)(Yn − h(x))2 dx, (2.4)

where D denotes the relative entropy or Kullback–Leibler divergence,

D(ρ | ρn−1) =

∫

ρ(x) ln
( ρ(x)

ρn−1(x)

)

dx.

The proof that ρn, as defined in (2.3), is in fact the minimizer is straightforward:
By Jensen’s formula, In(ρ) ≥ − ln(

∫
ρn−1(y) exp(−φn(y)) dy) with equality if and

only if ρ = ρn. The optimizer ρn is in fact the “twisted distribution” that arises
in the theory of large deviations for empirical means [2]. Although the optimizer is
known, a careful look at the first order optimality equations associated with ρn leads
to i) the nonlinear filter (1.2) for evolution of the posterior (in Sec 3), and ii) a particle
filter algorithm for approximation of the posterior (in Sec 4).

Throughout the paper, the following assumptions are made for the prior distri-
bution p∗0 and for function h:
Assumption A1 The probability density p∗0 ∈ P is of the form p∗0(x) = e−G0(x),

where G0 ∈ C2, D2G0 ∈ L∞, and |∇G0|(x) → ∞ as |x| → ∞.
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Assumption A2 The function h ∈ C2 with h,∇h,D2h ∈ L∞.
Under assumption A1, the density ρ0 = p∗0 is known to admit a spectral gap (or

Poincaré inequality) [1]: That is, for some λ0 > 0, and for all functions f ∈ H1(Rd; ρ0)
with

∫
ρ0f dx = 0,

∫

|f(x)|2ρ0(x) dx ≤ 1

λ0

∫

|∇f(x)|2ρ0(x) dx. [PI(λ0)]

The following proposition shows that the minimizers all admit a uniform spectral
gap. The proof appears in the Appendix 5.1.

Proposition 2.1. Under Assumption (A1)-(A2),
(i) The minimizer ρn is of the form ρn = e−Gn(x), where Gn ∈ C2. These functions
admit the following bounds, uniformly in n: ∇Gn(x) = O(|x|), |∇Gn|(x) → ∞ as
|x| → ∞, and D2Gn ∈ L∞.
(ii) Suppose f ∈ L2(Rd; ρn−1). Then f ∈ L2(Rd; ρn) with

∫

ρn(x)|f(x)|2 dx ≤ C exp(α|∆Zn|)
∫

ρn−1(x)|f(x)|2 dx, (2.5)

where the constants C, α are uniformly bounded in n and N .
(iii) The ratio ρn

ρn−1

∈ H1(Rd; ρn−1).

(iv) There exists λ̄ > 0, such that ρn satisfies PI(λ̄) for each n.

The sequence of minimizers {ρn} is used to construct, via a piecewise-constant
interpolation, a density function ρ(N)(x, t) for t ∈ [0, T ]: Define ρ(N)(x, t) by setting
ρ(N)(x, tn) = ρn(x), and taking ρ(N) to be constant on each time interval [tn−1, tn)
for n = 1, 2, . . . , N .

The following section is concerned with convergence analysis for the limit, as
∆̄N → 0. Before describing the analysis, we present a few preliminaries concerning a
certain Poisson’s equation. This equation is fundamental to both the nonlinear filter
(in Sec 3) and the particle filter algorithm (in Sec 4).

2.1. Poisson’s Equation. We are interested in obtaining a solution φ of Pois-
son’s equation,

∇ · (ρ(x)∇φ(x)) = −(g(x)− ĝ)ρ(x),
∫

φ(x)ρ(x) dx = 0,
(2.6)

where ρ > 0 is a given density, g is a given function, and ĝ =
∫
g(x)ρ(x) dx.

The terminology is motivated by Poisson’s equation that arises in the theory of
Markov processes [4, 7]. Consider the normalized Smoluchowski equation, defined as
the perturbed gradient flow w.r.t. a potential U : Rd → R

d:

dΦt = −∇U(Φt) dt+
√
2 dWt.

Its differential generator is the second-order operator, defined for C2 functions by
Dφ = −(∇U) · ∇φ+△φ. On taking U = − ln(ρ), the first equation in (2.6) becomes
the usual Poisson’s equation for diffusions,

Dφ (x) = −(g(x)− ĝ).
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This interpretation is appealing, but will not be needed in subsequent analysis. We
henceforth consider solutions to (2.6) in a purely analytical setting.

Let H1
0 (R

d; ρ)
.
= {φ ∈ H1(Rd; ρ)

∣
∣
∣

∫
φ(x)ρ(x) dx = 0}. A function φ ∈ H1

0 (R
d; ρ)

is said to be a weak solution of Poisson’s equation (2.6) if

∫

∇φ(x) · ∇ψ(x)ρ(x) dx =

∫

(g(x) − ĝ)ψ(x)ρ(x) dx, (2.7)

for all ψ ∈ H1(Rd; ρ).
The existence-uniqueness result for the weak solution of Poisson’s equation is

described next; its proof is given in the Appendix 5.3.
Theorem 2.2. Suppose ρ(x) = e−G(x) satisfies PI(λ).

(i) If g ∈ L2(Rd; ρ), then there exists a unique weak solution φ ∈ H1
0 (R

d; ρ) satisfying
(2.7). Moreover, the derivatives of the solution are controlled by the size of the data:

∫

|∇φ|2ρ(x) dx ≤ 1

λ

∫

|g − ĝ|2ρ(x) dx. (2.8)

(ii) If g ∈ H1(Rd; ρ) and D2G ∈ L∞, then the weak solution has higher regularity:
φ ∈ H2(Rd; ρ) with

∫
∣
∣D2φ

∣
∣
2
ρ(x) dx ≤ C(λ; ρ)

∫

|∇g|2ρ(x) dx, (2.9)

where C(λ; ρ) = λ−2
(
λ+ ‖D2(G)‖L∞

)
.

3. Nonlinear Filter. The analysis proceeds by first obtaining the first variation
as described in the following Lemma. The proof appears in the Appendix 5.4.

Lemma 3.1 (First-order optimality condition). Consider the minimization prob-
lem (2.4) under Assumptions (A1)-(A2). The minimizer ρn satisfies the Euler-
Lagrange equation

∫

ρn
[
−∇Gn · ς +∇Gn−1 · ς − (∆Zn − h∆tn)∇h · ς

]
dx = 0 (3.1)

for each vector field ς ∈ L2(Rd → R
d; ρn−1).

We are now prepared to state the main theorem concerning the limit of the
sequence of densities {ρ(N)(x, t)}. For the purpose of the proof, an alternate form
of the E-L equation is more useful. For a given function g ∈ L2(Rd; ρn−1), let
ς ∈ L2(Rd → R

d; ρn−1) denote the weak solution (in gradient form) of

∇ · (ρn−1(x)ς(x)) = −
(

g(x)−
∫

ρn−1(x)g(x) dx

)

ρn−1(x). (3.2)

Such a solution exists by Theorem 2.2 (i). The E-L equation (3.1) can then be
expressed as

∫

ρn(x)g(x) dx =

∫

ρn−1(x)g(x) dx +

∫

ρn(x) [∆Zn − h(x)∆tn]∇h(x) · ς(x) dx.
(3.3)

The derivation of (3.3) from (3.1)-(3.2) appears in Appendix 5.5.
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Let us suppose now ∆tn → 0 uniformly, so that ∆̄N → 0 as N → ∞, where the
maximum step size ∆̄N was introduced in (2.1). Based on the proof of Prop. 2.1,
there exists a limit, denoted as ρ(x, t), such that ρ(N)(x, t) → ρ(x, t) pointwise for a
fixed sample path, and in the L2 sense over all sample paths. In fact for the special
case of the signal process (1.1a) considered in this paper, the limiting density is given
by the following explicit formula:

ρ(x, t)
.
= (const.) exp

(

h(x) (Zt − Z0)−
1

2
|h(x)|2 t

)

ρ0(x). (3.4)

The convergence argument appears in Appendix 5.2.

The proof of the following theorem appears in Appendix 5.6. Notationally,
〈f, ρt〉 .=

∫
f(x)ρ(x, t) dx and ĥt

.
=

∫
h(x)ρ(x, t) dx.

Theorem 3.2. The density ρ is a weak solution of the nonlinear filter with prior
ρ0 = p∗0. That is, for any test function f ∈ Cc(R

d),

〈f, ρt〉 = 〈f, ρ0〉+
∫ t

0

〈(h− ĥs)( dZs − ĥs ds)f, ρs〉. (3.5)

Remark 1. The considerations of this section highlight the variational under-
pinnings of the nonlinear filter for the special case, dXt = 0.

For a general class of diffusions, the time-stepping procedure is modified as follows:
Set ρ0 = p∗0 ∈ P and inductively define {ρn}Nn=1 ⊂ P by taking ρn ∈ P to minimize
the functional (2.4),

In(ρ)
.
= D(ρ | P[ρn−1]) +

∆tn
2

∫

ρ(x)(Yn − h(x))2 dx,

where P[ρn−1] is the “push-forward” from time tn−1 to tn, i.e., P[ρn−1] is the proba-
bility density of Xtn , given ρn−1 as the (initial) density of Xtn−1

. For the special case
considered in this section, P[ρn−1] = ρn−1.

The proof procedure is easily modified to derive the counterpart of the E-L equa-
tion (3.1) and the nonlinear filter (3.5) for a general class of diffusions. The hard
part is to establish, in an a priori manner, the spectral bound PI(λ̄) in Prop. 2.1.
Derivation of the spectal bound for the general case will be a subject of future work.
Note that the bound is needed to obtain a unique solution of the Poisson equation.

The following section shows that both the variational analysis and the Poisson
equation are also central to construction of a particle filter algorithm in continuous
time.

4. Feedback Particle Filter. The objective of this section is to employ the
time-stepping procedure to construct a particle filter algorithm.

A particle filter is comprised of N stochastic processes {X i
t : 1 ≤ i ≤ N}: The

value X i
t ∈ R

d is the state for the ith particle at time t. For each time t, the empirical
distribution formed by the “particle population” is used to approximate the posterior
distribution. This is defined for any measurable set A ⊂ R

d by

p(N)(A, t) =
1

N

N∑

i=1

1l{X i
t ∈ A}. (4.1)

6



The model for the particle filter is assumed here to be a controlled system,

dX i
t = u(X i

t , t) dt+ K(X i
t , t) dZt

︸ ︷︷ ︸

dUi
t

, (4.2)

where the functions K(x, t), u(x, t) are R
d-valued. It is assumed that the initial con-

ditions {X i
0}Ni=1 are i.i.d., independent of {Xt, Zt}, and drawn from the initial distri-

bution p∗(x, 0) ≡ p∗0(x) of X0.
We impose the following admissibility requirements on the control input U i

t

in (4.2):
Definition 4.1 (Admissible Input). The control input U i

t is admissible if the
following conditions are met: (i) The random variables u(x, t) and K(x, t) are Zt =
σ(Zs : s ≤ t) measurable for each t. (ii) For each i and t, E[|u|] .= E[

∑

l |ul(X i
t , t)|] <

∞, and E[|K|2] .= E[
∑

j |Kj(X
i
t , t)|2] <∞.

There are two types of conditional distributions of interest in our analysis:
(i) p(x, t): Defines the conditional distribution of X i

t given Zt.
(ii) p∗(x, t): Defines the conditional distribution of Xt given Zt.

The functions {u(x, t),K(x, t)} are said to be optimal if p ≡ p∗. That is, given
p∗(·, 0) = p(·, 0), our goal is to choose {u,K} in the feedback particle filter so that the
evolution equations of these conditional distributions coincide.

The optimal functions are obtained from the time-stepping procedure introduced
in Sec 2. Recall that at step n of the procedure, the distribution ρn is obtained upon
minimizing the functional (2.4), repeated below:

In(ρ)
.
= D(ρ | ρn−1) +

∆tn
2

∫

ρ(x)(Yn − h(x))2 dx.

The optimizer has an explicit representation given in (2.3).
The key is to construct a diffeomorphism x 7→ sn(x) such that ρ = s#n (ρn−1),

where s#n denotes the push-forward operator. The push-forward of a probability
density ρ by a smooth map s is defined through the change-of-variables formula

∫

g(x)[s#(ρ)](x) dx =

∫

g(s(x))ρ(x) dx,

for all continuous and bounded test functions g.
The particle filter equations are obtained from the first-order optimality condi-

tions for sn. For this purpose, we look at the cumulative objective function, defined
for N ≥ 1 by

J (N)(s)
.
=

N∑

n=1

(

In(s
#
n (ρn−1))−

∆tn
2
Y 2
n

)

, (4.3)

where s
.
= (s1, s2, . . . , sN ) denotes a sequence of diffeomorphisms. The objective is

to construct a minimizer, denoted as χ
.
= (χ1, χ2, . . . , χN), and consider the limit as

N → ∞, ∆̄N → 0. Note the sequence {ρn−1(x)}Nn=1 is assumed given here (see (2.3)).
Its limit, which we denote as ρ(x, t), see (3.4), is equal to p∗(x, t), the posterior
distribution of Xt given Zt, by Theorem 3.2.

The calculations in Appendix 5.7 provide the following characterization of the
optimal functions {u,K}:

7



(i) The function K is a solution to

∇ · (ρK) = −(h− ĥ)ρ, (4.4)

(ii) The function u is obtained as

u(x, t) = −1

2
K(x, t)

(
h(x) + ĥt

)
+ Ω(x, t), (4.5)

where ĥt
.
=

∫
h(x)ρ(x, t) dx and Ω = (Ω1,Ω2, ...,Ωd) is a R

d-valued function with

Ωl(x, t) :=
1

2

d∑

k=1

Kk(x, t)
∂Kl

∂xk
(x, t).

This in particular yields the following feedback particle filter algorithm – obtained
upon substituting ρ by p, the posterior distribution of X i

t given Zt:

Feedback particle filter (in Stratonovich form) is given by

dX i
t = K(X i

t , t) ◦ dIit , (4.6)

where

dIit
.
= dZt −

1

2
(h(X i

t ) + ĥt) dt , ĥt := E[h(X i
t)|Zt].

The gain function is expressed as

K(x, t) = ∇φ(x, t),

and it is obtained at each time t as a solution of Poisson’s equation:

∇ · (p(x, t)∇φ(x, t)) = −(h(x)− ĥ)p(x, t),
∫

φ(x, t)p(x, t) dx = 0,

where p denotes the conditional distribution of X i
t given Zt.

This algorithm requires approximations in numerical implementation since both
the gain K and the conditional mean ĥ depend upon the density p to be estimated.
This is resolved by replacing p by the empirical distribution (4.1) to obtain ĥt ≈
1
N

∑N
i=1 h(X

i
t) =: ĥ

(N)
t . Likewise, a Galerkin algorithm is used to obtain a finite-

dimensional approximation of the gain function K; cf., [10].

The following theorem shows that, in absence of these approximations, the feed-
back particle filter is exact. Its proof appears in the Appendix 5.9.

Theorem 4.2. Under Assumptions (A1)-(A2), the feedback particle filter (4.6)
is exact. That is, provided p( · , 0) = p∗( · , 0), we have for all t ≥ 0,

p( · , t) = p∗( · , t).
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Remark 2. The extension of the feedback particle filter to the general nonlinear
filtering problem is straightforward. In particular, consider the filtering problem

dXt = a(Xt) dt+ dBt,

dZt = h(Xt) dt+ dWt,

where Xt ∈ R
d is the state at time t, Zt ∈ R is the observation, a( · ), h( · ) are C1

functions, and {Bt}, {Wt} are mutually independent standard Wiener processes.
For the solution to this problem, the feedback particle filter is given by

dX i
t = a(X i

t) dt+ dBi
t + K(X i

t , t) ◦ dIit ,

where the formulae for K and Ii are as before. The extension of the Theorem 4.2 to
this more general case requires a well-posedness analysis of the solution of Poisson’s
equation. The key is to obtain a priori spectral bounds (see also Remark 1) which
will be a subject of future publication.

5. Appendix. The convergence proofs here require bounds in the almost-sure
and L2 senses.

Recall that we consider a finite time interval [0, T ], and for each N we consider
a discrete-time sequence {0, t1, t2, . . . , tN} with 0 ≤ t1 ≤ . . . ≤ tN = T , and denote
∆tn

.
= tn − tn−1. We let ∆̄N = maxn ∆tn, which is assumed to vanish as N → ∞.
We use C > 0 to denote a constant that may depend on N and on the process

path {Zt}, but is uniformly bounded in L2. Recall that the densities ρ0, . . . , ρN are
random objects that depend on the samples Z0, . . . , ZN . In particular, the observation
process has continuous sample paths, so there exists such a C for which |Zt| ≤ C for
all t ∈ [0, T ].

5.1. Proof of Prop. 2.1. (i) Using (2.3), ρn(x) = cn exp (−
∑n

k=1 φk(x)) ρ0(x),
where cn is a normalizing constant and φk(x) =

∆tk
2 (Yk − h(x))2. Therefore,

Gn(x)
.
= − ln ρn(x) = G0(x) +

n∑

k=1

∆tk
2

(Yk − h(x))2 − ln(cn).

Differentiating,

∇Gn(x) = ∇G0(x)−
n∑

k=1

∆tk(Yk − h(x))∇h(x)

= ∇G0(x)− (Ztn − Zt0)∇h(x) + tnh(x)∇h(x),

and similarly,

∂2Gn

∂xi∂xj
=

∂2G0

∂xi∂xj
− (Ztn − Zt0)

∂2h

∂xi∂xj
+ tn

(
∂h

∂xi

∂h

∂xj
+ h

∂2h

∂xi∂xj

)

.

From the assumption (A2) on h, it follows that, if G0 satisfies the properties listed
in assumption (A1), then so does Gn. This is because the sample paths of Zt are a.s.
continuous and thus bounded on [0, T ].

(ii) Using (2.3),

ρn(x) = ρn−1(x)
exp(−∆tn

2 Y 2
n ) exp

(
h(x)∆Zn − ∆tn

2 |h(x)|2
)

exp(−∆tn
2 Y 2

n )
∫
ρn−1(y) exp

(
h(y)∆Zn − ∆tn

2 |h(y)|2
)
dy
. (5.1)
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On canceling the common term exp(−∆tn
2 Y 2

n ) from both the numerator and denom-
inator, we can write ρn(x) = ρn(x) exp

(
Hn(x)

)
/
∫
ρn−1(y) exp

(
Hn(y)

)
dy, where we

have defined Hn(x) = h(x)∆Zn − ∆tn
2 |h(x)|2. Since ρn−1 is a probability density, we

have
∥
∥
∥
∥

ρn
ρn−1

∥
∥
∥
∥
∞

≤ exp
(
osc(Hn)

)
, osc(Hn)

.
= supHn − infHn.

Because ∆tn
2 |h(x)|2 ≥ 0, supHn ≤ |∆Zn|‖h‖∞, whereas infHn ≥ −|∆Zn|‖h‖∞ −

∆tn
2 ‖h‖2∞. Combining these estimates, we get the bound

∥
∥
∥
∥

ρn
ρn−1

∥
∥
∥
∥
∞

≤ exp

(

2|∆Zn|‖h‖∞ +
∆tn
2

‖h‖2∞
)

. (5.2)

It follows that

‖f‖2L2(Rd;ρn)
=

∫

ρn(x)|f(x)|2 dx

≤ exp

(

2|∆Zn|‖h‖∞ +
∆tn
2

‖h‖2∞
)∫

ρn−1(x)|f(x)|2 dx.

The second equation provides the bound (2.5) in part (ii) of the proposition with

C = exp( ∆̄N

2 ‖h‖2∞) and α = 2‖h‖∞.
Based on this and the definition (1.3), we see that the minimizer ρn ∈ P if

ρn−1 ∈ P (take f(x) = x to establish a bounded second moment). By induction,
ρn ∈ P if ρ0 ∈ P .

(iii) Denoting the quantity on the right-hand side of (5.2) by E , we conclude that the
ratio ρn/ρn−1 ∈ L2(Rd; ρn−1), with

∫ (
ρn
ρn−1

)2

ρn−1 dx =

∫ (
ρn
ρn−1

)

ρn dx ≤ E .

By a direct calculation,

∇
(

ρn
ρn−1

)

= (−∇Gn +∇Gn−1)
ρn
ρn−1

= (∆Zn −∆tnh)∇h
ρn
ρn−1

.

The gradient is in L2(Rd → R
d; ρn−1) because,

∫ ∣
∣
∣
∣
∇
(

ρn
ρn−1

)∣
∣
∣
∣

2

ρn−1 dx =

∫

(∆Zn −∆tnh)
2|∇h|2 ρn

ρn−1
ρn dx

≤ 2(|∆Zn|2 + |∆tn|2‖h‖2∞)‖∇h‖2∞ E .

(iv) We claim that ρn(x) = e−vn(x)ρ0(x) where vn(x) is uniformly bounded. Then ρn
satisfies PI(λn) with

λn = exp(−osc(vn))λ0. (5.3)

This is because, for any f satisfying
∫
ρnf dx = 0,

∫

|f |2ρn(x) dx =

∫

|f |2e−vn(x)ρ0(x) dx ≤ e− inf vn

∫

|f |2ρ0(x) dx

≤ e− inf vn
1

λ0

∫

|∇f |2ρ0(x) dx ≤ esup vn−inf vn
1

λ0

∫

|∇f |2ρn(x) dx.
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A uniform bound on vn yields a uniform bound on λn.
We now prove the claim that vn is uniformly bounded. Using (5.1) iteratively, we

can write ρn(x) = e−vn(x)ρ0(x) with

vn(x) = −ψn(x) + ln
(∫

ρ0 exp(ψn) dx
)

,

where ψn(x) = (Ztn − Zt0)h(x)− tn
2 |h(x)|2. It then follows that

osc(vn) ≤ 2‖ψn‖∞ ≤ C‖h‖∞ + T ‖h‖2∞,

where C depends upon the sample path Zt for t ∈ [0, T ] but is independent of N .
Using (5.3), ρn satisfies PI(λ̄) with λ̄ = λ0 exp

(
−(C‖h‖∞ + T ‖h‖2∞)

)
.

5.2. Convergence of {ρ(N)}. Now we explain in what sense ρ(N) converges to
ρ as N → ∞. Recalling formula (3.4), we have ρ(x, t) = e−v(x,t)ρ0(x) with

v(x, t) = −ψ(x, t) + ln
(∫

ρ0 exp(ψ) dx
)

,

where ψ(x, t) = (Zt − Z0)h(x) − t
2 |h(x)|2. Define v(N)(x, t) = vn(x) whenever t ∈

[tn−1, tn). Assuming the maximum step size ∆̄N → 0 as N → ∞ , we deduce that

v(N) − v → 0

uniformly with respect to x ∈ R
d, t ∈ [0, T ], due to the boundedness of h and (uniform)

continuity of the sample path t 7→ Zt. Hence

ρ(N)

ρ
= exp(v − v(N)) → 1

uniformly with respect to x and t. In particular, ρ(N) → ρ pointwise.

5.3. Proof of Theorem 2.2. A density ρ is assumed to satisfy PI(λ): That is,
for all functions φ ∈ H1

0 (R
d; ρ),

∫

|φ(x)|2ρ(x) dx ≤ 1

λ

∫

|∇φ(x)|2ρ(x) dx. (5.4)

Consider the inner product

〈φ, ψ〉 .=
∫

∇φ(x) · ∇ψ(x) ρ(x) dx.

On account of (5.4), the norm defined by using the inner product 〈·, ·〉 is equivalent
to the standard norm in H1

0 (R
d; ρ).

(i) Consider the BVP in its weak form (2.7). The integral on the right hand side is a
bounded linear functional on H1

0 , since

∣
∣
∣

∫

(g(x)− ĝ)ψ(x)ρ(x) dx
∣
∣
∣

2

≤
( ∫

|g(x)− ĝ|2ρ(x) dx
)(∫

|ψ(x)|2ρ(x) dx
)

≤ kg

∫

|∇ψ(x)|2ρ(x) dx,

11



where (5.4) is used to obtain the second inequality, with kg = λ−1
∫
|g(x)− ĝ|2ρ(x) dx.

It follows from the Hilbert-space form of the Riesz representation theorem that
there exists a unique φ ∈ H1

0 such that

〈φ, ψ〉 =
∫

(g(x)− ĝ)ψ(x)ρ(x) dx

holds for all ψ ∈ H1
0 (R

d; ρ). It trivially also holds for all constant functions (ψ ≡
const.). Hence, it holds for all ψ ∈ H1(Rd; ρ) and φ is a weak solution of the BVP,
satisfying (2.7).

The estimate (2.8) follows by substituting ψ = φ in (2.7) and using Cauchy-
Schwarz.

(ii) For the estimate (2.9), we first establish the following bound:

∫

|D2φ|2ρ dx ≤
∫

∇φ ·Gρ dx, (5.5)

where the vector function G ∈ L2(Rd → R
d; ρ) is defined by

G = D2(log ρ)∇φ+∇g

and where |D2φ|2 =
∑

j,k(
∂2φ

∂xj∂xk
)2.

Since each entry of the Hessian matrix D2(log ρ) is bounded and ∇g ∈ L2(Rd →
R

d; ρ), we have G ∈ L2(Rd → R
d; ρ). The elliptic regularity theory [3, Section 6.3]

applied to the weak solution φ ∈ H1(Rd; ρ) says that φ ∈ H3
loc(R

d). Hence the partial
differential equation holds pointwise:

−∇ · (ρ∇φ) = (g − ĝ)ρ. (5.6)

Differentiating with respect to xk gives

−∇ ·
(

ρ∇ ∂φ

∂xk

)

−∇
(
∂ log p

∂xk

)

· (ρ∇φ) − ∂ log ρ

∂xk
∇ · (ρ∇φ) = ∂g

∂xk
ρ+ (g − ĝ)

∂ log ρ

∂xk
ρ.

The final terms on the left and right sides cancel, by equation (5.6). Thus the pre-
ceding formula becomes

−∇ ·
(

ρ∇ ∂φ

∂xk

)

= Gkρ, (5.7)

Let β(x) ≥ 0 be a smooth, compactly supported “bump” function, meaning β(x)
is radially decreasing with β(0) = 1. Let s > 0, and multiply (5.7) by β(sx)2 ∂φ

∂xk
.

Integrate by parts on the left side (noting the boundary terms vanish because β has
compact support) to obtain

∫

∇
[

β(sx)2
∂φ

∂xk

]

·
(

∇ ∂φ

∂xk

)

ρ dx =

∫

β(sx)2
∂φ

∂xk
Gk ρ dx. (5.8)

The left side of (5.8) can be expressed as

∫

β(sx)2
∣
∣
∣
∣
∇ ∂φ

∂xk

∣
∣
∣
∣

2

ρ dx+ 2s

∫
∂φ

∂xk
β(sx)(∇β)(sx) ·

(

∇ ∂φ

∂xk

)

ρ dx.
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The second term is bounded by

2s‖∇β‖L∞(Rd)

∫ ∣
∣
∣
∣

∂φ

∂xk

∣
∣
∣
∣
β(sx)

∣
∣
∣
∣
∇ ∂φ

∂xk

∣
∣
∣
∣
ρ dx

≤ s‖∇β‖∞
∫

[(
∂φ

∂xk

)2

+ β(sx)2
∣
∣
∣
∣
∇ ∂φ

∂xk

∣
∣
∣
∣

2
]

ρ dx

and so the left side of (5.8) is bounded from below by

(1− s‖∇β‖L∞(Rd))

∫

β(sx)2
∣
∣
∣
∣
∇ ∂φ

∂xk

∣
∣
∣
∣

2

ρ dx− s‖∇β‖∞
∫ (

∂φ

∂xk

)2

dx.

The right hand side of (5.8) tends to
∫

∂φ
∂xk

Gkρ dx, as s → 0, by dominated conver-

gence, and since β(x) is radially decreasing, with β(0) = 1.
Letting s→ 0 in (5.8), we conclude from the monotone convergence theorem that

∫ ∣
∣
∣
∣
∇ ∂φ

∂xk

∣
∣
∣
∣

2

ρ dx ≤
∫

∂φ

∂xk
Gkρ dx.

Summing over k establishes the bound (5.5).
Next we prove (2.9). First,

∫

|∇φ|2ρ dx ≤ λ−1

∫

|g − ĝ|2ρ dx ≤ λ−2

∫

|∇g|2ρ dx (5.9)

by (2.8) followed by (5.4) applied to the function g − ĝ ∈ H1
0 (R

d; ρ). Second, by the
definition of G, the L2-triangle inequality, and (5.9), we show that

(
∫

|G|2ρ dx
)1/2 ≤ ‖D2(log ρ)‖∞

(
∫

|∇φ|2ρ dx
)1/2

+
(
∫

|∇g|2ρ dx
)1/2

≤
(‖D2(log ρ)‖∞

λ
+ 1

)(
∫

|∇g|2ρ dx
)1/2

. (5.10)

Now we take (5.5) and apply Cauchy–Schwarz, followed by (5.9) and (5.10), to find:

∫

|D2φ|2ρ dx ≤
(
∫

|∇φ|2ρ dx
)1/2 (

∫

|G|2ρ dx
)1/2

≤
(
λ−2

∫

|∇g|2ρ dx
)1/2

(‖D2(log ρ)‖∞
λ

+ 1

)
(
∫

|∇g|2ρ dx
)1/2

= λ−2
(
λ+ ‖D2(log ρ)‖∞

)
∫

|∇g|2ρ dx,

which proves (2.9).

5.4. Proof of Lemma 3.1. We compute the first variation of the functional
(2.4), which we reproduce here for reference:

In(ρ) :=

∫

ρ(x) ln ρ(x) dx−
∫

ρ(x) ln ρn−1(x) dx +

∫

ρ(x)
(∆Zn − h(x)∆tn)

2

2∆tn
dx.

(5.11)
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Following the methodology of [5], a vector field ς is used to generate the first
variation; we initially assume that ς ∈ C1

c . Let Φτ (x) be the solution of

d

dτ
Φ = ς(Φ), Φ0(x) = x.

For small τ , define ρτ = Φ#
τ ρn to be the push-forward of the minimizer ρn. We have

det(∇Φτ (x)) ρτ (Φτ (x)) = ρn(x) ,

and i(τ) = In(ρτ ) has a minimum at τ = 0.
The three terms in the E-L equation (3.1) are obtained by explicitly evaluating

the derivative d
dτ i(τ), at τ = 0, of the three terms in (5.11):

(i) The first term is the negative entropy
∫

ρτ (z) ln ρτ (z) dz =

∫

ρn(x) ln [ρτ (Φτ (x))] dx

=

∫

ρn(x) ln
[
ρn(x) (det(∇Φτ (x)))

−1
]
dx.

Therefore,

d

dτ

∫

ρτ (z) ln ρτ (z) dz

∣
∣
∣
∣
τ=0

= −
∫

ρn(x)
d

dτ
ln[det(∇Φτ (x))]

∣
∣
∣
∣
τ=0

dx

= −
∫

ρn(x)∇ · ς(x) dx = −
∫

ρn(x)∇Gn(x) · ς(x) dx,

where the final equality is obtained by using integration by parts. The interchange of
the order of the differentiation and the integration is justified because the difference
quotient

1

τ
(ln[det(∇Φτ (x))] − ln[det(∇Φ0(x))])

converges uniformly to d
dτ det(∇Φτ (x))

∣
∣
τ=0

= ∇ · ς(x). This is because ς is assumed
to have a compact support and Φτ (x) = Φ0(x) = x outside this compact set.

(ii) The second term is given by
∫

ρτ (z)Gn−1(z) dz =

∫

ρn(x)Gn−1(Φτ (x)) dx,

and

d

dτ

∫

ρn(x)Gn−1 (Φτ (x)) dx

∣
∣
∣
∣
τ=0

=

∫

ρn(x)
d

dτ
Gn−1(Φτ (x))

∣
∣
∣
∣
τ=0

dx

=

∫

ρn(x)∇Gn−1(x) · ς(x) dx,

which is justified again because ς has compact support.

(iii) For the third term, similarly,

d

dτ
[· · · ]

∣
∣
∣
∣
τ=0

=

∫

ρn(x)
d

dτ

(∆Zn − h(Φτ (x))∆tn)
2

2∆tn

∣
∣
∣
∣
τ=0

dx

= −
∫

ρn [∆Zn − h(x)∆tn]∇h(x) · ς(x) dx.
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Extension of the E-L equation to an arbitrary vector field in L2(Rd → R
d; ρn−1)

requires a standard approximation argument. Suppose ς ∈ L2(Rd → R
d; ρn−1). Using

Prop. 2.1 (ii), ς ∈ L2(Rd → R
d; ρn). It then suffices to approximate ς by a sequence of

smooth, compactly supported vector fields, noting that |∇Gk|(x) = O(|x|) as x→ ∞,
and that h,∇h are bounded by assumption (A2). Recall here that P is the space of
probability densities with finite second moment.

Remark 3. Although the proof given here stresses the variational aspect, the
Euler-Lagrange equation can be obtained directly from manipulating the solution (2.3):
Taking the logarithm of (2.3) gives

−Gn + Gn−1 + φn = const.

and applying the gradient operator yields:

−∇Gn +∇Gn−1 − (∆Zn − h∆tn)∇h = 0.

Multiplying by ρnς and integrating gives (3.1).

5.5. Derivation of (3.3). Suppose ς is a weak solution of (3.2). Then for any
test function ψ ∈ H1(Rd; ρn−1),

∫

∇ψ(x) · ς(x) ρn−1(x) dx =

∫

g(x)ψ(x) ρn−1(x) dx −
∫

gρn−1 dx

∫

ψρn−1 dx.

(5.12)

Take ψ(x) = ρn(x)
ρn−1(x)

– the ratio is known to be an element of H1(Rd; ρn−1) by

Prop. 2.1 (iii). The gradient of the ratio is obtained as

∇
(

ρn
ρn−1

)

= (−∇Gn +∇Gn−1)
ρn
ρn−1

.

Substituting this in (5.12),

∫

(−∇Gn +∇Gn−1) · ς(x)ρn(x) dx =

∫

g(x)ρn(x) dx −
∫

g(x)ρn−1(x) dx. (5.13)

Combining (5.13) with (3.1) gives the equation (3.3).

5.6. Proof of Theorem 3.2. We are given a test function f ∈ Cc. So, f ∈
L2(Rd; ρn) for all n ∈ {1, 2, . . . , N}. Furthermore, there exists a uniform bound,

‖f‖L2(Rd;ρn) < ‖f‖L∞ < C ∀ n. (5.14)

Denote f̂n
.
=

∫
ρn(x)f(x) dx.

Let ξn ∈ L2(Rd → R
d; ρn−1) be the weak solution of

∇ · (ρn−1(x)ξn(x)) = −
(

f(x)− f̂n−1

)

ρn−1(x). (5.15)

Such a solution exists by Theorem 2.2, and moreover,

∫

ρn−1|ξn|2 dx < (const.)

∫

ρn−1|f − f̂n−1|2 dx < C, (5.16)
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where the (const.) is independent of n (by Prop. 2.1 (iv)), and using Prop. 2.1 (ii),
∫

ρn(x)|ξn(x)|2 dx ≤ C exp(α|∆Zn|)
∫

ρn−1(x)|ξn(x)|2 dx. (5.17)

Using the E-L equation (3.3) with g = f and ς = ξn, for n = 1, 2, . . . , N :

f̂n − f̂n−1 =

∫

ρn(x) [∆Zn − h(x)∆tn]∇h(x) · ξn(x) dx ,

and, upon summing,

f̂N = f̂0 +

N∑

n=1

∫

ρn(x) [∆Zn − h(x)∆tn]∇h(x) · ξn(x) dx. (5.18)

The remainder of the proof thus is to show that, as ∆tn → 0, the summation
converges to the Itô integral in (3.5), where the convergence is in L2.

We fix n, and express the summand as

Sn :=

∫

ρn(x)∇h(x) · ξn(x) dx∆Zn −
∫

ρn(x)h(x)∇h(x) · ξn(x) dx∆tn (5.19)

Each of these terms is well-defined because ξn ∈ L2(Rd → R
d; ρn) (see (5.17)), and

h,∇h ∈ L∞.
The two terms are simplified separately in the following two steps:

Step 1. Consider the second term −
(∫
ρn(x)h(x)∇h(x) · ξn(x) dx

)
∆tn. Let ηn ∈

L2(Rd → R
d; ρn−1) denote the weak solution of

∇ · (ρn−1(x)ηn(x)) = −
(

h(x)∇h(x) · ξn(x) −
∫

ρn−1h∇h · ξn dx
)

ρn−1(x).

Repeating the earlier argument, using (5.16) and the fact that h,∇h ∈ L∞,
∫

ρn−1(x)|ηn(x)|2 dx < C,

and
∫

ρn(x)|ηn(x)|2 dx ≤ C exp(α|∆Zn|)
∫

ρn−1(x)|ηn(x)|2 dx. (5.20)

Using the E-L equation (3.3) with g = h∇h · ξn and ς = ηn,
∫

ρnh∇h · ξn dx∆tn =

∫

ρn−1h∇h · ξn dx∆tn + E(1)
n , (5.21)

where

E(1)
n =

∫

ρn∇h · ηn dx (∆Zn∆tn)−
∫

ρnh∇h · ηn dx (∆tn)2.

In order to establish convergence, we will require bounds for the two integrals. Since
h,∇h ∈ L∞, using (5.20),

|E(1)
n | < C exp(

α

2
|∆Zn|)

(∫

ρn−1(x)|ηn(x)|2 dx
) 1

2 (
|∆Zn∆tn|+ (∆tn)

2|
)
. (5.22)
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Given the uniform L2 bound on C, it follows that E[|E(1)
n |2] 12 = O(∆̄

3/2
N ), uniformly

in n.

Step 2. The calculation for the first term in (5.19),
(∫
ρn(x)∇h(x) · ξn(x) dx

)
∆Zn,

is similar. Let ζn ∈ L2(Rd → R
d; ρn−1) denote the weak solution of

∇ · (ρn−1(x)ζn(x)) = −
(

∇h(x) · ξn(x)−
∫

ρn−1∇h · ξn dx

)

ρn−1(x). (5.23)

As before,
∫
ρn−1|ζn|2 dx < C, and using the E-L equation (3.3) with g = ∇h · ξn and

ς = ζn,

∫

ρn∇h ·ξn dx∆Zn =

∫

ρn−1∇h ·ξn dx∆Zn+

∫

ρn∇h ·ζn dx (∆Zn)
2+E(2)

n , (5.24)

where

E(2)
n = −

∫

ρnh∇h · ζn dx (∆Zn∆tn),

and using the a priori bound for ζn,

|E(2)
n | < C exp(

α

2
|∆Zn|)

(∫

ρn−1(x)|ζn(x)|2 dx
) 1

2

|(∆Zn∆tn)|. (5.25)

Using the two formulae (5.21) and (5.24) from Steps 1 and 2, the summand (5.19)
is given by

Sn =

∫

ρn(x)∇h(x) · ξn(x) dx∆Zn −
∫

ρn(x)h(x)∇h(x) · ξn(x) dx∆tn

=

∫

ρn−1∇h · ξn dx∆Zn +

∫

ρn∇h · ζn dx (∆Zn)
2 −

∫

ρn−1h∇h · ξn dx∆tn

+ E(1)
n + E(2)

n . (5.26)

Both error terms satisfy E[|E(i)
n |2] 12 = O(∆̄

3/2
N ) for i = 1, 2.

In the following step, the first two integrals in (5.26) are further simplified.

Step 3. For the first integral, integration by parts gives

∫

ρn−1∇h · ξn dx∆Zn = −
∫

h∇ · (ρn−1ξn) dx∆Zn

=

∫

ρn−1(x)h(x)(f(x) − f̂n−1) dx∆Zn, (5.27)

where the second equality follows from (5.15).

For simplifying the second integral, the E-L equation (3.3) is used once more. As
before, let ϕn ∈ L2(Rd → R

d; ρn−1) denote the weak solution of

∇ · (ρn−1(x)ϕn(x)) = −
(

∇h(x) · ζn(x)−
∫

ρn−1∇h · ζn dx

)

ρn−1(x),

together with an a priori bound
∫
ρn−1|ϕn|2 dx < C.
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The E-L equation (3.3) then gives
∫

ρn∇h · ζn dx (∆Zn)
2 =

∫

ρn−1∇h · ζn dx (∆Zn)
2 + E(3)

n , (5.28)

where

E(3)
n =

∫

ρn∇h · ϕn dx (∆Zn)
3 −

∫

ρnh∇h · ϕn dx (∆Zn)
2∆tn,

and using the a priori bound for ϕn,

|E(3)
n | < C exp(

α

2
|∆Zn|)

(∫

ρn−1(x)|ϕn(x)|2 dx
) 1

2 (
|(∆Zn)

3|+ |(∆Zn)
2∆tn)|

)
.

(5.29)

Hence this third error term is also uniformly bounded, E[|E(3)
n |2] 12 = O(∆̄

3/2
N ).

Substituting the formulae (5.27)-(5.28) in (5.26), the summand is given by

Sn =

∫

ρn−1h(f − f̂n−1) dx∆Zn

+

∫

ρn−1∇h · ζn dx (∆Zn)
2 −

∫

ρn−1h∇h · ξn dx∆tn

+ E(1)
n + E(2)

n + E(3)
n , (5.30)

where recall ξn is defined by (5.15) and ζn by (5.23).
Now, using integration by parts together with (5.15) and (5.23),
∫

ρn−1∇h · ζn dx = −
∫

h∇ · (ρn−1ζn) dx

=

∫

ρn−1h∇h · ξn dx−
∫

ρn−1h dx

∫

ρn−1∇h · ξn dx

=

∫

ρn−1h∇h · ξn dx+

∫

ρn−1h dx

∫

h∇ · (ρn−1ξn) dx

=

∫

ρn−1h∇h · ξn dx−
∫

ρn−1h dx

∫

ρn−1h(f − f̂n−1) dx.

Substituting the result of this calculation in (5.30), the summand is given by

Sn =

∫

ρn−1h(f − f̂n−1) dx∆Zn

−
∫

ρn−1h dx

∫

ρn−1h(f − f̂n−1) dx (∆Zn)
2 +

∫

ρn−1h∇h · ξn dx ((∆Zn)
2 −∆tn)

+ E(1)
n + E(2)

n + E(3)
n . (5.31)

Step 4. Substituting the summand (5.31) in the series (5.18) and letting ∆tn → 0,
we arrive at the Itô integral:

f̂t = f̂0 +

∫ t

0

∫

ρ(x, s)h(x)(f(x) − f̂s) dx dZs

+

∫ t

0

∫

ρ(x, s)h(x) dx

∫

ρ(x, s)h(x)(f(x) − f̂s) dx ds

= f̂0 +

∫ t

0

∫

ρ(x, s)(h(x) − ĥs)f(x) dx ( dZs − ĥs ds). (5.32)
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Convergence is obtained on applying the following L2 limits.
(i) Since ξn is a weak solution of the Poisson’s equation (5.15),

N∑

n=1

(∫

ρn−1h∇h · ξn dx
)

((∆Zn)
2 −∆tn) → 0 as N → ∞.

The proof of this limit is based on the following result for the summand. Fix s ∈ R+,
and let n and N tend to infinity in such a way that tn → s as n,N → ∞. We then
have

lim
n,N→∞

∫

ρn−1h∇h · ξn dx = lim
n,N→∞

1

2

∫

h2(f − f̂n−1)ρn−1 dx

= 1
2

∫

h2(f − f̂s)ρ dx.

(ii) The apriori bounds (5.22), (5.25) and (5.29) are used to show that

E =:

N∑

n=1

|E(1)
n |+ |E(2)

n |+ |E(3)
n | → 0 as N → ∞ ,

where the convergence is in L2. This follows because we have the bound E[E2] =
O(∆̄1/2).

5.7. Derivation of the feedback particle filter. We consider the cumulative
objective function (4.3), repeated below:

J (N)(s)
.
=

N∑

n=1

(

In(s
#
n (ρn−1))−

∆tn
2
Y 2
n

)

, (5.33)

where s
.
= (s1, s2, . . . , sN ) denotes a sequence of diffeomorphisms. The sequence

{ρn−1(x)}Nn=1 is assumed given here (see (2.3)). The objective is to construct a
minimizer, denoted as χ

.
= (χ1, χ2, . . . , χN ), and consider the limit as N → ∞,

∆̄N → 0.
The calculations in this section are strictly formal. Generally, the technicalities

are downplayed in the interest of succinctly describing the main calculations. The
Einstein tensor notation is employed for some of the more laborious calculations.

The optimization problem (5.33) can be considered term-by-term since {ρn−1} is
fixed for fixed N and ∆tn. With these parameters fixed, and attention focused to the
nth summand, we recast the optimization problem as one over sn as follows:

In(sn)
.
= −

∫

ρn−1(x) ln(det(Dsn(x))) dx −
∫

ρn−1(x) ln
ρn−1(sn(x))

ρn−1(x)
dx

+
∆tn
2

∫

ρn−1(x)(Yn − h(sn(x)))
2 dx,

(5.34)

where we have used the identity ρn(sn(x)) det(Dsn(x)) = ρn−1(x). As in the initial
problem formulation, the minimizer is denoted as χn. The minimal value exists be-
cause the functional In(·) is bounded from below – see the discussion following the
introduction of the functional In(ρ) in (2.4). In fact, a minimizer may be obtained in
closed form by considering the transport problem

s#n (ρn−1) = ρn.
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Existence of solutions to such problems have been extensively investigated in the
optimal transportation literature; cf., [9]. As with the derivation of the nonlinear
filter, we proceed via analysis of the first variation. Such an approach is more tractable
and leads to the elegant form of the feedback particle filter. Once the filter has been
derived, its optimality is established by showing the filter to be exact; cf., Proof of
Theorem 4.2 in Sec. 5.9.

The first-order conditions for optimization problem (5.34) appear in the following
Lemma. Given ν ∈ C1

c (R
d,Rd), the directional derivative is denoted

δIn(χn) · ν .
=

d

dε
In(χn + εν)

∣
∣
∣
ε=0

.

Lemma 5.1 (First-Order Optimality Conditions). Consider the minimization
problem (5.34) under Assumptions (A1)-(A2). The first-order optimality condition
for the minimizer χn(x) is given by

0 = δIn(χn) · ν =

∫

ρn−1(x)tr
(
Dχ−1

n (x)Dν(x)
)
dx

+

∫

ρn−1(x)
1

ρn−1(χn(x))
∇ρn−1(χn(x)) · ν(x) dx

+

∫

ρn−1(x) (∆Zn − h(χn(x))∆tn)∇h(χn(x)) · ν(x) dx,

(5.35)

where ν ∈ C1
c (R

d,Rd) is an arbitrary perturbation of χn.
Proof. The three terms in (5.35) are obtained by explicitly evaluating the deriva-

tive d
dεIn(χn + εν), at ǫ = 0, for the three terms in (5.34):

(i) The first term is given by

−
∫

ρn−1(x)
[
ln(det(Dχn(x))) + ln(det(I + ǫDχ−1

n (x)Dν(x)))
]
dx.

Therefore, for the first term,

d

dǫ
[· · · ]

∣
∣
∣
∣
ǫ=0

= −
∫

ρn−1(x)
d

dǫ
ln(det(I + ǫDχ−1

n (x)Dν(x)))

∣
∣
∣
∣
ǫ=0

dx

= −
∫

ρn−1(x)tr(Dχ
−1
n (x)Dν(x)) dx.

(ii) The second term is obtained by a direct calculation

d

dǫ
[· · · ]

∣
∣
∣
∣
ǫ=0

= −
∫

ρn−1(x)
d

dǫ
ln ρn−1(χn(x) + ǫν(x))

∣
∣
∣
∣
ǫ=0

dx

= −
∫

ρn−1(x)
1

ρn−1(χn(x))
∇ρn−1(χn(x)) · ν(x) dx.

(iii) Similarly for the third term,

d

dǫ
[· · · ]

∣
∣
∣
∣
ǫ=0

=
∆tn
2

∫

ρn−1(x)
d

dǫ
(Yn − h(χn(x) + ǫν(x)))2

∣
∣
∣
∣
ǫ=0

dx

= −
∫

ρn−1(x) (∆Zn − h(χn(x))∆tn)∇h(χn(x)) · ν(x) dx.

20



Since our interest is in the limit as ∆tn → 0 and N → ∞, we now restrict to
diffeomorphisms of the form χn(x) = x + K(x, n)∆Zn + u(x, n)∆tn, where the ap-
propriate function spaces are: K ∈ H1(Rd → R

d; ρn−1) and u ∈ H1(Rd → R
d; ρn−1).

Starting from (5.35), the following is established in Appendix 5.8:

δIn(χn) · ν = Ez(n)∆Zn + E∆(n)∆tn +O(∆t2n,∆Zn∆tn,∆Z
3
n), (5.36)

where, denoting K(x, n)
.
= (K1(x, n), . . . ,Kd(x, n)), u(x, n)

.
= (u1(x, n), . . . , ud(x, n))

and expressing ν(x) = ν(x, n)
.
= (ν1(x), . . . , νd(x)), the following equations give ex-

pressions for Ez and E∆ (expressed using Einstein’s tensor notation):

Ez = −
∫

∂

∂xj

(

ρn−1
∂Kj

∂xi

)

νi dx−
∫

ρn−1
∂2 ln ρn−1

∂xi∂xj
Kj νi dx−

∫

ρn−1
∂h

∂xi
νi dx

= −
∫

ρn−1
∂

∂xi

(
1

ρn−1

∂

∂xj
(ρn−1Kj)

)

νi dx−
∫

ρn−1
∂h

∂xi
νi dx, (5.37)

E∆ = −
∫

ρn−1
∂

∂xi

(
1

ρn−1

∂

∂xj
(ρn−1uj)

)

νi dx+

∫

ρn−1

(

h
∂h

∂xi
− ∂2h

∂xi∂xj
Kj

)

νi dx

−1

2

∫

ρn−1
∂3 ln ρn−1

∂xi∂xj∂xk
Kj Kk νi(x) dx +

∫
∂

∂xj

(

ρn−1
∂Kj

∂xk

∂Kk

∂xi

)

νi dx.

(5.38)

We now return to the objective function J (N)(s) defined in (5.33). For any fixed
N , the first order optimality condition for the minimizer χ

.
= (χ1, χ2, . . . , χN ) is now

immediate:

0 = δJ (N)(χ) · ν =

N∑

n=1

Ez(n)∆Zn + E∆(n)∆tn +

N∑

n=1

[

O(∆t2n,∆Zn∆tn,∆Z
3
n)
]

,

(5.39)
where ν(x)

.
= (ν(x, 1), . . . , ν(x,N)) and ν(·, n) ∈ C1

c (R
d,Rd) is an arbitrary pertur-

bation. Recall now, χn(x)
.
= x + K(x, n)∆Zn + u(x, n)∆tn. The sequence {ρn},

{K(x, n)}, {u(x, n)} and {ν(x, n)} are used to construct, via interpolation, ρN (x, t),
K
(N)(x, t), uN (x, t) and νN (x, t), respectively. Recall ρ(N) → ρ(x, t), given in (3.4).

Likewise we formally denote the limit of K(N)(x, t), uN (x, t) and νN (x, t) as K(x, t),
u(x, t) and ν(x, t), respectively.

With this notation, the right-hand side of (5.39), as N → ∞, is expressed as an
Itô integral,

−
∫ T

0

∫

ρ(x, s)

(
∂

∂xi

(1

ρ

∂

∂xj
(ρKj)

)

+
∂h

∂xi

)

νi(x, s) dx dZs

−
∫ T

0

∫

ρ(x, s)

(
∂

∂xi

(1

ρ

∂

∂xj
(ρuj)

)

− h
∂h

∂xi
+

∂2h

∂xi∂xj
Kj

+
1

2

∂3 ln ρ

∂xi∂xj∂xk
Kj Kk −

1

ρ

∂

∂xj

(

ρ
∂Kj

∂xk

∂Kk

∂xi

))

νi(x, s) dx ds.

Since δJ (N)(χ) · ν = 0 by optimality, and ν is arbitrary, we obtain weak-sense
differential equations for K and u. The following two equations follow, also defined in
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the weak sense:

∂

∂xi

(
1

ρ

∂

∂xj
(ρKj)

)

= − ∂h

∂xi
, (5.40)

∂

∂xi

(
1

ρ

∂

∂xj
(ρuj)

)

= h
∂h

∂xi
− ∂2h

∂xi∂xj
Kj

− 1

2

∂3 ln ρ

∂xi∂xj∂xk
Kj Kk +

1

ρ

∂

∂xj

(

ρ
∂Kj

∂xk

∂Kk

∂xi

)

. (5.41)

The BVP (4.4) is obtained by integrating (5.40) once:

∂

∂xj
(ρKj) = −(h− ĥ)ρ,

where ĥ
.
=

∫
h(x)ρ(x) dx. Using this the righthand-side of (5.41) is simplified, and

the resulting equation is given by

∂

∂xi

(
1

ρ

∂

∂xj
(ρuj)

)

=
∂h

∂xi
ĥ+

1

2

∂

∂xi

(
1

ρ

∂2

∂xj∂xk
(ρKjKk)

)

. (5.42)

The simplification is obtained by first expressing the two terms involving h in the
righthand-side of (5.41) as,

h
∂h

∂xi
− ∂2h

∂xi∂xj
Kj =

∂h

∂xi
ĥ+

1

ρ

∂

∂xj
(ρKj)

∂

∂xi

(
1

ρ

∂

∂xk
(ρKk)

)

+
∂2

∂xi∂xj

(
1

ρ

∂

∂xk
(ρKk)

)

Kj .

Substituting this in the righthand-side of (5.41) gives the first term ∂h
∂xi

ĥ in the
righthand-side of (5.42), and four terms involving only ρ and K. It is a straight-
forward but tedious calculation to simplify these four terms into the form expressed
as the second term in the righthand-side of (5.42).

It is readily verified, by direct substitution, that (5.42) admits a closed-form
solution:

uj = −Kj
(h+ ĥ)

2
+

1

2

∂Kj

∂xk
Kk.

This gives (4.5).

5.8. Derivation of Equation (5.36). We substitute χn(x) = x+K(x, n)∆Zn+
u(x, n)∆tn in (5.35) and obtain explicit expressions for terms up to order
O(∆Zn), O(∆tn). Since we are eventually interested in the limit as ∆tn → 0, we
use the Itô’s rule (∆Zn)

2 = ∆tn to simplify the calculations. The calculations for the
three terms appearing in (5.35) are as follows:

(i), The third term is expressed as

−
∫

ρn−1(x) (∆Zn − h(x+ K∆Zn + u∆tn)∆tn)∇h(x+ K∆Zn + u∆tn) · ν(x) dx.

Using Taylor series,

h(x+ K∆Zn + u∆tn) = h(x) +O(∆Zn,∆tn),

∂h

∂xi
(x+ K∆Zn + u∆tn) =

∂h

∂xi
(x) +

∂2h

∂xi∂xj
(x)Kj(x)∆Zn +O(∆tn,∆Zn∆tn,∆Z

2
n),
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the third term is simplified as

=

(

−
∫

ρn−1(x)
∂h

∂xi
νi(x) dx

)

∆Zn +

(∫

ρn−1(x)(h
∂h

∂xi
− ∂2h

∂xi∂xj
Kj)νi(x) dx

)

∆tn

+O(∆t2n,∆Zn∆tn,∆Z
3
n).

(ii) The second term in (5.35) is similarly simplified as

−
∫

ρn−1(x)∇ ln
(

ρn−1

(
x+ K(x)∆Zn + u(x)∆tn

))

· ν(x) dx

= −
∫

ρn−1(x)
∂

∂xi
ln(ρn−1) νi(x) dx +

(

−
∫

ρn−1(x)
∂2 ln ρn−1

∂xi∂xj
Kj νi(x) dx

)

∆Zn

+

(

−
∫

ρn−1(x)(
∂2 ln ρn−1

∂xi∂xj
uj +

1

2

∂3 ln ρn−1

∂xi∂xj∂xk
Kj Kk) νi(x) dx

)

∆tn

+O(∆t2n,∆Zn∆tn,∆Z
3
n).

(iii) Finally, for the remaining term in (5.35),

−
∫

ρn−1(x)tr
(
Dχ−1

n (x)Dν(x)
)
dx

= −
∫

ρn−1(x)tr
(
(I +DK(x)∆Zn +Du(x)∆tn)

−1Dν(x)
)
dx

=

∫

∇ρn−1(x) · ν(x) dx +

(∫

ρn−1(x)tr(DK(x)Dν(x)) dx

)

∆Zn

+

(∫

ρn−1(x)(tr(Du(x)Dν(x)) − tr((DK)2(x)Dν(x))) dx

)

∆tn

+O(∆t2n,∆Zn∆tn,∆Z
3
n).

Now, the terms with trace are simplified by using integration by parts, e.g.,
∫

ρn−1(x)tr(DK(x)Dν(x)) dx =

∫

ρn−1(x)
∂Kj

∂xi

∂νi
∂xj

dx

= −
∫

∂

∂xj

(

ρn−1(x)
∂Kj

∂xi

)

νi(x) dx.

As a result, the final term is given by

=

∫
∂ρn−1

∂xi
(x)νi(x) dx +

(

−
∫

∂

∂xj

(

ρn−1(x)
∂Kj

∂xi

)

νi(x) dx

)

∆Zn

+

(

−
∫

∂

∂xj

(

ρn−1(x)
∂uj
∂xi

)

νi(x) dx+

∫
∂

∂xj

(

ρn−1(x)
∂Kj

∂xk

∂Kk

∂xi

)

νi(x) dx

)

∆tn

+O(∆t2n,∆Zn∆tn,∆Z
3
n)

Collecting the three terms, the E-L equation (5.35) is given by

δIn(χn) · ν = E1 + Ez∆Zn + E∆∆tn +O(∆t2n,∆Zn∆tn,∆Z
3
n),

where E1 is the O(1) term given by

E1 = −
∫

ρn−1(x)
∂

∂xi
ln(ρn−1) νi(x) dx +

∫
∂ρn−1

∂xi
(x)νi(x) dx = 0,

Ez is the O(∆Zn) term given in (5.37), and E∆ is the O(∆tn) term given in (5.38).
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5.9. Proof of Theorem 4.2. We first assume that U i
t is admissible. In this

case, the evolution of p(x, t) is according to the forward equation:

dp = −∇ · (pK) dZt −∇ · (pu) dt+ 1

2

d∑

l,k=1

∂2

∂xl∂xk
(pKlKk) dt. (5.43)

To prove that the filter is exact, one needs to show that with the choice of {u,K}
given by (4.4)-(4.5), we have dp(x, t) = dp∗(x, t), for all x and t, in the sense that
they are defined by identical stochastic differential equations. Recall dp∗ is defined
according to the K-S equation (1.2). The strong form of evolution equations is used
for notational convenience. The proof with the weak form is entirely analogous, by
using integration by parts.

Recall that the gain function K is a solution of Poisson’s equation,

∇ · (pK) = −p(h− ĥ) . (5.44)

On multiplying both sides of (4.5) by −p, we obtain

−up = 1

2
K(h− ĥ)p− Ωp+ pKĥ

= −1

2
K∇ · (pK)− Ωp+ pĥK

(5.45)

where (5.44) is used to obtain the second equality. Denoting E := 1
2K∇ · (pK), a

direct calculation shows that

El + Ωlp =
1

2

d∑

k=1

∂

∂xk

(
p[KKT ]lk

)
.

Substituting this in (5.45), on taking the divergence of both sides, we obtain

−∇ · (pu) + 1

2

d∑

l,k=1

∂2

∂xl∂xk
(pKlKk) = ∇ · (pK)ĥ. (5.46)

Using (5.44) and (5.46) in the forward equation (5.43),

dp = (h− ĥ)( dZt − ĥ dt)p.

This is precisely the K-S equation (1.2), as desired.

Finally, we show that U i
t is admissible. This follows from Prop. 2.1 and Theo-

rem 2.2. The posterior distribution p∗ is the limit of the minimizer sequence {ρn},
where ρn satisfies PI(λ̄) and λ̄ > 0 for all n. By Theorem 2.2, a unique solution
K(x, t) = ∇φ(x, t) exists for each p(x, t) = p∗(x, t). The a priori bounds (2.8)-(2.9)
are used to show that

E[|K|2] ≤ E

[
1

λ̄

∫

|h(x)|2p(x, t) dx
]

<∞,

E[|u|] ≤ E

[(
1

λ̄
+ C(λ̄; p)1/2

)∫
(
|h(x)|2 + |∇h|2

)
p(x, t) dx

]

<∞,

where the expression for C(λ̄; p) appears in Theorem 2.2, and we have used the fact
that h,∇h ∈ L∞. That is, the resulting control input in the feedback particle filter
is admissible.
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