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Abstract

Markov Decision Processes (MDP) is an useful framework to cast optimal sequential decision
making problems. Given any MDP the aim is to find the optimal action selection mechanism i.e.,
the optimal policy. Typically, the optimal policy (u∗) is obtained by substituting the optimal value-
function (J∗) in the Bellman equation. Alternatelyu∗ is also obtained by learning the optimal state-
action value functionQ∗ known as theQ value-function. However, it is difficult to compute the exact
values ofJ∗ or Q∗ for MDPs with large number of states. Approximate Dynamic Programming
(ADP) methods address this difficulty by computing lower dimensional approximations ofJ∗/Q∗.
Most ADP methods employ linear function approximation (LFA), i.e., the approximate solution lies
in a subspace spanned by a family of pre-selected basis functions. The approximation is obtain via a
linear least squares projection of higher dimensional quantities and theL2 norm plays an important
role in convergence and error analysis. In this paper, we discuss ADP methods for MDPs based on
LFAs in (min,+) algebra. Here the approximate solution is a(min,+) linear combination of a set of
basis functions whose span constitutes a subsemimodule. Approximation is obtained via a projection
operator onto the subsemimodule which is different from linear least squares projection used in ADP
methods based on conventional LFAs. MDPs are not(min,+) linear systems, nevertheless, we show
that the monotonicity property of the projection operator helps us to establish the convergence of our
ADP schemes. We also discuss future directions in ADP methods for MDPs based on the(min,+)
LFAs.

1 Introduction

Optimal sequential decision making problems in science, engineering and economics can be cast in the
framework of Markov Decision Processes (MDP). Given an MDP,it is of interest to compute the optimal
value-function (J∗ ∈ Rn) and/or the optimal-policy(u∗), orQ∗ ∈ Rn×d known as theQ value-function
which encodes bothJ∗ andu∗. The Bellman operator and Bellman equation play a central role in
computing optimal value-function (J∗ ∈ Rn) and optimal policy (u∗). In particular,J∗ = TJ∗ and
Q∗ = HQ∗, whereT : Rn → Rn, H : Rn×d → Rn×d are the Bellman andQ-Bellman operators
respectively. Most methods to solve MDP such as value/policy iteration (Bertsekas[2007]) exploit the
fact thatJ∗ andQ∗ are fixed points of theT andH .
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Most problems arising in practice have large number of states and it is expensive to compute exact
values ofJ∗/Q∗ andu∗. A practical way to tackle the issue is by resorting to approximate methods.
Approximate Dynamic Programming (ADP) refers to an entire spectrum of methods that aim to obtain
approximate value-functions and/or policies. In most cases, ADP methods consider a family of functions
and pick a function that approximates the value function well. Usually, the family of functions considered
is the linear span of a set of basis functions. This is known aslinear function approximation (LFA)
wherein the value-function of a policyu is approximated asJu ≈ J̃u = Φr∗. HereΦ is ann× k feature
matrix andr∗ ∈ Rk (k << n) is the weight vector to be computed.
GivenΦ, ADP methods vary in the way they computer∗. In this paper, we focus on ADP methods that
solve the following Projected Bellman equation (PBE),

Φr∗ = ΠTuΦr
∗, (1)

whereΠ is the projection matrix,Π = Φ(Φ⊤DΦ)−1Φ⊤ andD is any positive definite matrix. Once can
show that (1) has a solution by showing that the projected Bellman operator (PBO)ΠTu is a contraction
map in theL2 norm. Solving (1) only address the problem of policy-evaluation/prediction, and to address
the problem ofcontrol a policy improvement step is required. In order to guaranteean improvement in
the policy, the prediction error||Ju − J̃u||∞ needs to be bounded. Due to the use of linear least squares
projection operatorΠ, we can bound only||Ju − J̃u||D, where||x||D = x⊤Dx. Consequently policy
improvement is not guaranteed and an approximate policy iteration scheme will fail to produce a conver-
gent sequence of policies. Thus the problems of prediction and control are addressed only partially. In
particular, convergence and performance bounds are unsatisfactory. Also there is no convergent scheme
using conventional LFAs that can approximateQ∗.

The (min,+) algebra differs from conventional algebra, in that+ and× operators are replaced by
min and+ respectively. Similarly(max,+) algebra replaces+ with max and× with +. It is known
that finite horizon deterministic optimal control problemswith reward criterion are(max,+) linear trans-
formations which map the cost function to the optimal-valuefunction. A lot of work has been done in
literatureAkian et al.[2008], McEneaney et al.[2008], McEneaney and Kluberg[2009], Gaubert et al.
[2011] that make use of(max,+) basis to solve to compute approximate value-functions. However, in
the case of infinite horizon discounted reward MDP, due to thestochastic nature of the state evolution
the Bellman operator (T /H) is neither(max,+) nor (min,+) linear, which is a key difference from the
aforementioned works that apply(max,+) basis. The primary focus of the paper it so explore(min,+)
LFAs in ADP schemes as opposed to conventional LFAs. Our specific contributions in this paper are
listed below.

1. We argue that the Bellman operator arising in MDPs are neither (max,+)/(min,+) linear. We
justify our choice of(min,+) linear basis for value-function approximation in infinite horizon
discounted reward MDPs.

2. We show that the projected Bellman operator in the(min,+) basis is a contraction map in theL∞

norm. This enables us establish convergence and error bounds for the ADP schemes developed in
this paper.

3. We develop a convergent ADP scheme called ApproximateQ Iteration (AQI) to computeQ̃ =
Q∗. Thus we solve bothpredictionandcontrol problems which was a shortcoming in ADP with
conventional LFAs.

4. We also present another convergent ADP scheme called Variational ApproximateQ Iteration
(VAQI), which is based on the Variational or weak formulation of the PBE.
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5. We present the error analysis of AQI and VAQI.

Since the main focus of this paper was to study ADP in(min,+) LFAs and the properties of the associated
PBE, we have left out details on algorithmic implementationand analysis of the computational efficiency.
Nevertheless, we present experimental results on random MDPs.

2 Markov Decision Processes

Markov Decision Processes (MDP) are characterized by theirstate spaceS, action spaceA, the reward
functiong : S × A → R, and the probability of transition from states to s′ under actiona denoted by
pa(s, s

′). The reward for selecting an actiona in states is denoted byga(s). We consider MDP with
state spaceS = {1, 2, . . . , n} and action setA = {1, 2, . . . , d}. For simplicity, we assume that all actions
a ∈ A are feasible in every states ∈ S. A policy is a mapu : S → A, and it describes the action selection
mechanism2. Under a policyu the MDP is a Markov chain and we denote its probability transition kernel
by Pu = (pu(i)(i, j), i = 1 to n, j = 1 to n). The discounted reward starting from states following
policy u is denoted byJu(s) and is defined as

Ju(s) = E[

∞
∑

t=0

αtgat
(st)|s0 = s, u]. (2)

Here {st} is the trajectory of the Markov chain underu, andat = u(st), ∀t ≥ 0. We call Ju =
(Ju(s), ∀s ∈ S) ∈ Rn the value-function for policyu. The optimal policy denoted asu∗ is given by

u∗ = argmax
u∈U

Ju(s), ∀s ∈ S. (3)

The optimal value function is thenJ∗(s) = Ju∗(s), ∀s ∈ S. The optimal value function and optimal
policy are related by the Bellman Equation as below:

J∗(s) = max
a∈A

(ga(s) + α
n
∑

s′=1

pa(s, s
′)J∗(s′)), (4a)

u∗(s) = argmax
a∈A

(ga(s) + α

n
∑

s′=1

pa(s, s
′)J∗(s′)). (4b)

Usually, J∗ computed is first andu∗ is obtained by substitutingJ∗ in (4b). One can also define the
state-action value-function of a policyu known as theQ value-function as follows:

Qu(s, a) = E[
∞
∑

t=0

αtgat
(st)|s0 = s, a0 = a], at = u(st)∀t > 0. (5)

The optimalQ values obeys theQ Bellman equation given below:

Q∗(s, a) = ga(s) + α
∑

s′

p(s, s′)max
a′

Q∗(s′, a′). (6)

2The policy thus defined are known as stationary deterministic policy (SDP). Policies can also be non-stationary and randomized.
However since there exists a optimal policy that is SDP (Puterman[1994]) we restrict our treatment to SDPs.
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It is also known that (Bertsekas[2007]) J∗(s) = max
a

Q∗(s, a). The optimal policy can be computed as

u∗(s) = argmax
a

Q∗(s, a). Thus, in some cases it is beneficial to findQ∗ since it encodes bothJ∗ and

u∗.

2.1 Basic Solution Methods

It is important to note thatJ∗ andQ∗ are fixed points of mapsT : Rn → R
n, H : Rn×d → R

n×d

respectively defined as follows:

(TJ)(s) = max
a∈A

(ga(s) + α

n
∑

j=1

pa(s, s
′)J(s′)), J ∈ R

n. (7a)

(HQ)(s, a) = (ga(s) + α

n
∑

j=1

pa(s, s
′)max

a∈A
Q(s′, a)), Q ∈ R

n×d. (7b)

T andH are called the Bellman andQ-Bellman operators respectively. GivenJ ∈ Rn, Q ∈ Rn×d, TJ
andHQ are the ‘one-step’ greedy value-functions. We summarize certain useful properties ofH in the
following Lemmas (seeBertsekas[2007] for proofs).

Lemma 1 H is amax-norm contraction operator, i.e., givenQ1, Q2 ∈ R
n×d

||HQ1 −HQ2||∞ ≤ α||Q1 −Q2||∞ (8)

Corollary 1 Q∗ is a unique fixed point ofH .

Lemma 2 H is a monotone map, i.e., givenQ1, Q2 ∈ Rn×dn× d is such thatQ ≥ HQ, it follows that
Q ≥ Q∗.

Lemma 3 GivenQ ∈ Rn×d, andk ∈ R and1 ∈ Rn×d a vector with all entries1, then

H(Q+ k1) = HQ+ αk1. (9)

It is easy to check that Lemmas1, 2, 3 hold forT as well (Bertsekas[2007]).
Value iteration (VI) is the most basic method to computeJ∗/Q∗ and is given by

Jn+1 = TJn, (10a)

Qn+1 = HQn. (10b)

Iterations in (10) are exact methods, and the contraction property of the Bellman operator ensures that
Jn → J∗ in (10a), Qn → Q∗ in (10b) asn → ∞. They are also referred to aslook-up-tablemethods or
full state representation methods, as opposed to methods employing function approximation.u∗ can be
computed by substitutingJ∗ in (4b). Another basic solution method is Policy Iteration (PI) presented in
Algorithm 1. VI and PI form the basis of ADP methods explained in the next section.
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Algorithm 1 Policy Iteration

1: Start with any policyu0

2: for i = 0, 1, . . . , n do
3: Evaluate policyui by computingJui

.

4: Improve policyui+1(s) = argmax
a

(ga(s) + α
∑

s′

pa(s, s
′)Jui

(s′)).

5: end for
6: return un

3 Approximate Dynamic Programming in conventional LFAs

The phenomenon calledcurse-of-dimensionalitydenotes the fact that the number of states grows expo-
nentially in the number of state variables. Due to thecurse, as the number of variables increase, it is hard
to compute exact values ofJ∗/Q∗ andu∗. Approximate Dynamic Programming (ADP) methods make
use of (4) and dimensionality reduction techniques to compute an approximate value-functioñJ . ThenJ̃
can be used to obtain an approximate policyũ which is greedy with respect tõJ as follows:

ũ(s) = argmax
a

(ga(s) + α
∑

s′

pa(s, s
′)J̃(s′)). (11)

The sub-optimality of the greedy policy is given by the following result.

Lemma 4 Let J̃ = Φr∗ be the approximate value function andũ be as in(11), then

||Jũ − J∗||∞ ≤ 2

1− α
||J∗ − J̃ ||∞ (12)

Proof: SeeBertsekas[2007]. Thus a good ADP method is one that address bothprediction(i.e., com-
putingJ̃) and thecontrol (i.e., computing̃u) problems with desirable approximation guarantees.
Linear function approximators (LFA) have been widely employed for their simplicity and ease of com-
putation. LFAs typically letJ̃ ∈ V ⊂ Rn, whereV is the subspace spanned by a set of preselected basis
functions{φi ∈ Rn, i = 1, . . . , k}. LetΦ be then×k matrix with columns{φi}, andV = {Φr|r ∈ Rk},
then the approximate value functioñJ is of the formJ̃ = Φr∗ for somer∗ ∈ Rk. r∗ is a weight vector
to be learnt, and due to dimensionality reduction (k << n) computingr∗ ∈ Rk is easier than computing
J∗ ∈ Rn.
We now discuss popular ADP methods namely approximate policy evaluation (APE) and approximate
policy iteration (API), which are approximation analoguesof VI and PI. APE and API are based on linear
least squares projection of higher dimensional quantitiesontoV .

3.1 Approximate Policy Evaluation

J∗/Q∗ are not known and hence projecting them ontoV is impossible. Nevertheless, one can use the
Bellman operator and linear least squares projection operator to write down a projected Bellman equation
(PBE) as below:

Φr∗ = ΠTuΦr
∗ (13)
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whereΠ = Φ(Φ⊤DΦ)−1Φ⊤ is the projection operator,D is any diagonal matrix with all entries strictly
greater than0 andTu is the Bellman operator restricted to a policyu and is given by

(TuJ)(s) = gu(s)(s) + α
∑

s′

pu(s)(s, s
′)J(s′), J ∈ Rn.

The approximate policy evaluation (APE) is the following iteration:

Φrn+1 = ΠTuΦrn. (14)

The following Lemma5 establishes the convergence of (14).

Lemma 5 If Π = Φ(Φ⊤DΦ)−1Φ⊤, andD be a diagonal matrix with theith diagonal entry being the
stationary probability of visiting statei under policyu, thenΠTu is a contraction map with factorα.

Proof: Let Pu be the probability transition matrix corresponding to policy u. Then one can show that
(Bertsekas[2007]) for z ∈ Rn and ||z||2D = z⊤Dz, ||Puz||2D ≤ ||z||2D. Also, we know thatΠ is a
non-expansive map, because

||Πx−Πy||D = ||Π(x− y)||D
≤ ||Π(x− y)||D + ||(I −Π)(x − y)||D
= ||x− y||D

Then

||ΠTJ1 −ΠTJ2||D ≤ ||TJ1 − TJ2||D ≤ α||J1 − J2||D

Corollary 2 Then the iteration in(14) converges toΦr∗ such thatΦr∗ = ΠTuΦr
∗.

The error bound forΦr∗ is given by

||Ju − Φr∗||D ≤ 1√
1− α2

||Ju −ΠJu||D, (15)

One is inclined to think that an approximation analogue of (10a) would yield an approximation toJ∗.
It is important to note that (14) only computesJ̃u because (14) containsTu and notT . However, since
operatorΠT might not be a contraction map in theL2 norm, andTu cannot be replaced byT in iteration
(14), and the PBE in (13).

3.2 Approximate Policy Iteration

Approximate Policy Iteration (Algorithm2) tackles both prediction and control problems, by performing
APE and policy improvement at each step. The performance guarantee of API can be stated as follows:

Lemma 6 If at each stepi one can guarantee that||J̃i−Jui
||∞ ≤ δ, then one can show thatlim

n→∞
||Jui

−

J∗|| ≤ 2δα

(1− α)2
.

Note that the error bound required by Lemma6 is in theL∞ norm, whereas (15) is only in theL2

norm. So API cannot guarantee an approximate policy improvement each step which is a shortcoming.
Also, even-though each evaluation step (line3 of Algorithm 2) converges, the sequenceun, n ≥ 0 is
not guaranteed to converge. This is known as policychatteringand is another important shortcoming of
conventional LFAs. Thus the problem ofcontrol is only partially addressed by API.
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Algorithm 2 Approximate Policy Iteration (API)

1: Start with any policyu0

2: for i = 0, 1, . . . , n do
3: Approximate policy evaluatioñJi = Φr∗i , whereΦr∗i = ΠTui

Φr∗i .

4: Improve policyui+1(s) = argmax
a

(ga(s) + α
∑

s′

pa(s, s
′)J̃i(s

′)).

5: end for
6: return un

3.3 LFAs for Q value-function

To alleviate the shortcomings in API, it is then natural to look for an approximation method that computes
a policy in more direct fashion. Since we know that by computing Q∗ we obtain the optimal policy
directly, it is a good idea to approximateQ∗. The PBE version of (10b) is a plausible candidate and the
iterations are given by,

Φrn+1 = ΠHΦrn. (16)

The above scheme will run into the following problems:

1. TheH operator (7b) contains amax term, and it is not straightforward show thatΠH is a con-
traction map inL2 norm, and consequently one cannot establish the convergence of iterates in
(16).

2. The issue pertaining tomax operator can be alleviated by restrictingH to a policyu, i.e., consider
iterations of form

Φrn+1 = ΠHuΦrn+1. (17)

But iterates in (17) attempt to approximateQu and notQ∗, which means the problem ofcontrol is
unaddressed.

We conclude this section with the observation that the important shortcomings of conventional LFAs
related to convergence and error bound arise due to theL2 norm. The main result of the paper is that
ADP methods based on(min,+) LFAs don’t suffer from such shortcomings.

4 (min,+)/(max,+) non-linearity of MDPs

We introduce theRmin semiring and show that MDPs are neither(min,+) nor (max,+) linear. The
Rmin semiring is obtained by replacing multiplication (×) by+, and addition (+) bymin.

Definition 7

Addition: x⊕ y = min(x, y)

Multiplication: x⊗ y = x+ y
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Henceforth we use,(+,×) and(⊕,⊗) to respectively denote the conventional andRmin addition and
multiplication respectively. Semimodule over a semiring can be defined in a similar manner to vector
spaces over fields. In particular we are interested in the semimoduleM = R

n
min. Givenu, v ∈ R

n
min,

andλ ∈ Rmin, we define addition and scalar multiplication as follows:

Definition 8

(u⊕ v)(i) = min{u(i), v(i)} = u(i)⊕ v(i), ∀i = 1, 2, . . . , n.

(u⊗ λ)(i) = u(i)⊗ λ = u(i) + λ, ∀i = 1, 2, . . . , n.

Similarly one can define theRmax semiring which has the operatorsmax as addition and+ as multipli-
cation.

It is a well known fact that deterministic optimal control problems with cost/reward criterion are
(min,+)/(max,+) linear. However, the Bellman operatorT in (7a) (as well asH in (7b)) corresponding
to infinite horizon discounted reward MDPs are neither(min,+) linear nor(max,+) linear systems. We
illustrate this fact via the following example.

Example 1 Consider an MDP with two statesS = {s1, s2}, only one action, and a reward functiong,
and let the probability transition kernel be

P =

[

0.5 0.5
0.5 0.5

]

(18)

For anyJ ∈ R2 the Bellman operatorT : R2 → R2 can be written as

(TJ)(s) = g(s) + α× (0.5× J(1) + 0.5× J(2)) (19)

Consider vectorsJ1, J2 ∈ R2 such thatJ1 = (1, 2) andJ2 = (2, 1) andJ3 = max(J1, J2) = (2, 2).
Let g(1) = g(2) = 1, andα = 0.9, then, it is easy to check thatTJ1 = TJ2 = (2.35, 2.35), and
TJ3 = (2.8, 2.8). HoweverTJ3 6= max(TJ1, T J2), i.e.,TJ3 6= (2.35, 2.35). Similarly one can show
thatT is neither a(min,+) linear operator.

�

5 (min,+) linear functions

Even-though the Bellman operator is not(min,+)/(max,+) linear, the motivation behind developing
ADP methods based on(min,+) LFAs is to explore them as an alternative to the conventionalbasis
representation. Thus the aim to understand the kind of convergence guarantees and error bounds that are
possible in the(min,+) LFAs.
Given a set of basis function{φi, i = 1, . . . , k}, we define its(min,+) linear span to beV = {v|v =

Φ ⊗ r
def
= min(φ1 + r(1), . . . , φk + r(k)), r ∈ R

k
min}. V is a subsemimodule. In the context value

function approximation, we would want to project quantities inR
n
min ontoV . The(min,+) projection

operatorΠM is given by (Akian et al.[2008], Cohen et al.[1996], McEneaney et al.[2008])

ΠMu = min{v|v ∈ V , v ≥ u}, ∀u ∈ M. (20)
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We can write the PBE in the(min,+) basis

v = ΠMTv, v ∈ V
Φ⊗ r∗ = min{Φ⊗ r∗ ∈ V|Φ⊗ r∗ ≥ TΦ⊗ r∗} (21)

Our choice is justified by the similarity in the structure of (21) and the linear programming (LP) formu-
lation of the infinite horizon discounted reward MDP.

min c⊤J (22)

s.t J(s) ≥ g(s, a) + α
∑

s′

pa(s, s
′)J(s′), ∀s ∈ S, a ∈ A

Thus by making use of(min,+) LFAs and the projection operatorΠM we aim to find the minimum
upper bound toJ∗/Q∗. A closely related ADP method is the approximate linear program (ALP) given by

min c⊤Φr (23)

s.t Φr(s) ≥ g(s, a) + α
∑

s′

pa(s, s
′)(Φr)(s′), ∀s ∈ S, a ∈ A

Though formulations (21) and (23) look similar, the former has its search space which is a subsemimodule
formed by a(min,+) linear span, whereas the latter has search space which is theintersection of subspace
and set of constraints. The two formulations differ in the algorithmic implementation and performance
bounds which we discuss in a longer version of the paper.

6 (min,+) LFAs for Q value approximation

We now present an ADP scheme bases on solving the PBE in(min,+) basis to compute approximate
Q∗ ≈ Q̃. Our ADP scheme successfully addresses the two shortcomings of the ADP scheme in conven-
tional basis. First, we show establish contraction of the projected Bellman operator in theL∞ norm. This
enables us to show that our recursion to computeQ̃ converges. As discussed earlier, we can also obtain a
greedy policỹu(s) = max

a
Q̃(s, a). Secondly, we also present an error bound for theQ̃ in themax norm

and as a consequence we can also ascertain the performance ofũ.
The PBE we are interested in solving is3

Φ⊗ r∗ = ΠMHΦ⊗ r∗ (24)

Since we want to approximateQ∗, Φ is and× k feature matrix, andQ∗ ≈ Q̃(s, a) = φ(s−1)×d+a ⊗ r∗,
whereφi is theith row ofΦ. The projectedQ iteration is given by

Φ⊗ rn+1 = ΠMHΦ⊗ rn. (25)

The following results help us to establish the fact that thatthe operatorΠMH : Rn×d
min → R

n×d
min is a

contraction map in theL∞ norm.

3We did not considerΦ ⊗ r∗ = ΠMTΦ ⊗ r∗ since it approximates onlyJ∗ and is superseded by (24) which computes
approximateQ∗ ≈ Q̃. Thus (24) addresses bothpredictionand rol problems. We wish the remind the reader of the issues with
(24) in conventional basis discussed in section3.3.
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Lemma 9 For Q1, Q2 ∈ R
n×d
min , such thatQ1 ≥ Q2, thenΠMQ1 ≥ ΠMQ2.

Proof: Follows from definition of projection operator in (20).

Lemma 10 LetQ ∈ R
n×d
min , V1 = ΠMQ be its projection ontoV andk ∈ R, and1 ∈ Rn×d be a vector

with all components equal to1. The projection ofQ+ k1 in V2 = ΠMQ+ k1.

Proof: We know that sinceV1 ≥ Q, V1 + k1 ≥ Q + k1, and from the definition of the projection
operatorV2 ≤ V1 + k1. SimilarlyV2 − k1 ≥ Q, soV1 ≤ V2 − k1.

Theorem 11 ΠMH is a contraction map inL∞ norm with factorα.

Proof: LetQ1, Q2 ∈ R
n×d
min , defineǫ

def
= ||Q1 −Q2||∞, then

ΠMHQ1 −ΠMHQ2 ≤ ΠMH(Q2 + ǫ1)−ΠMHQ2

= ΠM (HQ2 + αǫ1)−ΠMHQ2

= αǫ1. (26)

SimilarlyΠMHQ2 −ΠMHQ1 ≤ αǫ1, so it follows that||ΠMHQ1 −ΠMHQ2||∞ ≤ α||Q1 −Q2||∞.

Corollary 3 The approximateQ iteration in (25) converges to a fixed pointr∗.

7 Variational formulation of PBE

The projection operatorΠM used in (16) is exact. Letv = ΠMu, then for{wi ∈ R
n
min}, i = 1, . . . ,m it

follows from the definition ofΠM that

w⊤
i v ≥ w⊤

i u (27)

where in the(min,+) algebra the dot productx⊤y =
n

min
i=1

(x(i) + y(i)). LetW denote thend×m test

matrix whose columns arewi. Now we shall define the approximate projection operator to be

ΠW
Mu = min{v ∈ V|W⊤v ≥ W⊤u}. (28)

The superscript inΠW
M denotes the test matrixW . The iteration to compute approximateQ values using

ΠW
M is given by

Φ⊗ rn+1 = ΠW
MHΦ⊗ rn. (29)

Lemmas9, 10, and Theorem11 continue to hold ifΠM is replaced withΠW
M . Thus by Corollary3, we

know that (29) converges to an unique fixed pointr∗W such thatΦ⊗ r∗W = ΠW
MHΦ⊗ r∗W .

Theorem 12 Let r̃ be such that̃r = argmin
r

||Q∗ −Φ⊗ r||∞. Letr∗ be the fixed point of the iterates in

(29), then

||Q∗ − Φ⊗ r∗||∞ ≤ 2

1 + α
(||Q∗ − Φ⊗ r̃||∞

+ ||Φ⊗ r̃ −ΠW
MΦ⊗ r̃||∞) (30)
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Proof: Let ǫ = ||Q∗ − Φ⊗ r̃||∞, by contraction property ofH (Lemma1) we know that

||HQ∗ −HΦ⊗ r̃||∞ ≤ αǫ.

So have||Φ⊗ r̃ −HΦ⊗ r̃||∞ ≤ (1 + α)ǫ. Then

||Φ⊗ r̃ −ΠW
MHΦ⊗ r̃||∞ = ||Φ⊗ r̃ −ΠW

MΦ⊗ r̃||∞
+ ||ΠW

MΦ⊗ r̃ −ΠW
MHΦ⊗ r̃||∞

Now

ΠW
MΦ⊗ r̃ −ΠW

MHΦ⊗ r̃ ≤ ΠW
MΦ⊗ r̃

−ΠW
M (Φ⊗ r̃ − (1 + α)ǫ)

= (1 + α)ǫ

SimilarlyΠW
MHΦ⊗ r̃ −ΠW

MΦ⊗ r̃ ≤ (1 + α)ǫ, and hence

||Φ⊗ r̃ −ΠW
MHΦ⊗ r̃||∞ ≤ (1 + α)ǫ + β, (31)

whereβ = ||Φ⊗ r̃ −ΠW
MΦ⊗ r̃||∞. Now consider the iterative scheme in (29) with r0 = r̃, and

||Q∗ − Φ⊗ r∗||∞ = ||Q∗ − Φ⊗ r0 +Φ⊗ r0

− Φ⊗ r1 + . . .− Φ⊗ r∗||∞
≤ ||Q∗ − Φ⊗ r0||∞ + ||Φ⊗ r0 − Φ⊗ r1||∞
+ ||Φ⊗ r1 − Φ⊗ r2||∞ + . . .

≤ ǫ+ (1 + α)ǫ + β + α((1 + α)ǫ + β) + . . .

= ǫ(
1 + α

1− α
+ 1) +

β

1− α

=
2ǫ+ β

1− α

The termβ in the error bound in Theorem12 is the error due to the usage ofΠW
M . Thus for solution to

(24) β = 0.

8 Experiments

We test our ADP schemes on a randomly generated MDP with100 states, i.e.,S = {1, 2, . . . , 100},
and action setA = {1, . . . , 5}. The rewardga(s) is a random integer between1 and10, and discount
factorα = 0.9. We now describe feature selection, where{φj , j = 1, . . . , k}, φj ∈ R

n×d
min and{φi, i =

1, . . . , n}, φi ∈ R
k
min denote the columns and rows respectively of the feature matrix Φ. The feature

corresponding to a state-action pair(s, a) is given byφ(s−1)×d+a. Letφx, φy be features corresponding
to state action pairs(sx, ax) and(sy, ay) respectively, then

< φx, φy >= φx(1)⊗ φy(1)⊕ . . .⊕ φx(k)⊗ φy(k). (32)

We desire the following in the feature matrixΦ.
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Figure 1:||J∗ − J̃EP ||∞ = 6.47,||J∗ − J̃W ||∞ = 6.35

1. Featuresφi should have unit norm, i.e.,||φi|| =< φi, φi >= 0, since0 is the multiplicative
identity in the(min,+) algebra.

2. For dissimilar states-action pairs, we prefer< φx, φy >= +∞, since+∞ is the additive identity
in (min,+) algebra.

Keeping these in mind, we design the feature matrixΦ for the random MDP as in (33). For state-action
pair (s, a) let x = (s− 1)× d+ a, then the feature

φx(i) =











0 : ga(s) ∈ [gmin +
(i − 1)L

k
, gmin +

(i)L

k
]

1000 : ga(s) /∈ [gmin +
(i − 1)L

k
, gmin +

(i)L

k
],

∀i = 1, . . . , k. (33)

We use1000 in place of+∞. It is easy to verify thatΦ in (33) has the enumerated properties. The
results are plotted in Figure2. HereJ∗ is the optimal value-function,̃JEP (s) = max

a
Q̃EP (s, a),

whereQ̃EP is the value obtained via the iterative scheme in (25) and subscriptEP denotes the fact
that the projection employed inexact(ΠM ). J̃W (s) = max

a
Q̃W (s, a), whereQ̃W is the value obtained

via the iterative scheme in (29) and subscriptW denotes the fact that the projection employed isΠW
M .

uEP (s) = argmax
a

Q̃EP (s, a) anduW (s) = argmax
a

Q̃W (s, a) are greedy policies andJuEP
, JuW

are their respective value functions.̃Juarbt
is the value function of anarbitrary policy, wherein a fixed

arbitrary action is chosen for each state.



13

0 20 40 60 80 100
80

82

84

86

88

90

State

D
is

co
u

n
te

d
C

o
st

Performance of optimal and greedy policies

J∗

JuEP

JuW

Figure 2:||J∗ − JuEP
||∞ = 2.61,||J∗ − JuW

||∞ = 5.61, ||J∗ − J̃uarbt
||∞ = 40.49



14

References
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