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Abstract

Markov Decision Processes (MDP) is an useful framework & ogtimal sequential decision
making problems. Given any MDP the aim is to find the optimaiomcselection mechanism i.e.,
the optimal policy. Typically, the optimal policyu{) is obtained by substituting the optimal value-
function (J*) in the Bellman equation. Alternately” is also obtained by learning the optimal state-
action value functior®™ known as the&) value-function. However, it is difficult to compute the ekac
values of J* or Q™ for MDPs with large number of states. Approximate DynamiodPamming
(ADP) methods address this difficulty by computing lower eirsional approximations of */Q*.
Most ADP methods employ linear function approximation ()FRe., the approximate solution lies
in a subspace spanned by a family of pre-selected basisdnactThe approximation is obtain via a
linear least squares projection of higher dimensional tiiles and theL. norm plays an important
role in convergence and error analysis. In this paper, weudss ADP methods for MDPs based on
LFAs in (min, +) algebra. Here the approximate solution i@n, +) linear combination of a set of
basis functions whose span constitutes a subsemimoduljeroRimation is obtained via a projection
operator onto the subsemimodule which is different froredinleast squares projection used in ADP
methods based on conventional LFAs. MDPs are(ngh, +) linear systems, nevertheless, we show
that the monotonicity property of the projection operatelpls us to establish the convergence of our
ADP schemes. We also discuss future directions in ADP metfimdMDPs based on th@nin, +)
LFAs.
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1 Introduction

Optimal sequential decision making problems in sciencgingering and economics can be cast in the
framework of Markov Decision Processes (MDP). Given an MDiB,of interest to compute the optimal
value-function ¢* € R™) and/or the optimal-policy(*), or Q* € R™"*< known as the) value-function
which encodes botly* and«*. The Bellman operator and Bellman equation play a cential iro
computing optimal value-function/{ € R™) and optimal policy ¢*). In particular,/J* = T'J* and

Q* = HQ*, whereT: R® — R", H: R"*¢ — R"*? are the Bellman and)-Bellman operators
respectively. Most methods to solve MDP such as valuefpdtkcation Bertsekag2007) exploit the
fact that/* and@™ are fixed points of th& andH.
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Most problems arising in practice have large number of statel it is expensive to compute exact
values of J*/Q* andwu*. A practical way to tackle the issue is by resorting to apprate methods.
Approximate Dynamic Programming (ADP) refers to an entppecsrum of methods that aim to obtain
approximate value-functions and/or policies. In most sa8®P methods consider a family of functions
and pick a function that approximates the value function.vidgually, the family of functions considered
is the linear span of a set of basis functions. This is knowfingsr function approximation (LFA)
wherein the value-function of a poliayis approximated ag,, ~ J,, = ®r*. Here® is ann x k feature
matrix andr* € R¥ (k << n) is the weight vector to be computed.

Given®, ADP methods vary in the way they compute In this paper, we focus on ADP methods that
solve the following Projected Bellman equation (PBE),

or* = 0T, r*, 1)

wherell is the projection matrix{I = ®(® " D®)~'® " andD is any positive definite matrix. Once can
show that {) has a solution by showing that the projected Bellman opef@BO)IIT,, is a contraction
map in thel., norm. Solving {) only address the problem of poli@waluation/predictionand to address
the problem ofcontrol a policy improvement step is required. In order to guaraateenprovement in
the policy, the prediction errdt.J,, — J. || Needs to be bounded. Due to the use of linear least squares
projection operatofl, we can bound only|J, — J,||p, where||z||p = =" Dz. Consequently policy
improvement is not guaranteed and an approximate poliggtibe scheme will fail to produce a conver-
gent sequence of policies. Thus the problems of predictimhcantrol are addressed only partially. In
particular, convergence and performance bounds are sfasdtiry. Also there is no convergent scheme
using conventional LFAs that can approximégtée

The (min, +) algebra differs from conventional algebra, in thatnd x operators are replaced by
min and+ respectively. Similarlymax, +) algebra replaces with max and x with +. It is known
that finite horizon deterministic optimal control problewith reward criterion arémax, +) linear trans-
formations which map the cost function to the optimal-véiugction. A lot of work has been done in
literatureAkian et al.[200§, McEneaney et al[l200g, McEneaney and Kluber(2009, Gaubert et al.
[2017 that make use ofmax, +) basis to solve to compute approximate value-functions. éd@w in
the case of infinite horizon discounted reward MDP, due tostbehastic nature of the state evolution
the Bellman operatof{/ H) is neither(max, +) nor (min, +) linear, which is a key difference from the
aforementioned works that applyax, +) basis. The primary focus of the paper it so explarén, +)
LFAs in ADP schemes as opposed to conventional LFAs. Ourifspeontributions in this paper are
listed below.

1. We argue that the Bellman operator arising in MDPs aréheefinax, +)/(min, +) linear. We
justify our choice of(min, +) linear basis for value-function approximation in infinitertzon
discounted reward MDPs.

2. We show that the projected Bellman operator in(tlén, +) basis is a contraction map in tiie,
norm. This enables us establish convergence and error bdonthe ADP schemes developed in
this paper.

3. We develop a convergent ADP scheme called Approxirateeration (AQI) to compute) =
Q*. Thus we solve botpredictionandcontrol problems which was a shortcoming in ADP with
conventional LFAs.

4. We also present another convergent ADP scheme calledtieral Approximate Iteration
(VAQI), which is based on the Variational or weak formulatiof the PBE.



5. We present the error analysis of AQI and VAQI.

Since the main focus of this paper was to study ADRiiin, +) LFAs and the properties of the associated
PBE, we have left out details on algorithmic implementatiod analysis of the computational efficiency.
Nevertheless, we present experimental results on randofmsvD

2 Markov Decision Processes

Markov Decision Processes (MDP) are characterized by #taie spacé, action spaced, the reward
functiong: S x A — R, and the probability of transition from stateto s’ under actiorz denoted by
pa(s,s’). The reward for selecting an actianin states is denoted by, (s). We consider MDP with
state spacs = {1,2,...,n} and action setl = {1, 2, ..., d}. For simplicity, we assume that all actions
a € Aarefeasible in every statec S. A policy isamapu: S — A, and it describes the action selection
mechanisr Under a policy: the MDP is a Markov chain and we denote its probability trémsikernel
by P, = (pu@(i,j),i = 1ton,j = 1ton). The discounted reward starting from statéollowing
policy u is denoted by/, (s) and is defined as

Ju(s) = B[ a'ga, (s1)]s0 = s,u]. (@)
t=0

Here {s;} is the trajectory of the Markov chain under anda; = u(s:),vt > 0. We call J, =
(Ju(s),¥s € S) € R" the value-function for policy:. The optimal policy denoted as' is given by

u* = argmax J,(s),Vs € S. 3)
ueU

The optimal value function is thef*(s) = J,(s),Vs € S. The optimal value function and optimal
policy are related by the Bellman Equation as below:

T*(5) = max(ga(s) + @ D pals, )77 (), (42)
=1
u'(s) = argmax(ga(s) + a3 pals, )T ("), (4b)
s'=1

Usually, J* computed is first and.* is obtained by substituting™ in (4b). One can also define the
state-action value-function of a polieyknown as th&) value-function as follows:

o0

Qu(s,a) = E[Z a'ga, (51)]50 = 8,00 = a], a; = u(s;)Vt > 0. (5)
t=0

The optimal@ values obeys th€ Bellman equation given below:

Q"(s,a) = ga(s) + azp(saS')Hz%XQ*(S',a’) (6)

2The policy thus defined are known as stationary determinstiicy (SDP). Policies can also be non-stationary andaamized.
However since there exists a optimal policy that is SBRtérmar{1994) we restrict our treatment to SDPs.



It is also known thatBertsekag2007) J*(s) = maxQ*(s,a). The optimal policy can be computed as
u*(s) = argmax Q*(s,a). Thus, in some cases it is beneficial to fi3d since it encodes botfi* and

*

u .

2.1 Basic Solution Methods

It is important to note that* andQ* are fixed points of map¥: R" — R", H: R"*? — R"*¢
respectively defined as follows:

(T7)(s) = max(ga(s) + a pa(s,s)J(s)), ] € R (7a)
j=1
(HQ)(5,0) = (ga(5) + 0D _pa(s,s") max Q(s',)), Q € R™" (7b)
j=1

T andH are called the Bellman ang-Bellman operators respectively. Givdne R", Q € R"*¢, T'J
and H @ are the ‘one-step’ greedy value-functions. We summarizeiceuseful properties off in the
following Lemmas (se8ertseka§2007 for proofs).

Lemma 1 H is amax-norm contraction operator, i.e., givef;, Q; € R"*¢

Corollary 1 Q* is a unique fixed point off .

Lemma 2 H is a monotone map, i.e., givéh, Q2 € R"*%n x d is such that) > HQ, it follows that

Q=Q"
Lemma 3 Given@ € R"*%, andk € R and1 € R"*¢ a vector with all entried, then
H(Q+kl) = HQ + akl. 9)

Itis easy to check that LemmB<2, 3 hold forT" as well Bertseka$2007).
Value iteration (V1) is the most basic method to compiit¢Q™* and is given by

Jn-l—l =TJn, (10a)
Qn+1 = HQ,. (10Db)

Iterations in (0) are exact methods, and the contraction property of thev®&lloperator ensures that
Jn — J*in (109, @, — Q™ in (10b asn — oo. They are also referred to &mok-up-tablemethods or
full state representation methods, as opposed to methoplewmg function approximationu™ can be
computed by substituting® in (4b). Another basic solution method is Policy Iteration (Plggented in
Algorithm 1. VI and PI form the basis of ADP methods explained in the negtien.



Algorithm 1 Policy Iteration

1: Start with any policyug

2. fori=0,1,...,ndo

3. Evaluate policyu,; by computing/,,, .

4: Improve policyu;1(s) = argmax(ga(s) + o > pals, 8')u(s).

end for
6: return wu,

a

3 Approximate Dynamic Programming in conventional LFAs

The phenomenon callezlirse-of-dimensionalitgenotes the fact that the number of states grows expo-
nentially in the number of state variables. Due todhese as the number of variables increase, it is hard
to compute exact values df /Q* andu*. Approximate Dynamic Programming (ADP) methods make
use of @) and dimensionality reduction techniques to compute anaqapate value-functiot. ThenJ

can be used to obtain an approximate polioyhich is greedy with respect tf as follows:

(s) = argmax(ga(s) + @ Y pals, ) T(s)). (11)

The sub-optimality of the greedy policy is given by the fallaog result.

Lemma 4 Let.J = &r* be the approximate value function afide as in(11), then

* 2 * 7
1o = T lloe < 7= 117" = Il (12)
Proof: SeeBertsekag2007. Thus a good ADP method is one that address Ipogidiction(i.e., com-
puting.J) and thecontrol (i.e., computingi) problems with desirable approximation guarantees.

Linear function approximators (LFA) have been widely enygld for their simplicity and ease of com-
putation. LFAs typically let/ € V ¢ R", whereV is the subspace spanned by a set of preselected basis
functions{¢; € R",i = 1,..., k}. Let® be then x k matrix with columng¢;}, andV = {®r|r € R¥},

then the approximate value functiohis of the form.J = &r* for somer* € R*. r* is a weight vector

to be learnt, and due to dimensionality reductibnrq(< n) computing-* € R is easier than computing

J* eR"™

We now discuss popular ADP methods namely approximateypelialuation (APE) and approximate
policy iteration (API), which are approximation analogoeé¥| and PIl. APE and API are based on linear
least squares projection of higher dimensional quaniitige 1.

3.1 Approximate Policy Evaluation

J*/Q* are not known and hence projecting them olitdgs impossible. Nevertheless, one can use the
Bellman operator and linear least squares projection epeaawrite down a projected Bellman equation
(PBE) as below:

Or* = 1T, Pr* (13)



wherell = ®(®"D®)~'® " is the projection operatof) is any diagonal matrix with all entries strictly
greater tharh) andT, is the Bellman operator restricted to a policynd is given by

(Tuj)(s) = Gu(s) (S) +a Zpu(s)(sa SI)J(SI)’ J eR"™

The approximate policy evaluation (APE) is the followingration:
Pryq = T, dr,,. (14)
The following Lemmab establishes the convergence b,

Lemma5 If Il = ®(®"D®)"'® ", and D be a diagonal matrix with the" diagonal entry being the
stationary probability of visiting stateunder policyu, thenIIT, is a contraction map with factax.

Proof: Let P, be the probability transition matrix corresponding to ppli.. Then one can show that
(Bertsekag2007) for z € R" and||z||% = 2" Dz, ||P.z]|% < ||2||%. Also, we know thafll is a
non-expansive map, because

[z —Iy|[p = [(z — y)|[p
< |z —y)llp + |[(I = I)(z — y)llp
=llz = yllp
Then
||HTJ1 —HTJ2||D S ||TJ1 —TJ2||D S Oé||J1 — J2||D

Corollary 2 Then the iteration ir{14) converges t@r* such thatbr* = 11T, $r*.
The error bound fo®r* is given by

|[Ju — @r*[|p < —IJul|p, (15)

1
R Ju
|
One is inclined to think that an approximation analogueldfg would yield an approximation tg™.
It is important to note thatl@) only computes/,, because¥4) containsT’,, and notI’. However, since
operatodI7 might not be a contraction map in tiig norm, andl’, cannot be replaced ¥ in iteration

(14), and the PBE in13).

3.2 Approximate Policy Iteration

Approximate Policy Iteration (Algorithrg) tackles both prediction and control problems, by perforgni
APE and policy improvement at each step. The performancegtee of API can be stated as follows:

Lemma 6 If at each step one can guarantee that/; — J,,, ||~ < d, then one can show thgi_{rgo | Ju; —
20a

(1—a)?

Note that the error bound required by Lemm@as in the L., norm, whereas1{) is only in the L.,

norm. So API cannot guarantee an approximate policy impn@rd each step which is a shortcoming.

Also, even-though each evaluation step (IBhef Algorithm 2) converges, the sequenag,n > 0 is

not guaranteed to converge. This is known as patlegtteringand is another important shortcoming of
conventional LFAs. Thus the problem odntrolis only partially addressed by API.

Tl <



Algorithm 2 Approximate Policy Iteration (API)

1: Start with any policyug

2. fori=0,1,...,ndo

3. Approximate policy evaluatiot; = ®r*, where®r! = IIT,,, dr}.
4: Improve policyu; 1 (s) = argmax(ga(s) + o > pals, ) Ji(s)).

end for
6: return wu,

a

3.3 LFAs for @ value-function

To alleviate the shortcomings in API, it is then natural tokdor an approximation method that computes
a policy in more direct fashion. Since we know that by commyt)* we obtain the optimal policy
directly, it is a good idea to approximatg". The PBE version ofl(0b) is a plausible candidate and the
iterations are given by,

br,q = MHOr,. (16)
The above scheme will run into the following problems:

1. The H operator {b) contains amax term, and it is not straightforward show tHaf7 is a con-
traction map inL, norm, and consequently one cannot establish the converg#riterates in
(16).

2. The issue pertaining t@ax operator can be alleviated by restrictifigto a policyu, i.e., consider
iterations of form

(I)Tn+1 = HHU(I)Tn+1. (17)

But iterates in {7) attempt to approximatg., and notQ*, which means the problem obntrolis
unaddressed.

We conclude this section with the observation that the ingmdrshortcomings of conventional LFAs
related to convergence and error bound arise due td.sheorm. The main result of the paper is that
ADP methods based dmin, +) LFAs don’t suffer from such shortcomings.

4 (min, +)/(max, +) non-linearity of MDPs

We introduce theR i, semiring and show that MDPs are neith{erin, +) nor (max, +) linear. The
R..in SEMiring is obtained by replacing multiplicatior by +, and addition ¢) by min.

Definition 7

Addition: r @y = min(z,y)
Multiplication: rTRYy=x+yY



Henceforth we use(+, x) and (@, ®) to respectively denote the conventional &g, addition and
multiplication respectively. Semimodule over a semirig de defined in a similar manner to vector
spaces over fields. In particular we are interested in thémsedule M = R,;,. Givenu,v € Ry,
and\ € R, we define addition and scalar multiplication as follows:

Definition 8

(u®v)(i) = min{u(i),v(?)} = u(@) & v(i),Vi=1,2,...,n.
(w@N@E) =u@) A =u(@)+\Vi=1,2,...,n.

Similarly one can define thR,,.x semiring which has the operatarsix as addition ane- as multipli-
cation.

It is a well known fact that deterministic optimal controlopptems with cost/reward criterion are
(min, +)/(max, +) linear. However, the Bellman operatbiin (78) (as well asH in (7b)) corresponding
to infinite horizon discounted reward MDPs are neithein, +) linear nor(max, +) linear systems. We
illustrate this fact via the following example.

Example 1 Consider an MDP with two states = {s1, s2}, only one action, and a reward functign
and let the probability transition kernel be

0.5 0.5
P= [ 05 0.5 ] (18)

For any.J € R? the Bellman operatol": R? — R? can be written as
(TT)(s) = gls) + a x (0.5 x J(1) + 0.5 x J(2)) (19)

Consider vectors;, Jo € R? such that/; = (1,2) and J, = (2,1) and J3 = max(Jy, J2) = (2,2).
Letg(l) = ¢g(2) = 1, anda = 0.9, then, it is easy to check thatJ, = T'J, = (2.35,2.35), and
TJ; = (2.8,2.8). HoweverT'Js # max(TJy,TJ2), i.e.,TJs # (2.35,2.35). Similarly one can show
thatT is neither a(min, +) linear operator.

5 (min, +) linear functions

Even-though the Bellman operator is ratin, +)/(max, +) linear, the motivation behind developing
ADP methods based ofmin, +) LFAs is to explore them as an alternative to the conventibaals
representation. Thus the aim to understand the kind of egemee guarantees and error bounds that are
possible in thgmin, +) LFAs.

Given a set of basis functiofy;,7 = 1,...,k}, we define itSmin, +) linear span to b& = {v|v =

ver min(¢y + r(1),...,¢r + r(k)),r € RE, }. Vis a subsemimodule. In the context value
function approximation, we would want to project quanstie R}, ontoV. The (min, +) projection

operatoil,, is given by @Akian et al.[200g, Cohen et al[1994, McEneaney et a[.2009)

IIyru = min{v|v € V,v > u},Yu € M. (20)



We can write the PBE in th@min, +) basis

v=IyTv,veV
PRr* =min{®Rr* eVdr* >TdRr"} (21)

Our choice is justified by the similarity in the structure 8f) and the linear programming (LP) formu-
lation of the infinite horizon discounted reward MDP.

min ¢'J (22)
st J(s)>g(s,a)+ ozZpa(s,s’)J(s/),Vs €SacA

Thus by making use ofmin, +) LFAs and the projection operat®f,, we aim to find the minimum
upper bound ta/*/Q*. A closely related ADP method is the approximate linear prog(ALP) given by

min ¢' ®r (23)
st ®r(s) > g(s,a)+ aZpa(s,s’)((I)r)(s'),Vs €SaecA

Though formulationsZ1) and £3) look similar, the former has its search space which is asmbaodule
formed by amin, +) linear span, whereas the latter has search space whichigehgection of subspace
and set of constraints. The two formulations differ in thgoaithmic implementation and performance
bounds which we discuss in a longer version of the paper.

6 (min, +) LFAs for @ value approximation

We now present an ADP scheme bases on solving the PBiim, +) basis to compute approximate
Q* ~ Q. Our ADP scheme successfully addresses the two shortcsrofrtge ADP scheme in conven-
tional basis. First, we show establish contraction of theggmted Bellman operator in the,, norm. This
enables us to show that our recursion to comglinverges. As discussed earlier, we can also obtain a
greedy policyi(s) = max Q(s, a). Secondly, we also present an error bound for@hia themax norm

and as a consequence we can also ascertain the performance of
The PBE we are interested in solving is

d@r* =T H®®r* (24)

Since we want to approximagg”, ® is and x k feature matrix, and)* ~ Q(s,a) = pleDxd+a g px
where¢' is thei'" row of ®. The projected) iteration is given by

PRrp1 =y HO Q1. (25)

The following results help us to establish the fact that thatoperatoil,; H: R™% — R" % is a
contraction map in thé.., norm.

3We did not conside® ® r* = Il TP ® r* since it approximates only™ and is superseded b4) which computes
approximateQ* ~ @. Thus @4) addresses botpredictionand rol problems. We wish the remind the reader of the issues with
(24) in conventional basis discussed in sectb&
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Lemma 9 For Q, Q> € R™*%, such that); > Q., thenIl; Q1 > I, Qo.

Proof: Follows from definition of projection operator i&(@).

Lemma 10 LetQ € R™*?, V4 = I);Q beiits projection ontd’ andk € R, and1 € R"*¢ be a vector

min ?

with all components equal tb The projection of) + k1 in Vo = I, Q + k1.

Proof: We know that sincd’; > @, Vi + k1 > @ + k1, and from the definition of the projection
operatoi, < V; + k1. Similarly V5 — k1 > @, soV; < V5 — k1.

Theorem 11 I, H is a contraction map i, norm with factoro.

Proof: LetQ;, Qs € R™*%, definee < [|Q1 — Q2|00 then

My HQL — Iy HQe <IMpH(Q2 + €l) — Iy HQo
=TI (HQ2 + ael) — Iy HQo
= ael. (26)

Similarly Iy HQo — Iy HQ1 < ael, so it follows thatl [Ty HQ1 — Ty H Qoo < af|Q1 — Q2|0o-

Corollary 3 The approximaté) iteration in (25) converges to a fixed point.

7 Variational formulation of PBE

The projection operatdi;; used in (6) is exact. Lety = IIyu, then for{w; e R, . },i=1,...,mit
follows from the definition oflI,, that

w v > w u (27)
where in the(min, +) algebra the dot produat y = r;;illa(x(z') + y(i)). LetW denote thead x m test
matrix whose columns are;. Now we shall define the approximate projection operatoeto b

MY u =min{v e VW v > Wy} (28)

The superscript ifil}; denotes the test matri¥’. The iteration to compute approximagevalues using
1T} is given by
PRy =1y HE @1y, (29)

Lemmas9, 10, and Theorend 1 continue to hold ifil,; is replaced witHI};. Thus by Corollang, we
know that 9) converges to an unique fixed poifji; such thatb ® 7, = I, H® @ 1.

Theorem 12 Let7 be such thaf = arg min ||Q* — ® ® r||.. Letr* be the fixed point of the iterates in
(29), then
2
*_ P * o < —— *_ P ~ -
1Q ®@rlee < 75 (II€ ® 7|
+ @@ F — TP @ 7||oo) (30)
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Proof: Lete = ||Q" — ® ® 7|/, by contraction property off (Lemmal) we know that
|HQ" — H® ® 7|00 < are.
Sohavg|® @7 — H® @ 7||o < (14 a)e. Then

@7 TV H® @ 7| = |22 7 — T ® @ 7[00
+ MY e @7 —TIYH® @ 7w

Now

nyeer-MyHP@F <IYd 7
TV (@ @7 — (1 + a)e)
= (1+ a)e

Similarly Iy, H® @ 7 — T}, ® ® 7 < (1 + a)e, and hence
@@ F— Iy H® ® 7| < (1+ a)e+ B, (31)
wheres = ||® @ 7 — I1};® @ 7|| . Now consider the iterative scheme B{ with ry = 7, and

Q" — @ @ r*||oo = ||Q" — @ @ 1o+ D ® 7
-1 +...— PR
<R =2 @ 70lloc +[[2 @70 = @@ 71|00
+PR®r —PRra|eo + -
<et+(l4+a)e++a((l+a)e+8)+...
:6(1+a+1)+ P

-« 11—«
2¢+ [
11—«

The termg in the error bound in Theored® is the error due to the usageil;. Thus for solution to

(24 B = 0.

8 Experiments

We test our ADP schemes on a randomly generated MDP ithstates, i.e.S = {1,2,...,100},
and action setl = {1,...,5}. The rewardy,(s) is a random integer betwednand10, and discount
factora = 0.9. We now describe feature selection, whége,j = 1,...,k}, ¢, € R;fnd and{¢’, i =
1,...,n},¢" € RF, denote the columns and rows respectively of the featureixn@tr The feature
corresponding to a state-action p@ira) is given byp(s—Dxdte | et ¢* ¥ be features corresponding
to state action pair&,, a,) and(s,, a, ) respectively, then

< 9% 9" >=¢ ()@ ¢'(1) &... @ ¢" (k) © ¢ (k). (32)

We desire the following in the feature matkix
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Figure 1:||J* — Jgp||eo = 6.47,||J" — Jw||o = 6.35

1. Featuresy’ should have unit norm, i.e|j¢’|| =< ¢',¢' >= 0, since0 is the multiplicative
identity in the(min, +) algebra.

2. For dissimilar states-action pairs, we prefep?®, ¢¥ >= +oo, since+oo is the additive identity
in (min, +) algebra.

Keeping these in mind, we design the feature mabrifor the random MDP as in3@). For state-action
pair (s,a) letz = (s — 1) x d + a, then the feature

o 0 : 9a(8) € [gmin + %’gmi“ + %]
1000 : ga(s) ¢ [gmin + O_le,gmin + %]7
Vi=1,...,k (33)

We usel000 in place of+occ. It is easy to verify that in (33) has the enumerated properties. The
results are plotted in Figur2. Here J* is the optimal value-function/gp(s) = maxQgp(s,a),

whereQpp is the value obtained via the iterative scheme#) (@nd subscripZ P denotes the fact
that the projection employed xact(Il;). Jw (s) = max Qw (s, a), whereQy is the value obtained
via the iterative scheme ir29) and subscript?” denotes the fact that the projection employedl}§ .
ugp(s) = argmaxQgp(s,a) anduy (s) = argmax Qw (s, a) are greedy policies and, .., Ju,,

are their respective value functions,_ ,.
arbitrary action is chosen for each state.

is the value function of aarbitrary policy, wherein a fixed
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