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Abstract— Our aim is to develop an algebraic approach to
estimate human posture in the sagittal plane using Inertial
Measurement Unit (IMU) providing accelerations and angular
velocities. For this purpose, we address the issue of the
estimation of the amplitude, frequency and phase of a biased
and noisy sum of three sinusoidal waveform signals on a moving
time horizon. The length of the time window being small, the
estimation must be done within a fraction of the signal’s period.
The problem is solved via an algebraic method. The efficiency
of our approach is illustrated by computer simulations.

I. INTRODUCTION

In human motion analysis, kinematics and kinetics quan-
tities are usually obtained by using a stereophotogrammetric
system and force-plates providing accurate results but re-
quiring a considerable economic investment and complex
experimental protocols. Inertial measurement units (IMUs)
have recently became popular as an instrument to quantify
human motion [7], thanks to their ease-of-use, robust design,
low-cost and small dimensions. Additionally, mass market
electronics such as cell phones contain embedded IMUs
along with recording and transmission capabilities. For these
reasons, IMUs are not confined to the laboratory, opening a
wide field of possibilities in rehabilitation.

Usually, IMUs include accelerometers and rate gyroscopes
to measure accelerations and angular velocities, respectively.
Theoretically, the determination of the position and orienta-
tion of the device in space could be obtained by integrating
the obtained signals. Unfortunately, the outputs are subject
to drift over time and that jeopardizes the time integration
of the raw signals when estimating orientation data [7].
This problem has been overcome by the use of recursive
filters, such as Kalman filters [7], allowing the estimation
of the sensor orientation only, if no external sensor is
used, i.e. a magnetometer. Model based adaptive filters, i.e.
Fourier Linear Combiner [31], were used to estimate a trunk
orientation during walking [4], but appeared to be sensitive
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to parameter choices and conditions of use, thus highly task
constrained.

Movement analysis literature provides numerous examples
where several IMUs are attached to adjacent body segments
to obtain 3D joint kinematics [22], [18]. For clinical or sports
applications in a daily environment, and in the framework of
a minimum measured input model proposed by Cappozzo
[6] to maximize the functional information extracted from
simplified experimental protocols, it is desirable to reduce
the number of devices to a minimum.

Recently, accurate methodology [5] has been proposed
to estimate kinematics, i.e. ankle, knee and hip angles,
and kinetics in the sagittal plane, by using only one IMU
located at the lower trunk. This approach, based on the least-
square minimization of the difference between measured and
estimated linear accelerations and the angular velocity at the
IMU site, was validated through a body weight squat exercise
stating the pseudo-periodicity of this task. However, this
numerical approach was computationally time demanding
and can be used only a posteriori of the actual motion
performed by the human.

The squat exercise is one of the most popular movement
used in rehabilitation [1] since it involves multiple joints and
muscles in a single motion [17] and it is hence considered
as very effective for improving lower-limb muscle function.
Furthermore, the ability to perform this task is a prerequisite
for more complex skills of daily living such as picking up
an item, descending stairs, or rising from a chair [1]. As a
consequence, the squat exercise is included in rehabilitation
protocols [1], sports training programs [9] and assessment
protocols for pathologies [2], [8].

This paper investigates the possibility of estimating lower-
limb kinematics in the sagittal plane during a squat exer-
cise using data collected by a single IMU, located on the
lower trunk, and a three-degrees-of-freedom model of the
musculoskeletal system. Remark that the IMU provides three
independent kinematic quantities within a plane (an angular
velocity and two acceleration components).

This issue is formulated in this paper as a parameter
estimation problem of a sum of three complex exponential
sinusoidal signals. This famous estimation problem was
notably studied by Riche de Prony in his 1795 seminal
paper [30] (see [21], [28] for more recent works). Several
other resolution methods have been elaborated, such as
linear or nonlinear regression, subspace methods [19], [32],
[21], the extended Kalman filter [3], the notches filter [29],
or techniques from adaptive nonlinear control [20], [26].
Nevertheless, the parameter estimation problem in a fraction



of the time signal, from a biased and noisy signal has not
been entirely solved. Our solution draws its inspiration from
the algebraic analysis of [14], [13], [15], [11], [24]. More
encouraging results in concrete examples can be found in
[27], [33], [34], [36].

Section II goes from the geometric model of the body
in the sagittal plane to the parameter estimation problem.
Section III provides the estimation of the desired parameters.
Section IV contains convincing numerical experiments that
illustrate our method and compare it to the well-known
modified Prony’s method.

II. PROBLEM FORMULATION

As we mentioned earlier, the squat exercise is one of
the most popular movement used in rehabilitation. In this
setting, we would like to estimate kinematics, i.e. knee and
hip angles in the sagittal plane using a single IMU located
at the lower trunk. For this, let us consider a simplified 2D
geometric model of a 3-segmented body (such a simplified
model is currently used in biomechanics studies). This model
is described by the figure below where the joint positions are:

Fig. 1. Geometric model in the sagittal plane

q = (q1, q2, q3)T . Assume that `1, `2 and `3 are unknown.
Our geometric model is given by:

x = `1c1 + `2c2 + `3c3 + `4s3

y = `1s1 + `2s2 + `3s3 − `4c3

where ck =
∑k
j=1 cos(qj) and sk =

∑k
j=1 sin(qj), for k =

1, 2, 3. Some hypothesis are enforced for such a movement:
on a moving small time window, each angle is approximated
by a line. That is:

q1(u) = γ1(u) = ω1u+ φ1,

(q1 + q2) (u) = γ2(u) = ω2u+ φ2,

(q1 + q2 + q3) (u) = γ3(u) = ω3u+ φ3,

for u ∈ [t − T, t] where t is the current time and T is the
time window length. Using the complex notation:

p(t) = x(t) + iy(t)

= `1 exp(iγ1) + `2 exp(iγ2) + (`3 − i`4) exp(iγ3)

= `1 exp(i (ω1t+ φ1)) + `2 exp(i(ω2t+ φ2))

+(`3 − i`4) exp(i(ω3t+ φ3)). (1)

Taking the time derivative of (1), one obtains:

dn+2p

dtn+2
= (iω1)n+2`1 exp(iγ1) + (iω2)n+2`2 exp(iγ2)

+(iω3)n+2(`3 − i`4) exp(iγ3). (2)

for n ∈ N. Using the measured acceleration ma = p̈ + $
where $ is the noise and p is the position in the sagittal
plane written as p = x + iy (see (1)), we would like to
obtain an estimation of the parameters involved in the joint
position description.

Replace n by 0, 1 and 2 in (2) to check that the acceler-
ation acc = p̈ satisfies:

a(3)
cc + θ3a

(2)
cc + θ2a

(1)
cc + θ1acc = 0, (3)

with

θ1 = iω1ω2ω3, (4)
θ2 = −(ω1ω2 + ω1ω3 + ω2ω3), (5)
θ3 = −i (ω1 + ω2 + ω3) . (6)

III. SOLUTION WITHIN AN ALGEBRAIC FRAMEWORK

Our aim is to reconstruct the position by estimating its
parameters on a moving time horizon. Since the position is:

p(t) =

3∑

k=1

αk exp (i(ωkt+ φk))

where the parameters are given by α1 = `1, α2 =
`2, α3 = (`3 − i`4), we want to estimate the parameters
(αk, ωk, φk)k=1...3 from the biased and noisy output measure

y(t) = acc(t) + β +$,

where acc = p̈ (the only measured variable is the ac-
celeration), β is an unknown constant bias and $ is a
noise1. A linear parametric estimation problem may often
be formalized as finding a good approximation of some
vector Θ on the basis of an observed signal which is a
linear functional of the “true” signal depending on a set
of parameters and a noise corrupting the observation. Here
the signal z(t) = acc(t) + β and Θ satisfy the differential
equation (see 3):

z(3)(t) + θ3z
(2)(t) + θ2ż(t) + θ1(z(t)− β) = 0.

where are given by (4)-(6). This differential equation, in
the operational domain, reads as:

1We use here the framework developed in [10], [11], independent of any
probabilistic modeling of the noise. In this point of view, the noise is seen
as a fast oscillation (see [10]).



s(s− iω1)(s− iω2)(s− iω3)Z(s) =

s(s2 − i (ω1 + ω2 + ω3) s− (ω1ω2 + ω1ω3 + ω2ω3))z(0)

s(s+ iω1ω2ω3)ż(0) + sz̈(0)− βω1ω2ω3 (7)

Among the unknown parameters, we wish to estimate
Θest := {θ1, θ2, θ3, θ4, θ5, θ6}, but not the bias Θest = {θ7},
where

θ4 = −acc(0) = β − z(0),

θ5 = −ż(0) = −ȧcc(0),

θ6 = −z̈(0) = −äcc(0),

θ7 = −β

Notice that the original parameters can be easily deduced
from Θest.

Lemma 1: The parameters `k, ωk, φk, k = 1 . . . 3 and `4
can be obtained from Θest.

Proof: Let us note that `1 = α1, `2 = α2, `3 = <(α3),
`4 = −=(α3). If k = 1, 2, 3, one can easily deduce ωk
from θk since iωk are the roots of the polynomial ω3 +
θ3ω

2 + θ2ω + θ1 = 0. From θ4, θ5 and θ6, one obtains

acc(0) = −θ4 =
3∑
k=1

(iωk)2αk exp iφk, ȧcc(0) = −θ5 =

3∑
k=1

(iωk)3αk exp iφk and 6 =
3∑
k=1

(iωk)3αk exp iφk:



−θ4

θ5

θ5


 = A



α1 exp iφ1

α2 exp iφ2

α3 exp iφ4




with A =




(iω1)2 (iω2)2 (iω3)2

(iω1)3 (iω2)3 (iω2)3

(iω1)4 (iω2)4 (iω2)3


 a Vandermonde

matrix. Taking its inverse gives αk exp iφk, k = 1 . . . 3. The
desired results are obtained by taking absolute values and
arguments of these complex relations and by ordering the
frequencies.

Using the notation (4)-(8), the equation (7) reads as

s
(
s3 + θ3s

2 + θ2s+ θ1

)
Z(s) + s(s2 + θ3s+ θ2)θ4

s(s+ θ3)θ5 + sθ6 +
(
s3 + θ3s

2 + θ2s+ θ1

)
θ7 = 0,

from which we would like to obtain a system of equations
on Θest and independent of Θest. We denote by CΘ[s] 2

(respectively CΘest [s]) the polynomial ring in the variable
s with coefficients in CΘ (respectively in CΘest ) where
CΘ := C(Θ) and CΘest := C(Θest) are algebraic extensions.
We obtain the relation:

R (s, Z(s),Θest,Θest) := P (s) Z(s)+Q(s)+Q(s) = 0 (8)

with

2The polynomial ring in d
ds

with coefficients in CΘ[s].

P (s) = s T (s)

Q(s) = s3θ4 + s2(θ5 + θ3θ4) + s(θ6 + θ2θ4 + θ3θ5)

∈ CΘest [s]

Q(s) = T (s)θ7 ∈ CΘ[s]

where we set T (s) = s3 + θ3s
2 + θ2s + θ1 ∈ CΘest [s].

We proceed in three steps:
1) Algebraic elimination of all terms in Θest: let us notice

that when Q is a constant, the differential operator
d
ds annihilates it, since d

dsQ = 0. More generally,
there exist differential operators that annihilate any
Q (called Q-annihilators). All possible Q-annihilators
form a principal ideal of CΘest(s)

[
d
ds

]
(meaning this

set is generated by a single operator in CΘest(s)
[
d
ds

]
).

This generator is called a Q-minimal annihilator.

2) Obtaining a system of equations in Θest: a minimal
annihilator generates all differential operators that an-
nihilate Q. Exploiting the Weyl Algebra structure of
CΘest(s)

[
d
ds

]
, any Q- annihilator is rewritten in a

canonical form. That allows us to make choices in
order to obtain a system of equations having good
numerical properties (once back in the time domain).

3) Resolution of the obtained system: we use the inverse
Laplace transform

L−1

(
1

sm
dpZ(s)

dsp

)
=

(−1)ptm+p

(m− 1)!

∫ 1

0

wm−1,p(τ)z(tτ)dτ

with wm,p(t) = (1−t)mtp,∀ p,m ∈ N,m ≥ 1 to bring
the equations back in the time domain. The integers
m, p will be chosen as small as possible so that the
resulting estimation is as least as possible sensitive to
the noise.

To briefly explain the theoretical framework, let us set
B := C(s)

[
d
ds

]
. This algebra is endowed with a structure

of a one-generator Weyl algebra. In consequence, it benefits
of nice properties of this algebraic structure, such as the
principality of left ideals.

Definition 2: Let R ∈ CΘ[s]. An R-annihilator w.r.t. B is
an element of AnnB(R) = {F ∈ B | F (R) = 0}.

Since AnnB(R) is a left ideal, then AnnB(R) is a principal
left ideal, i.e. it is generated by a unique Πmin ∈ B, up to
multiplication by an element of B. That means

AnnB(R) = B Πmin.

We call Πmin a minimal R-annihilator w.r.t. B. Remark that
AnnB(R) contains annihilators in finite integral form, i.e.
operators with coefficients in C

[
1
s

]
. We have the following

lemmas:

Lemma 3: Let R = sn, n ∈ N. A minimal R-annihilator
is given by

Πn = s
d

ds
− n.



Moreover, for m, n ∈ N, the operators Πm and Πn

commute. Thus, one can use the following Lemma

Lemma 4: Let P1 and P2 ∈ CΘ[s]. Let Π1 be a P1-
annihilator and Π2 be a P2-annihilator such that Π1Π2 =
Π2Π1. Then Π1Π2 is a (µP1 + ηP2)-annihilator for all
µ, η ∈ CΘ.

Now, recall that Q =
(
s3 + θ3s

2 + θ2s+ θ1

)
θ7. So, the

above Lemma provides a minimal Q-annihilator w.r.t. B:

Πmin =

(
s
d

ds
− 4

)
◦ · · · ◦

(
s
d

ds
− 1

)
◦
(
s
d

ds

)
.

Using the commuting rules in B, it is not hard to prove
that:

Πmin = s4 d
4

ds4
.

Applying Πmin on relation (8) gives

Πmin (P (s)Z(s)) = P4(s)
d4Z(s)

ds4
+ P3(s)

d3Z(s)

ds3

+P2(s)
d2Z(s)

ds2
+ P1(s)

dZ(s)

ds
+ P0(s)Z(s)

where

P4(s) = s5T (s),

P3(s) = s5(16s2 + 12sθ3 + θ2),

P2(s) = s4(72s2 + 36sθ3 + 12θ2),

P1(s) = s4(96s+ 24θ3),

P0(s) = 24s4,

Πmin (Q(s)) = 0, Πmin

(
Q(s)

)
= 0.

providing the following algebraic relation
4∑

k=0

Pk(s)
dkZ(s)

dsk
= 0.

We obtain a single equation in θ1, θ2 and θ3. To linearly
identify these three parameters, we need two independent
equations. The following result show that this is not possible
in the operational domain.

Theorem 5: There do not exist three Q-annihilators w.r.t
C(s)

[
d
ds

]
leading to three independent equations in θ1, θ2

and θ3.

Proof: Thanks to the principality of the left ideal
AnnB

(
Q
)
, any Q-annihilator is of the form

Π =
∑̀

i=0

gi(s)
di+4

dsi+4

where gi(s) ∈ CΘest(s), ∀ 1 ≤ i ≤ `. We have Π(Q(s)) =
Π(Q) = 0. Since P ∈ C[s] is of degree 4, by computing
Π (P (s) Z(s)) we obtain:

di+4

dsi+4
(P (s) Z(s)) =

4∑

k=0

(
i+ 4

k

)
P (k)(s)Z(i+4−k)(s)

with

P (0)(s) = s4 + θ3s
3 + θ2s

2 + θ1s

P (1)(s) = 4s3 + 3θ3s
2 + 2θ2s+ θ1

P (2)(s) = 12s2 + 6θ3s+ 2θ2

P (3)(s) = 24s+ 6θ3

P (4)(s) = 24

Therefore Π applied on relation R (8) reads as:

∑̀

i=0

gi(s) (Aiθ1 +Biθ2 + Ciθ3 +Di) = 0

where Ai, Bi, Ci and Di depend on the variables s and
d

ds
. Denote by Li := (Ai Bi Ci Di). Then for i > j we

have by induction on (j − i):

Lj =
d

ds

j−i
Li

and that completes the proof of the theorem.

Remark 6: Let us note that for a similar parameter iden-
tification problem of a sinusoid, it is possible to find two
independent equations in the operational domain (see [37]).

Therefore we are going to use such a construction in the
time domain. To obtain three equations we select ` = 2 in
the expression of a Q-annihilator. That leads to the following
6th-order annihilator written in the canonical form:

Π = g0(s)
d4

ds4
+ g1(s)

d5

ds5
+ g2(s)

d6

ds6
,

where g0(s), g1(s), g2(s) ∈ C(s). The choice of g0(s) =
1, g1(s) = 0, g2(s) ; g0(s) = 0, g1(s) = 1, g2(s) = 0 and
g0(s) = 0, g1(s) = 0, g2(s) = 1 gives three equations in the
operational domain leading to the following system in the
time domain:




1
6J1

1
6J2 J3

− 1
24J4 − 1

6J5 − 1
2J6

1
12J7

1
4J8 J9






θ1

θ2

θ3


 = −



J10

J11

J12




where we set vm,n = vm,n(u) = (t−u)mun, for m,n ∈ N
and Ji =

∫ t
0
Ii z(u) du, for 1 ≤ i ≤ 12,



I1 = 2v3,4 − t v3,3

I2 = 14 v2,4 − 14 tv2,3 + 3 t2 v2,2

I3 = 14 v1,4 − 21 t v1,3 + 9t2 v1,2 − t3 v1,1

I4 = 9 v3,5 − 5t v3,4

I5 = 18v2,5 − 20t v2,4 + 5t2 v2,3

I6 = 42 v1,5 − 70 t v1,4 + 35t2 v1,3 − 5t3 v1,2

I7 = 5 v3,6 − 3t v3,5

I8 = 15 v2,6 − 18t v2,5 + 5 t2 v2,4

I9 = 30v1,6 − 54t v1,5 + 30t2 v1,4 − 5t3 v1,3

I10 = −16 v1,3 + 36 v2,2 − 16v3,1 + v0,4 + v4,0

I11 = 20v1,4 − 60 v2,3 + 40 v3,2 − 5 v4,1 − v0,5

I12 = −24 v1,5 + 15 v4,2 + 90 v2,4 − 80 v3,3 + v0,6

Finally, the expressions for θ1, θ2 and θ3 are:

θ1 = 12
2 a J2 − 2 b J3 + d J10

Λ

θ2 = 12
−2 a J1 + c J3 + e J10

Λ

θ3 =
4 b J1 − 2 c J2 + f J10

Λ

where a = 2J9J11 + J6J12, b = 3J8J11 + 2J5J12,

c = 2J7J11 + J4J12, d = 4J5J9 − 3J6J8,

e = J6J7 − J4J9, f = 3J4J8 − 4J5J7,

Λ = 2 d J1 + 2 e J2 + f J3

A. Estimation of θ4, θ5 and θ6

Using annihilators generated by the minimal Q-annihilator
w.r.t. C(s)

[
d
ds

]
, we could linearly identify the parameters

θ1, θ2 and θ3. These annihilators do not depend on the
parameters to be found. Now, one can show that it is not
possible to identify linearly the remaining parameters θ4, θ5

and θ6, so we will use nonlinear equations in θ1, θ2 and θ3.
Recall that T (s) = s3 + θ3s

2 + θ2s+ θ1 ∈ CΘest [s]. So, let
us consider

Π
Θest
min = T

d

ds
− T ′,

a minimal Q-annihilator w.r.t. CΘest(s)
[
d
ds

]
. Applying it on

relation (8) gives:

Π
Θest
min (P Z) = T 2

(
s
dZ

ds
+ Z

)
Π

Θest
min (Q) = T ′θ1θ4 + T (U ′ − U)θ5 + T (1− s)θ6

Π
Θest
min (Q) = 0

where U = s2 + θ3s ∈ CΘ[s]. That gives the following
algebraic relation:

T 2

(
s
dZ

ds
+ Z

)
+ T ′θ1θ4 + T (U ′ − U)θ5 + T (1− s)θ6 = 0.

We obtain a single equation in θ4, θ5 and θ6. That leads
to the following annihilator:

Π = g0(s)Π
Θest
min + g1(s)

(
T
d2

ds2
− T ′′

)
+

g2(s)

(
T
d3

ds3
+ T ′

d2

ds2
− T ′′ d

ds
− T ′′′

)
,

where g0(s), g1(s) and g2(s) ∈ C(s). Selecting g0(s) = 1,
g1(s) = 0, g2(s) ; g0(s) = 0, g1(s) = 1, g2(s) = 0 and
g0(s) = 0, g1(s) = 0, g2(s) = 1, we obtain three equations:T ′θ1 T (U ′ − U) T (1− s)
T ′′θ1 2T − T ′′U −sT ′′
6θ1 2T ′ − T ′′U ′ − 6U −T ′′ − 6s

θ4

θ5

θ6

 = −

B1

B2

B3


where

B1 = T 2

(
s
dZ

ds
+ Z

)
B2 = T

(
2T ′Z + 2

(
T + sT ′

) dZ
ds

+ sT
d2Z

ds2

)
B3 = 2

(
TT ′′ + T ′2

)
Z + 2

(
sTT ′′ + 4TT ′ + sT ′2

) dZ
ds

+T
(
3T + 4sT ′

) d2Z

ds2
+ sT 2 d

3Z

ds3

After some elementary operations on the above matrix, a
triangular matrix can be obtained providing the formulas for
the remaining θ4, θ5 and θ6. These expressions are rather
extensive, so we do not present them here.

IV. SIMULATIONS

The following figures show the estimation of the param-
eters θ1, θ2 and θ3 concerning the results of the normal-
ized mean values and variances. More precisely, the “true”
parameters are denoted by θ1, θ2 and θ3 and θ̂i,k denotes
the estimation of θi obtained at the k-th run. The modified
Prony’s method (PM) is used as a reference. Each point is
obtained by averaging the results over 100 trials.

Dotted line curves represent exact values, while solid
line curves show the estimations by our algebraic method
and dashed line curves, the results by the modified Prony’s
method.

The simulation results for the estimation of the parameters
θ1, θ2 and θ3 versus the estimation time is shown in figure
2.

Figure 3 shows the plot of θ̂i = 1
100

∑
k θ̂i,k and var(θ̂i)

θ2i
versus the estimation time.
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