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Abstract

Bivalirudin is used in patients with heparin-induced thrombocytopenia and is a direct thrombin

inhibitor. Since it is a rarely used drug, clinical experience with its dosing is sparse. We develop a

model that predicts the effect of bivalirudin, measured by the Partial Thromboplastin Time (PTT),

based on its past fusion rates. We learn population-wide model parameters by solving a nonlinear

optimization problem that uses a training set of patient data. More interestingly, we devise an

adaptive algorithm based on the extended Kalman filter that can adapt model parameters to

individual patients. The latter adaptive model emerges as the most promising as it reduces both the

mean error and, drastically, the per-patient error variance. The model accuracy we demonstrate on

actual patient measurements is sufficient to be useful in guiding optimal therapy.

I. Introduction

Bivalirudin is infused as a “blood thinner” in patients who have or are suspected of having

blood clots or risk of blood clotting and who have a contraindication to heparin. It is infused

continuously, and is eliminated via the kidneys and by plasma protease-metabolism [2], [6],

[7]. It affects the blood coagulation parameters Partial Thromboplastin Time (PTT) and the

International Normalized Ratio (INR) in a dose-dependent fashion. Both measure the ability

of the blood to clot but while PTT is measured in seconds, INR is a dimensionless number.

As a rarely used drug, bivalirudin is used more frequently in the cardiac Intensive Care Unit

(ICU) but residents adjusting the infusion rate have little experience, resulting in overdosing

or underdosing. Adequate anticoagulation is necessary to avoid the risk of clot formation,

but overshooting increases the risk of bleeding. There is considerable inter-and intra-
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individual variability in the response to bivalirudin. For this reason, a mathematical model

that predicts the PTT based on the past infusion rates of bivalirudin following dose

adjustment would be useful to guide optimal therapy.

In earlier work [4], [3], we have built a simple one-state linear system model to describe the

effect of bivalirudin in patients. The models were designed using Matlab/simulink

(Mathworks, Natick, MA) and default parameter identification procedures. Motivated by

this work, in the present paper we develop a method to predict PTT values based not only on

past bivalirudin infusion rates but also on a host of patient-specific physiological variables

that characterize blood composition, renal, and liver function. The results we obtain

substantially improve accuracy compared to our earlier work.

More specifically, we develop a more complex dynamic system model than the one

developed in [4], [3]. This new model takes the elimination of bivalirudin by the kidneys

and liver into account. We identify model parameters by formulating a nonlinear

optimization problem that minimizes the ℓ2 norm of the prediction error over a training set of

measurements. To solve this problem we leverage quasi-Newton methods. Building on this

model, we develop an adaptive on-line algorithm based on the extended Kalman filter than

can adapt the model parameters to individual patients. The algorithm starts from population-

wide optimal parameters and as it observes inputs and outputs it modifies model parameter

values to better fit an individual patient. This adaptive model slightly reduces the average

prediction error compared to the population-wide model and substantially reduces the per-

patient error variability, in fact by a factor of about 2.5, which is significant.

The approach we develop in this work is general and can be applicable to a host of related

problems. As ICUs and hospital wards accelerate the digitization of patient records,

tremendous opportunities arise for automated and mathematically rigorous patient

monitoring and medication dosing. It is in such a framework that the methods we develop

can become useful.

The remainder of the paper is organized as follows. Section II presents the dynamic system

model. Section III develops the extended Kalman filter to achieve model parameter

adaptation. Finally, concluding remarks appear in Section IV.

Notation: We use bold letters to denote vectors and matrices; typically vectors are denoted

by lower case letters and matrices by upper case letters. Vectors are assumed to be column

vectors unless explicitly stated otherwise. For economy of space we write x = (x1, …, xn)T

for the n-dimensional column vector x ∈ ℝn. Prime denotes transpose, ‖·‖ denotes the

Euclidean norm, 0 denotes a vector or matrix with all components set to zero, and I is the

identity matrix.

II. An dynamic system model

This section introduces a Multiple Input Single Output (MISO) dynamic system model that

attempts to explicitly account for the way bivalirudin affects PTT values in patients.
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A. The predictors

In our problem, we have clinical data from 233 patients. The key quantity (response) we

would like to predict is the Partial Thromboplastin Time (PTT), denoted by yi(t), of each

patient i at each time t. As predictors we include 11 key physiological variables sampled

over M consecutive time instants t > t − τ1 > ⋯ > t − τM−1 where τm for m = 1, …, M − 1

denote the time lags between consecutive measurements, which are not necessarily identical

or constant over time.

There is only one output of the system: PTT. The 11 input physiological variables are:

1. Bival rate: the Bivalirudin injection rate which is the unique controllable input in

our system.

2. GFR (mL/min): the Glomerular filtration rate, reflecting the ability of the kidneys

to eliminate bivalirudin. Decreased GFR increases the serum level of bivalirudin

and the PTT in an approximately linear fashion.

3. PTT (s): last measured partial thromboplastin time.

4. INR (Unit-less): the last measured international normalized ratio which is a

coagulation time that is distinct, but associated with the PTT. This increases as the

serum level of bivalirudin increases.

5. SGOT (Units/L): the Serum Glutamic Oxaloacetic Transaminase.

6. SGPT (Units/L): the Serum Glutamic Pyruvic Transaminase. Increasing SGOT and

SGPT reflects liver dysfunction and decreased production of clotting factors, thus,

increasing PTT.

7. TBILI (mg/dL): total bilirubin, a “waste product” normally eliminated by the liver.

In liver dysfunction, this is positively associated with a rising PTT.

8. ALB (g/L): Albumin. which is reduced under liver failure and is therefore

associated with a rising PTT.

9. PLT (K/mcL): Platelet count. Platelets help form blood clots with clotting factors

from the liver. They are utilized when a clot is formed. A decreasing platelet count

can indicate ongoing clotting with consumption of clotting factors, thus, elevating

the PTT and INR.

10. HCT (%): Hematocrit. HCT is a measure of the amount of red blood cells in the

blood. When patients loose blood during operations and other non-operative

bleeding, then fluids such as normal saline are provided to make up for the blood

volume lost. This, however, lowers the HCT. At the same time, the added volume

dilutes the clotting factors in the blood and causes PTT and INR to increase.

11. FIB (mg/dL): Fibrinogen. This protein helps produce clots and its decreased

concentration may indicate that clotting is occurring. It follows that clotting factors

are being depleted which causes elevated PTT and INR.
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B. The model

According to the interpretation of relationships among the PTT value and the other 11

predictors introduced before, we propose the dynamic system model of Fig. 1 to describe the

process of PTT elimination. Due to a lack of established quantitative models to relate most

of the above laboratory variables to the PTT, a simple linear model was assumed. Since

many of these variables change slowly (over the course of days) and are measured

infrequently (typically once per day), they were modeled without a dynamic component.

The dynamic system model has been implemented in Matlab/Simulink. It seeks to represent

how bivalirudin acts in a single generic patient; thus, and for ease of notation, we will

suppress the patient identifier in our generic model description. In this dynamic system,

there are 11 inputs which are denoted by ui(t), i = 1, …, 11 and correspond to the

physiological variables we have defined. The input u1(t), in particular, denotes the

bivalirudin infusion rate, and the remaining inputs correspond to the physiological variables

2–11 detailed earlier. These inputs capture the patient’s indicators of renal and liver

function. There is only one output – the PTT value – which is denoted by y(t). There is also

a single state variable denoted by x(t). The model has 14 unknown parameters: 13 of which

correspond to the various gains and are denoted by βi, i = 1, …, 13. The initial condition of

the system is the 14th unknown parameter and is denoted by x(0). We will refer to z = (β1,

…, β13, x(0)) as the parameter vector.

Let us write u(t) = (u1(t), …, u11(t)). The system dynamics can be expressed as follows:

(1)

where A = −β3, B = [β1 0 ⋯ 0], C = β2, and D = [0 β4 ⋯ β13]. Clearly, this is a Linear Time

Invariant (LTI) dynamic system. The challenge is that we only have sampled input, u(t), and

observation values, y(t), at certain times t for each patient. It is therefore needed to translate

the continuous-time system dynamics to discrete-time dynamics.

Using a standard conversion from continuous to discrete time dynamics in LTI systems (see

e.g., [5]) we can write

(2)

where in our case eτA = e−β3τ. Assuming u(s) = u(t) for s ∈ [t, t + τ] and after some algebra

we arrive at the following discrete-time dynamics:

(3)

These equations characterize a discrete-time LTI system for which we have a history of

sampled input and output values. Next we describe how this training set can be used to

identify the unknown parameters, namely, the initial condition x(0) and the parameters βi, i

= 1, …, 13.
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C. Parameter Identification

We randomly split our data set of 233 post-cardiac surgical ICU patients into a training set

corresponding to 2/3 of the total (155 patients) and a test set corresponding to 1/3 of the total

(78 patients). We will use the former to identify the unknown system parameters and the

latter to evaluate the performance of the resulting model.

Let us use a subscript j to denote the model primitives, i.e., the state xj(t), output yj(t), and

inputs uj(t) for each patient j = 1, …, N, where N denotes the number of patients in the

training set. To distinguish between measurements of yj(t) and predictions based on the

system dynamics (cf. (3)) we use yj(t) for the former and ŷj(t) for the latter. Suppose for

each patient j we have Tj measurements at times , where we adopt the convention

 for all j. Using the discrete-time system dynamics from (3) we formulate the following

nonlinear optimization problem in order to identify the unknown system parameters:

(4)

where the decision variables are x(0)(=  for all j) and the parameters βi, i = 1, …, 13.

One can easily substitute the expressions from the constraints into the objective function and

obtain a nonlinear unconstrained optimization problem. Using counterexamples, it can be

shown that the objective function obtained in this manner is not convex in the decision

variables.

Although a lot of methods exist for unconstrained optimization, we used the Broyden-

Fletcher-Goldfarb-Shanno (BFGS) method [1], which is considered the most effective

general purpose quasi-Newton method. Quasi-Newton methods are gradient methods of the

form

where f(·) denotes the objective function, zk the decision variables at the kth iteration of the

method, αk is the stepsize at the kth iteration, and Dk is a positive definite scaling matrix that

scales the gradient at the kth iteration. Rather than determining Dk by computing a Hessian

and inverting it, which is computationally expensive, quasi-Newton methods recursively

estimate the inverse of the Hessian by using successive iterates of zk and ∇f(zk).

For performance evaluation, we use two performance metrics. The first is the Root Mean

Square Error (RMSE), which for patient i is defined as

(5)
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where  are the time instants at which we make a PTT prediction for patient i. We

define RMSE for the whole population of patients as the average per patient RMSE, i.e.,

, where N is the number of patients in the test set. We also define

σRMSE to be the standard deviation of the RMSEi values, which captures the variability of

RMSEi from RMSE.

To capture a notion of “relative” error we also compute the Normalized Root Mean Square

Error (NRMSE) defined for each patient i as

(6)

As with the RMSE, we define the population-wide NRMSE as the average of NRMSEi over

the patients and σNRMSE as the standard deviation of the NRMSEi values.

We solved (4) on the training set using BFGS and obtained the solution shown in Table I.

To avoid getting stuck at shallow local minima, which is possible in the absence of

convexity, we used a multi-start approach, namely, we started BFGS from multiple

randomly selected initial points and selected the best local minimum we obtained. Using the

optimal parameters from Table I, we evaluated the performance of the predictor on the test

set and obtained the results shown in Table II. We note that our model uses just a single state

and, as it can be inferred from (3), the prediction at time t depends on the inputs u(t) at t, and

the state-input pair, x(t − τ) and u(t − τ) at the previous time instant t − τ.

To further illustrate how well the predictor matches the measured values we plot in Fig. 2

predicted and actual PTT values over time for a particular randomly selected patient.

The model we devised in this section is a generic population-wide model in the sense that its

parameters have been trained from a collection of patients. As we will see in the next

section, having an explicit model allows us to adapt model parameters to better fit each

individual patient.

III. An adaptive model: Extended Kalman filter

In this section we focus on an arbitrary individual patient and seek a method to adapt the

parameters of the model we proposed in Section II in order to better fit this particular

patient. To that end, we view the model parameters as the “state” of a system and the output

y(t) as a nonlinear function of that state. We devise a recursive method to estimate the state.

Due to the nonlinearity of y(t) we use the Extended Kalman Filter (EKF) (see e.g., [8]).

Let us denote the state of the system by z = (β1, …, β13, x(0)), which are exactly the model

parameters we want to estimate. We assume we have measurements of the inputs u(t) and

the PTT values y(t) over many time instants. We will index these time instants by k, with k =

0 corresponding to t = 0 and k = 1, 2, …, T corresponding to the time instants t1, …, tT at

which we have measurements. (Notice we use the same notation as in Section II but

suppress the index j used there to identify a patient.) We view the state z as been invariant
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over time and not affected by noise, while the output y depends on z but is subject to some

noise due to both measurement noise and model error. We can therefore write the (discrete)

system dynamics as:

(7)

In the above, h(·) is a known nonlinear function that expresses yk as function of the

parameter vector zk and uk, uk−1, …, u0, x0 as specified by the dynamics in (3). The random

variable νk represents the noise and we assume it is i.i.d. over time, zero mean Gaussian,

with variance σ2, that is νk ~ N(0, σ2) for all k.

Let A = I, and C = ∇h′(zk). The EKF algorithm is given in Fig. 4, where “hat” denotes the

estimate, P the error covariance, and K the Kalman gain.

To demonstrate the effect of this algorithm, we randomly selected a patient who has

adequate sample data and applied the EKF algorithm of Fig. 4 (using σ2 = 0.006). The

results are shown in Fig. 3. After some initial steps, the algorithm “learns” better values for

the model parameters than the ones in the population-wide model and produces better

predictions for this particular patient. The model parameter values for the same patient

during the course of the EKF algorithm are shown in Fig. 5. It can be seen that they do

“adapt” over time from the initial population-wide values to values that are more appropriate

for this patient.

To test the performance of the algorithm on a larger set of patients, we selected patients with

enough samples and applied the EKF (using again σ2 = 0.006) with the optimal population

wide parameter values as our initial point. By doing so, the time the EKF needs for the

model parameters to converge can be reduced significantly. If, instead, we choose an

arbitrary initial point, the EKF takes at least 25 steps for the parameter values to stabilize.

The rather large prediction error during these initial steps can compromise patient safety and

is therefore unacceptable. Results for a subset of 6 patients are shown in Table III. The

RMSE and NRMSE reported are computed on the time series that excludes a number of

initial samples, thus, evaluating performance after the EKF has the chance to adapt to the

individual patient. It can be seen that for several patients, the performance becomes better

than the average performance obtained from the population-wide model (cf. Table II).

Table IV reports average results from the EKF algorithm applied to a collection of patients

that have adequate sample points. RMSE and NRMSE are computed on a per-patient basis

and then averaged over these patients. It can be seen that average performance improves

compared to the population-wide model and the variance drops. As we have discussed

earlier, performance for individual patients can improve much more significantly. Further,

and because the model adapts to each individual patient, error variance across patients drops

significantly.

IV. Conclusions

We have developed an approach to predict the effect of bivalirudin in cardiac surgical

patients. Our approach is model-based and constructs a specific model that captures how
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bivalirudin affects PTT values. Model parameter identification is done by solving a

nonlinear optimization problem over a training set.

Our approach enables the development of an adaptive extended Kalman filtering algorithm

that can adapt model parameters to individual patients. This improves the average

performance compared to the population-wide model and drastically reduces the per-patient

variance. More specifically, the standard deviation of the per-patient NRMSE is reduced by

more than 40%, This shows that patient-specific models have significant advantages over

population-wide models.

The mathematical models and prediction approaches described in this study may provide a

better reference to guide the optimal therapy in cardiac patients in need of bivalirudin. In

addition, such mathematical ideas and methods may be useful to test medication dosing

strategies and may provide a mathematical mechanism for development and testing of

nomograms.
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Fig. 1.
The single-state linear model includes a gain, 1/Tp(β3), representing the elimination time constant of bivalirudin from the body.

The constant kPTT (β2) provides for the translation from serum concentration to the site-effect (PTT). We build this model based

on the interpretation of relationships between PTT and these predictors.
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Fig. 2.
Illustrating the performance of the dynamic system model of Sec. II for a particular patient. The blue + represent predicted PTT

values from our model and the red * represent actual measured values.
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Fig. 3.
Illustrating the performance of the EKF algorithm for a particular patient. The blue “o” represent predicted PTT values from our

model and the red “*” represent actual measured values. The top figure plots estimated and measured PTT and the bottom figure

plots the running RMSE at each step. Additionally, the blue-dot line marks the (time) average RMSE of the EKF for this patient

while the green-dot line marks the (time) average RMSE of the population-wide dynamic system model applied to this patient.
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Fig. 4.
The EKF algorithm for recursively estimating model parameters for an individual patient.
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Fig. 5.
Illustrating the evolution of model parameter values z = (β1, …, β13, x(0)) during the course of EKF algorithm.
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TABLE I

Optimal Parameters Values

index name value

1 k_dist (β1) 22.2718

2 k_coag (β2) 18.6109

3 1/T (β3) 6.2084

4 kGFR (β4) −0.0273

5 kINR (β5) 0.5296

6 kPTT (β6) −0.8013

7 kSGOT (β7) 0.0004

8 kSGPT (β8) 0.0018

9 kTBILI (β9) 0.1266

10 kALB (β10) 2.0183

11 kPLT (β11) −0.0011

12 kHCT (β12) 0.5782

13 kFIB (β13) 0.0089

14 x(0) (β14) −1.1785
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TABLE II

Performance of the dynamic system model

RMSE 12.97

σRMSE 5.2

NRMSE 24.12%

σNRMSE 9.04%
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Zhao et al. Page 16

TABLE III

EKF Performance for a collection of patients

Patient ID # of Samples RMSE NRMSE

94 108 14.23 26.00%

167 119 12.19 25.22%

176 236 8.57 15.36%

189 114 13.18 23.21%

198 114 9.69 22.01%

217 160 11.80 22.10%
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TABLE IV

Performance of The EKF algorithm

RMSE 11.61

σRMSE 2.13

NRMSE 22.53%

σNRMSE 3.64%
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