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Abstract

This paper examines optimal compensation for dropped feedback measurements in a networked control
system. A common policy for handling such lost data is to simply use the past data. This case was treated
in [8]. This paper extends that prior work to cover a more general class of dropout compensation. The
paper’s principal result shows that determining the optimal dropout compensator can be posed as a
constrained generalized regulator problem. An example compares the performance of a networked control
system using the optimal dropout compensator against more commonly used heuristic dropout policies.
The comparison shows that the optimal compensator works better than these heuristic policies.

1 Introduction

Networked control systems (NCS) are control systems whose feedback paths are implemented by a com-
munication network. The communication network can severely degrade overall control system performance
through quantization errors and dropped measurements. Quantization errors occur when a sensor measure-
ment is encoded into a fixed number of bits. Measurements are dropped when the channel causes transmission
errors that force the receiver to drop the entire measurement packet. In both cases, we find the total infor-
mation that can be transmitted between the control system’s sensor and actuator is limited. A great deal
of recent work has focused on the effect of quantization errors on overall closed loop system performance
under the assumption that the channel is inherently reliable [2] [4] [1] [3]. This paper studies the effect that
unreliable channels have on overall system performance assuming that there are no quantization errors.

There has been a small amount of work examining the impact of dropouts in networked control systems. In
[10], the performance of the system as measured by the H∞ gain was expressed as a function of packet loss.
Similar results were obtained in [8] and [9] in which the power semi-norms of output signals were computed
under certain statistical dropout models. In [6], networked control systems with dropouts are modelled as
asynchronous switched systems. The approach replaces the true switched system with an ”averaged” system
and then studies the stability of this system. In [5], the dropouts are governed by a Markov chain and
are treated as ”vacant” sampling. The work proposes two different compensation schemes, keeping the old
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control or generating new control with the estimation of the lost data. Then the stability of an LQ controller
under these schemes is informally analyzed. Recent work has examined the performance of networked control
systems under dropouts. An analysis of such systems is found in [7] in which dropped measurements are
replaced by zeros . A more complete analysis of dropouts for single-input single-output control system will
be found in [8] for dropout processes that are i.i.d. (identically independently distributed) in nature. In this
paper, dropout compensation involved using the last received sample. A formal extension of that work to
dropout processes governed by Markov chains will be found in [9]. In these papers, although some heuristic
dropout compensators are used, there is little discussion on choosing dropout compensator.

This paper formally derives a compensator for data dropouts that optimizes overall control system perfor-
mance. If we let y denote the control system’s output signal, then control system performance is measured by
the power semi-norm ‖y‖P =

√
Trace(Ryy(0)) where Ryy[0] is the covariance of y. We extend the prior work

in [8] to derive the power spectral density (PSD) of y when a generalized dropout compensation policy is
used. Our characterization of the PSD shows that we can pose an ”optimal” dropout compensation problem,
in which we find the policy that optimizes overall control system performance. What is interesting here is
that the optimization problem takes the form of a constrained generalized regulator problem.

The remainder of this paper is organized as follows. Section 2 presents mathematical preliminaries. Section
3 presents a model for the networked control system. Section 4 states a closed form expression for the PSD
of the closed loop system’s output signal as a function of the dropout rate and dropout compensation policy.
This result is an extension of our earlier work in [8]. An equivalent linear time-invariant model for our NCS is
presented in section 5. Section 6 uses this equivalent model to state an optimization problem whose solution
is the ”optimal” dropout compensator. Final comments are presented in section 7. Proofs of the two major
results in the paper will be found in sections 8 and 9.

2 Mathematical Preliminaries

Let x be a random vector and let E[x] denote the expectation of x. A real-valued discrete-time stochastic
process x = {x[n]} is convergent in the mean square sense if there exists a random vector x such that

lim
n→∞

E
[
(x[n]− x)T (x[n]− x)

]
= 0.

It can be shown [11] that a random process x = {x[n]} is convergent in the mean square sense if and only if

lim
n→∞

sup
m≥n

E
[
(x[m]− x[n])T (x[m]− x[n])

]
= 0.

A jump linear system is a linear dynamical system whose system matrices are random processes. It has the
form

{
x[n+ 1] = A[n]x[n] +B[n]w[n]
y[n] = C[n]x[n] +D[n]w[n]

, (1)

where x = {x[n]} is the system’s state process, w = {w[n]} is a random process representing an exogenous
input, y = {y[n]} is the system’s output process, and {A[n]}, {B[n]}, {C[n]}, and {D[n]} are matrix valued
random processes. If the input process w[n] = 0, then we say that the system is a free jump linear system.
A free jump linear system is said to be asymptotically stable in the mean square sense [15] whenever

lim
n−→∞

E
[
x[n]Tx[n] | x0

]
= 0
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for any initial states x[0] = x0.

This paper confines its attention to the jump linear systems that are strictly proper single-input single-output,
i.e. y[n], u[n] are scalar and D[n] = 0.

A random process x = {x[n]} is said to be wide sense stationary (WSS) if and only if E [x[n]] = constant =
µx and E

[
(x[k]− µx)(x[l]− µx)T

]
= E

[
(x[k + n]− µx)(x[l + n]− µx)T

]
for arbitrary n. The mean of

the WSS process x = {x[n]} is denoted as µx and the correlation matrix of this process is denoted as
Rxx(m) = E

[
x[n+m]x[n]T

]
.

If x = {x[n]} is WSS, then the power spectral density (PSD) of x and its covariance function are related
through the equations,

Sxx(z) =
∑∞
k=−∞Rxx(m)z−k, Rxx[0] = 1

2π

∫ π
−π Syy(e

jω)dω.

Most of the WSS processes in this paper are zero mean, so their covariances (cross-covariances) and corre-
lations (cross-correlations) are equal. We interchangeably use these terms throughout the paper.

Some of the technical proofs in section 8 use a single-sided Z transform. Given a WSS process x, the positive
and negative single-sided power spectral densities are defined by the equations

S+
xx(z) =

∑∞
m=1 Rxx[m]z−k, S−xx(z) =

∑−1
m=−∞Rxx[m]z−k.

So the power spectral density can be expressed as

Sxx(z) = S+
xx(z) + S−xx(z) +Rxx[0]. (2)

Since Rxx(m) = RTxx(−m), it is straightforward to see that S+
xx(z) =

[
S−xx(z−1)

]T
.

Some of the technical proofs in section 9 make use of the Kronecker product, ⊗. The Kronecker product of
two matrices A = (aij)M×N , B = (bpq)P×Q is defined as

A⊗B =




a11B a12B · · · a1NB
a21B a22B · · · a2NB

...
...

. . .
...

aM1B aM2B · · · aMNB


 .

For simplicity, A⊗ A is denoted as A[2] and A⊗ A[n] is denoted as A[n+1] (n ≥ 2). The following property
of Kronecker product will be used in the technical proofs,

(A1 A2 · · ·An)⊗ (B1 B2 · · ·Bn) = (A1 ⊗B1) (A2 ⊗B2) · · · (An ⊗Bn), (3)

where Ai, Bi(i = 1, 2, · · · , n) are all matrices with appropriate dimensions. In the computations on Kronecker
product, two linear operators, vec and devec, are used. They are defined as follows.

Definition 2.1 vec is applied to a matrix A = (aij)M×N . vec(A) = [a11 a21 · · · aM1 a12 · · · aM2 · · · a1N · · · aMN ]T .

Definition 2.2 devec is the inverse of vec for a square matrix. When A is square, devec (vec(A)) = A.

3



3 Network Control System Model

We consider a networked control system in which H(z) is a strictly proper loop function. The control system
uses unity gain feedback in which the loop function’s output y is fed back through a binary erasure channel.
A block diagram of this system is shown in figure 1. The channel drops a transmitted measurement with a
probability ε. The channel, therefore, may be modelled as a system that takes the signal y and a random
dropout signal d as inputs. The dropout process d is a binary random process that takes the value 1 if
a dropout occurs and is zero otherwise. The channel produces an output y ′[n] that is equal to y[n] when
d[n] = 0 and is zero otherwise. A linear filter, F (z), is used to correct for dropped measurements. F (z) is
also strictly proper. The input to the dropout compensator is the system’s output measurement y[n] (i.e.
when there are no dropouts) or it is a prediction of the system output, ŷ[n]. The prediction is generated
by the linear filter F (z) as shown in the figure. The signal, y[n], used by the closed loop system equals the
true plant output, y[n] when there is no dropout and switches to the predicted plant output, ŷ[n], when
a dropout occurs. Figure 1 models the effect of the dropout by multiplying ŷ[n] and y[n] by d[n] and the
logical inversion of d[n], respectively. Note that our figure denotes the inversion of d[n] with an inversion
bubble on the multiplier.

 

× 

F(z) 

H(z) 

× 
d[n] 

y[n] 

ˆ[ ]y n  

'[ ]y n  
[ ]y n  

w[n] 

channel 

dropout compensator 

Figure 1: Networked Control System with Data Dropouts and Dropout Compensation

The preceding system can be treated as a jump linear system whose state is denoted as x =
[
xTh xTf

]T
.

The subvector xh denotes the state of the loop function H(z) and xf denotes the state of the dropout

compensator F (z). Assume that H and F have minimal state space realizations, H
s
=

[
Ah Bh
Ch 0

]
and

F
s
=

[
Af Bf
Cf 0

]
. The state equations for the entire NCS are

{
x[k + 1] = A[k]x[k] +Bw[k]

y[k] = Cx[k]
(4)

where

A[k] =





A0 =

[
Ah +BhCh 0
BfCh Af

]
, with probability 1− ε

A1 =

[
Ah BhCf
0 Af +BfCf

]
, with probability ε

and B =

[
Bh
0

]
and C =

[
Ch 0

]
.
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Let A[2] = (1− ε)A[2]
0 + εA

[2]
1 . The matrix A[2] is said to be stable if all of its eigenvalues lie within the unit

circle. It can be proven using techniques in [9] that the NCS is asymptotically stable in mean square sense if
and only if A[2] is stable. Since this paper derives the PSD for various signals in the NCS, we must be able
to assure that the NCS is wide sense stationary. It was shown in [8] that the NCS is wide sense stationary
if A[2] is stable and the input signal w is WSS. Throughout this paper, we assume that A[2] is stable, so we
will not explicitly mention the wide sense stationarity of the signals generated by the NCS.

4 Power Spectral Density

The following theorem presents a closed form expression for the PSDs of the output signals y[n] and ỹ[n] =
y[n]− y[n] generated by the NCS 4. The result is a generalization of results presented in [8]. The proof will
be found in section 8.

Theorem 4.1 Consider the NCS 4. w is white with zero mean and unit covariance, whose power spectral
density is Sww(z) = 1. The dropout process d is i.i.d. with the probability distribution of Pr(d[n] = 1) = ε

and Pr(d[n] = 0) = 1− ε. d is independent of w. Let ỹ[n] = y[n]− y[n]. If A[2] = (1− ε)A[2]
0 + εA

[2]
1 is stable,

Syy(z) =

∣∣∣∣
H(z)

1−D(z)H(z)

∣∣∣∣
2

Sww(z) +

∣∣∣∣
D(z)H(z)

1−D(z)H(z)

∣∣∣∣
2

1

1− ε∆ (5)

Sỹỹ(z) =

∣∣∣∣
H(z)(D(z)− 1)

1−D(z)H(z)

∣∣∣∣
2

Sww(z) +

∣∣∣∣
D(z)(1−H(z))

1−D(z)H(z)

∣∣∣∣
2

1

1− ε∆, (6)

‖y‖P =
1

2π

∫ π

−π
Syy(e

jω)dω (7)

where | · | means magnitude, D(z) = 1−ε
1−εF (z) , ∆ = Rỹỹ[0]. When A[2] is stable and ε > 0 1,

1

2π

∫ π

−π

∣∣∣∣
D(ejω)(1−H(ejω))

1−D(ejω)H(ejω)

∣∣∣∣
2

< 1− ε (8)

and ∆ = Rỹỹ[0] is the unique nonnegative solution of the following equation

∆ =
1

2π

∫ π

−π

∣∣∣∣
H(ejω)(D(ejω)− 1)

1−D(ejω)H(ejω)

∣∣∣∣
2

Sww(ejω)dω +
1

2π

∫ π

−π

∣∣∣∣
D(ejω)(1−H(ejω))

1−D(ejω)H(ejω)

∣∣∣∣
2

dω
1

1− ε∆ (9)

5 Equivalent NCS Model

The power spectral densities stated in theorem 4.1 can also be generated by a linear feedback system.
Figure 2 is a block diagram of this equivalent system. It is a classical control loop with two inputs, the
unit variance white disturbance noise {w[n]} and an equivalent white ”dropout” noise process {n[n]} with
variance ∆/(1− ε) where

∆ = Rỹỹ[0] (10)

1When ε = 0, ỹ[n] = 0. So Rỹỹ [0] = 0.
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From the state space realizations of H(z) and D(z), we can see that our equivalent system has the state
space realization.





xe[k + 1] = Aexe[k] +Bww[k] +Bnn[k]
y[k] = Cyxe[k]
ỹ[k] = Cỹxe[k] + (1− ε)n[k]

(11)

where xe =
[
xTh xTf

]T
, Ae = (1−ε)A0+εA1 , Bw =

[
Bh
0

]
, Bn = (1−ε)

[
Bh
Bf

]
, Cy =

[
Ch 0

]
, Cỹ =

ε
[
−Ch Cf

]
.

Note that the covariance of the noise process, n, is dependent on the output ỹ. So the above control system
is well-posed only if we can assure that eq. 10 has a unique nonnegative solution with respect to ∆. The
following theorem establishes the well-posed condition. Furthermore, it establishes the equivalence between
the stability of system 4 and 11 and the equivalence between the PSDs generated by the two systems. The
proof for this theorem is in section 9.

 

ε F(z) 

H(z) 

1-ε 
n[n] 

y[n] 

[ ]y n
�

 

w[n] 

- 

Figure 2: Equivalent system

Theorem 5.1 The system 11 is asymptotically stable and its transfer function Gỹn(z) satisfies

‖Gỹn‖22 < 1− ε (12)

if and only if the system 4 is asymptotically stable in mean square sense.

When system 11 is asymptotically stable and the constraint 12 is satisfied, eq. 10 has a unique nonnegative
solution.

Furthermore, when the two systems are stable, they will generate the same power spectral densities, Syy(z)
and Sỹỹ(z).

6 Optimal Dropout Compensator Design

Our goal is to design F (z) to minimize Ryy[0] = 1
2π

∫ π
−π Syy(e

jω)dω when the system 4 is asymptotically
stable in mean square sense. By theorem 5.1, this goal is equivalent to minimizing Ryy[0] for the equivalent
system 11 under the constraints that
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• the system 11 is asymptotically stable

• and ‖Gỹn(z)‖22 < 1− ε;

This means that a compensator for the original system (eq. 4) can be obtained by solving a controller
synthesis problem for a linear system with a constraint. This section provides a statement of that synthesis
problem and then solves it for an explicit example using a brute-force optimization method.

To solve the problem, we must compute Ryy[0] and ‖Gỹn(z)‖22. These objects can be computed from the
system’s controllability Gramian using standard techniques in linear system theories [14]. In particular, we
can represent these objects by the following equations,





Ryy[0] = ‖Gyw‖22 + ‖Gyn‖22 1
1−ε∆

∆ = Rỹỹ[0]
Rỹỹ[0] = ‖Gỹw‖22 + ‖Gỹn‖22 1

1−ε∆
‖Gyw‖22 = CyWwC

T
y

‖Gyn‖22 = CyWnC
T
y

‖Gỹw‖22 = CỹWwC
T
ỹ

‖Gỹn‖22 = CỹWnC
T
ỹ + (1− ε)2

(13)

where Ww and Wn are the controllability Gramian matrices that must satisfy the Riccati equations

{
AeWwA

T
e +BwB

T
w = Ww

AeWnA
T
e +BnB

T
n = Wn

(14)

Our performance index Ryy[0] and constraint ‖Gỹn‖22 are all functions of the parameters of system 11,
i.e. Ae, Bw, Bn, Cy, Cỹ. System 11 is the combination of H(z) and F (z), and H(z) is a known plant, so
Ae, Bw, Bn, Cy, Cỹ will depend on only the parameters of F (z), i.e. Af , Bf , Cf . Then Ryy[0] and ‖Gỹn‖22 are
functions of Af , Bf , Cf . By searching Af , Bf , Cf , we may find the optimal (minimal) Ryy[0] with constraint
12 satisfied. In order to do optimization more efficiently, we put the following structural constraint

F (z) =

∑N
j=1 bjz

−j

1 +
∑N
i=1 aiz

−i
(15)

and we take the controller canonical form realization of F (z), i.e.

Af =




0 0 · · · 0 −aN
1 0 · · · 0 −aN−1

...
...

. . .
...

...
0 0 · · · 1 −a1


 , Bf =




bN
bN−1

...
b1


 , Cf =

[
0 · · · 0 1

]
(16)

where bj ∈ R, ai ∈ R(i, j = 1, 2, · · · , N). We will really search bj , ai(i, j = 1, 2, · · · , N). Ae, Bn are all linear
functions with respect to bj , ai; Bw, Cy, Cỹ are constants with respect to bj , ai. Then we can formulate our
optimization problem as following.
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Optimization 6.1

minimize: CyWwC
T
y + CyWnC

T
y

1
1−ε∆,

with respect to: bj , ai(i, j = 1, 2, · · · , N)
subject to: CỹWnC

T
ỹ < ε(1− ε)

∆ =
(1−ε)CỹWwC

T
ỹ

ε(1−ε)−CỹWnCTỹ

AeWwA
T
e +BwB

T
w = Ww

AeWnA
T
e +BnB

T
n = Wn

(17)

As an example, we took the plant to be H(z) = z−1+2z−2

1+z−1+2z−2 . Optimization 6.1 is solved with the MATLAB
nonlinear optimization toolbox fmincon() for N = 2 and ε ∈ [0, 0.24] (Remark: note that the problem is
infeasible when ε > 24.9%). The performance, Ryy[0], achieved using the ”optimal” dropout compensation
filter was compared against the performance of other popular compensators. In particular, we used the
compensator F (z) = z−1 (used in [8]) and the compensator F (z) = 0 (used in [7]). Figure 3 plots the
performance Ryy[0] as a function of the dropout rate ε for these three dropout compensators. The figure
shows that our optimal compensator indeed outperforms both of the popular heuristic dropout schemes.

0 0.05 0.1 0.15 0.2 0.25
0

20

40

60

80

100
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140

Dropout rate, ε

R
yy

[0
]

Optimal Filter
F(z)=1/z
F(z)=0

Figure 3: Performance comparation under different dropout compensators

7 Conclusions

This paper analyzes a networked control system with a general linear dropout compensator under i.i.d.
dropouts. A closed form expression of the output’s PSD is achieved. Based on the PSD, the original net-
worked control system is converted into an equivalent traditional linear system with a constraint. Therefore
the dropout compensator design problem converts the problem of finding optimal dropout policies into a
constrained generalized regulator problem. Although this paper studies only the single-input single-output
plants, all the results can be easily extended to the multiple-input multiple-output cases.

The optimization problem in this paper takes a nonlinear form. If we can transform it into a linear form, the
powerful linear optimization tools can be utilized and the computation efficiency can be greatly improved.
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Furthermore, if the optimal dropout compensator can be designed directly rather than through optimization,
the best performance can be achieved and the tightest bound for the compensator optimization can be put.

In this paper, an equivalent linear system with a constraint is proposed, which is a powerful tool for studying
NCSs. Here we use it to design dropout compensator. Some other objectives, such as optimal controller
design for an NCS, can be achieved with the equivalent system. So it may deserve to further exploit the
equivalent system’s potentials.

8 Proof to Theorem 4.1

When we compute PSDs, the impulse response descriptions of linear systems will be useful. Let us assume
the impulse responses of H(z) and F (z) are respectively h and f , i.e.

y = h ∗ (y + w) (18)

ŷ = f ∗ y (19)

where ∗ denotes convolution.

The proofs in this section assume that the dropout process d is i.i.d., that the processes d and w are
statistically independent, and that H(z) and F (z) are strictly proper. The strictly proper assumption
assures that y[n], ŷ[n], y[n] and ỹ[n] depend on only the last dropouts and the last input noises, i.e. {d[n−
1], d[n− 2], · · ·} and {w[n− 1], w[n− 2], · · ·}. The following proofs are stated without explicitly stating these
assumptions.

The proof to theorem 4.1 is quite invovled. So we break it into several steps. Every step computes a couple
of PSDs, which together will lead to the final results.

8.1 Computing Syw(z), Syw(z) and Sŷw(z)

By y = h ∗ (y + w), we get

Syw(z) = H(z) (Syw(z) + Sww(z)) (20)

For any m, we get

Ryw[m] = E [y[n+m]w[n]]

= E [y[n+m]w[n]|d[n+m] = 0]Pr(d[n+m] = 0) + E [y[n+m]w[n]|d[n+m] = 1]Pr(d[n+m] = 1)

= E [y[n+m]w[n]]Pr(d[n+m] = 0) + E [ŷ[n+m]w[n]]Pr(d[n+m] = 1)

= (1− ε)Ryw[m] + εRŷw[m]

So we get

Syw(z) = (1− ε)Syw(z) + εSŷw(z) (21)

By ŷ = f ∗ y, we get

Sŷw = F (z)Syw (22)
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Combine equations 20, 21 and 22, we get

Syw(z) =
D(z)H(z)

1−D(z)H(z)
Sww(z) (23)

Syw(z) =
H(z)

1−D(z)H(z)
Sww(z) (24)

Sŷw(z) =
D(z)H(z)F (z)

1−D(z)H(z)
Sww(z) (25)

where D(z) = 1−ε
1−εF (z) .

8.2 Computations on Syŷ(z)

8.2.1 Computing S+
yŷ(z)

When m > 0, we get

Ryŷ[m] = E [y[n+m]ŷ[n]]

= E [y[n+m]ŷ[n]|d[n+m] = 0]Pr(d[n+m] = 0) + E [y[n+m]ŷ[n]|d[n+m] = 1]Pr(d[n+m] = 1)

= E [y[n+m]ŷ[n]]Pr(d[n+m] = 0) + E [ŷ[n+m]ŷ[n]]Pr(d[n+m] = 1)

= (1− ε)Ryŷ[m] + εRŷŷ[m]

By the definition of the single-sided PSD, we get

S+
yŷ(z) = (1− ε)S+

yŷ(z) + εS+
ŷŷ(z) (26)

8.2.2 Computing S−yŷ(z)

When m < 0, we get

Ryy[m] = E [y[n+m]y[n]]

= E [y[n+m]y[n]|d[n] = 0]Pr(d[n] = 0) + E [y[n+m]y[n]|d[n] = 1]Pr(d[n] = 1)

= E [y[n+m]y[n]]Pr(d[n] = 0) + E [y[n+m]ŷ[n]]Pr(d[n] = 1)

= (1− ε)Ryy[m] + εRyŷ[m]

Then

Ryŷ[m] =
1

ε
Ryy[m]− 1− ε

ε
Ryy[m]

By the definition of the single-sided PSD, we get

S−yŷ(z) =
1

ε
S−yy(z)− 1− ε

ε
S−yy(z) (27)
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8.2.3 Computing Syŷ(z)

By ŷ = f ∗ y, we get

Syŷ(z) = F (z−1)Syy(z) (28)

By the definitions of the single-sided PSDs, we get

Syŷ(z) = S+
yŷ(z) + S−yŷ(z) +Ryŷ[0] (29)

Substitute eq. 26 ,27 and 28 into eq. 29, we get

(1− ε)S+
yŷ(z) + εS+

ŷŷ(z) +
1

ε
S−yy(z)− 1− ε

ε
S−yy(z) +Ryŷ[0] = F (z−1)Syy(z)

From the above equation, we get

S−yy(z) =
ε

1− ε

[
(1− ε)S+

yŷ(z) + εS+
ŷŷ(z) +

1

ε
S−yy(z) +Ryŷ[0]− F (z−1)Syy(z)

]
(30)

8.3 Computations on Syy(z)

In the above subsection, we have already got S−yy(z). So only S+
yy(z) needs to compute.

8.3.1 Computing S+
yy(z)

When m > 0,

Ryy[m] = E [y[n+m]y[n]]

= E [y[n+m]y[n]|d[n+m] = 0]Pr(d[n+m] = 0) + E [y[n+m]y[n]|d[n+m] = 1]Pr(d[n+m] = 1)

= E [y[n+m]y[n]]Pr(d[n+m] = 0) + E [ŷ[n+m]y[n]]Pr(d[n+m] = 1)

= (1− ε)Ryy[m] + εRŷy[m]

By the definition of the single-sided PSD, we get

S+
yy(z) = (1− ε)S+

yy(z) + εS+
ŷy(z) (31)

8.3.2 Computing Syy(z)

By y = h ∗ (y + w), we get

Syy(z) = H(z−1)(Syy(z) + Syw(z)) (32)

Again we know that

Syy(z) = S+
yy(z) + S−yy(z) +Ryy[0] (33)

11



Substitute eq. 32, 31 and 30 into eq. 33, we get

(1− ε)S+
yy(z) + εS+

ŷy(z) + εS+
yŷ(z) +

ε2

1− εS
+
ŷŷ(z) +

1

1− εS
−
yy(z)

− ε

1− εF (z−1)Syy(z) +
ε

1− εRyŷ[0] +Ryy[0]

= H(z−1) (Syy(z) + Syw(z)) (34)

In eq. 34, we replace z with z−1, and get

(1− ε)S+
yy(z

−1) + εS+
ŷy(z−1) + εS+

yŷ(z
−1) +

ε2

1− εS
+
ŷŷ(z−1) +

1

1− εS
−
yy(z−1)

− ε

1− εF (z)Syy(z−1) +
ε

1− εRyŷ[0] +Ryy[0]

= H(z)
(
Syy(z−1) + Syw(z−1)

)
(35)

8.4 Final results on PSDs

8.4.1 Computing Syy(z)

Add eq. 34 and 35 together, we get

(1− ε)
[
S+
yy(z) + S+

yy(z
−1)
]

+ ε
[
S+
ŷy(z) + S+

yŷ(z
−1)
]

+ ε
[
S+
ŷy(z

−1) + S+
yŷ(z)

]
+

ε2

1− ε
[
S+
ŷŷ(z) + S+

ŷŷ(z
−1)
]

+
1

1− ε
[
S−yy(z) + S−yy(z−1)

]
− ε

1− ε
[
F (z−1)Syy(z) + F (z)Syy(z−1)

]
+ 2Ryy[0] +

2ε

1− εRyŷ[0]

= H(z−1)Syy(z) +H(z)Syy(z−1) +H(z−1)Syw(z) +H(z)Syw(z−1)

We can simplify the above equation based on the following identities

Syy(z−1) = Syy(z)

S+
yy(z) + S+

yy(z
−1) = Syy(z)−Ryy[0]

S+
ŷy(z) + S+

yŷ(z
−1) = Sŷy(z)−Rŷy[0]

S+
ŷy(z−1) + S+

yŷ(z) = Syŷ(z)−Ryŷ[0]

S+
ŷŷ(z) + S+

ŷŷ(z−1) = Sŷŷ(z)−Rŷŷ[0]

S+
yy(z) + S+

yy(z−1) = Syy(z)−Ryy[0]

Then the simplified form is

(1− ε)Syy(z) + εSŷy(z) + εSŷy(z−1) +
ε2

1− εSŷŷ(z) +
1

1− εSyy(z)

− ε

1− ε (F (z) + F (z−1))Syy(z)−
(
H(z) +H(z−1)

)
Syy(z)

= H(z)Syw(z−1) +H(z−1)Syw(z) + ∆ (36)
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where

∆ = (1− ε)Ryy[0] + ε(Rŷy[0] +Ryŷ[0]) +
ε2

1− εRŷŷ[0] +
1

1− εRyy[0]− 2ε

1− εRyŷ[0]− 2Ryy[0] (37)

By y = h ∗ (y + w) and ŷ = f ∗ y, we get

Syy(z) = H(z)H(z−1)
(
Syy(z) + Syw(z) + Syw(z−1) + Sww(z)

)
(38)

Sŷŷ(z) = F (z)F (z−1)Syy(z) (39)

Sŷy(z) = F (z)Syy(z) = F (z)H(z−1) (Syy(z) + Syw(z)) (40)

Substitute the above identities into eq. 36, we get

(1− ε)
[
H(z)H(z−1) +

ε

1− εF (z)H(z−1) +
ε

1− εF (z−1)H(z) +
ε2

(1− ε)2
F (z)F (z−1) +

1

(1− ε)2

− ε

(1− ε)2

(
F (z) + F (z−1)

)
− 1

1− ε
(
H(z) +H(z−1)

)]
Syy(z)

= −(1− ε)H(z)H(z−1)
(
Syw(z) + Syw(z−1) + Sww(z)

)
− εF (z)H(z−1)Syw(z) (41)

−εF (z−1)H(z)Syw(z−1) +H(z)Syw(z−1) +H(z−1)Syw(z) + ∆

The left side of the above equation can be simplified as follows

(1− ε)
[
H(z)H(z−1)−H(z−1)

1− εF (z)

1− ε −H(z)
1− εF (z−1)

1− ε +
1

(1− ε)2
(1− εF (z))(1− εF (z−1))

]

= (1− ε)
(
H(z)− 1− εF (z)

1− ε

)(
H(z−1)− 1− εF (z−1)

1− ε

)

Substitute eq. 23, 24 and 25 into the right side of eq. 41, it is simplified into

(1− ε)H(z)H(z−1)Sww(z) + ∆

So eq. 41 can be simplified into

(1− ε)
(
H(z)− 1− εF (z)

1− ε

)(
H(z−1)− 1− εF (z−1)

1− ε

)
Syy(z)

= (1− ε)H(z)H(z−1)Sww(z) + ∆

By the definition of D(z), we get the final result on Syy(z)

Syy(z) =

∣∣∣∣
D(z)H(z)

1−D(z)H(z)

∣∣∣∣
2

Sww(z) +
1

1− ε

∣∣∣∣
D(z)

1−D(z)H(z)

∣∣∣∣
2

∆ (42)

where D(z) = 1−ε
1−εF (z) .

8.4.2 Computing Syy(z)

By eq. 38, 23, 42, we can get

Syy(z) =

∣∣∣∣
H(z)

1−D(z)H(z)

∣∣∣∣
2

Sww(z) +
1

1− ε

∣∣∣∣
D(z)H(z)

1−D(z)H(z)

∣∣∣∣
2

∆ (43)
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8.4.3 Computing ∆

By Ryy[0] = (1− ε)Ryy[0] + εRŷy[0], we get

εRŷy[0] = Ryy[0]− (1− ε)Ryy[0] (44)

By Ryy[0] = (1− ε)Ryy[0] + εRŷŷ[0], we get

εRŷŷ[0] = Ryy[0]− (1− ε)Ryy[0] (45)

By Ryŷ[0] = (1− ε)Ryŷ[0] + εRŷŷ[0] and Ryŷ[0] = Rŷy[0], we get

Ryŷ[0] =
1− ε
ε

(Ryy[0]− (1− ε)Ryy[0]) + (Ryy[0]− (1− ε)Ryy[0]) (46)

Substitute eq. 44, 45 and 46, in addition to Ryy[0] = Ryy[0], into eq. 37, we get

∆ = E
[
(y[n]− y[n])2

]
(47)

8.4.4 Computing Sỹỹ(z)

By ỹ[n] = y[n]− y[n], we get

Sỹỹ(z) = Syy(z) + Syy(z)− Syy(z)− Syy(z) (48)

Substitute eq. 32, 42, 43 and Syy(z) = Syy(z−1) into eq. 48, we get

Sỹỹ(z) =

∣∣∣∣
H(z)(D(z)− 1)

1−D(z)H(z)

∣∣∣∣
2

Sww(z) +
1

1− ε

∣∣∣∣
D(z)(1−H(z))

1−D(z)H(z)

∣∣∣∣
2

∆ (49)

Because ∆ = Rỹỹ[0],

∆ =
1

2π

∫ π

−π
Sỹỹ(ejω)dω (50)

8.5 Existence ,Uniqueness and Nonnegativity of the Solution to Equation 9

By eq. 50 and 49, we know ∆ = Rỹỹ[0] is a solution to eq. 9. Because Rỹỹ[0] ≥ 0, eq. 9 has a nonnegative
solution.

When ε > 0,

1

2π

∫ π

−π

∣∣∣∣
H(ejω)(D(ejω)− 1)

1−D(ejω)H(ejω)

∣∣∣∣
2

Sww(ejω)dω > 0

Then eq. 9 has a nonnegative solution if and only if

1

2π

∫ π

−π

∣∣∣∣
D(ejω)(1−H(ejω))

1−D(ejω)H(ejω)

∣∣∣∣
2

dω < 1− ε (51)

i.e. eq. 8 is valid. Furthermore, when eq. 8 is valid, eq. 9 has a unique solution.

Because ∆ = Rỹỹ[0] is a nonnegative solution to eq. 9, the existence, uniqueness and nonnegativity of the
solution to eq. 9 have all been established. ♦
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9 Proof to Theorem 5.1

In order to prove theorem 5.1, we need the following lemmas and corollaries.

Lemma 9.1 A[2] = (1− ε)A[2]
0 + εA

[2]
1 is stable if and only if

∃P > 0, such that (1− ε)AT0 PA0 + εAT1 PA1 < P (52)

Proof: First we prove the necessary part. Obviously A[2] is stable if and only if A
T

[2] = (1−ε)(AT0 )[2]+ε(AT1 )[2]

is stable. Let Q > 0, P0 = Q and Pn+1 = (1− ε)AT0 PnA0 + εAT1 PnA1 +Q(n ≥ 0). It follows that

Pn+1 ≥ Pn > 0 (53)

Apply the operator vec on the updation of Pn, we get

vec(Pn+1) = A
T

[2]vec(Pn) + vec(Q) (54)

If A
T

[2] is stable, limn−→∞ vec(Pn) exists. Because Pn = devec (vec(Pn)), vec and devec are all linear
operators, we know that limn−→∞ Pn exists. Let P∞ = limn−→∞ Pn. Then P∞ is positive definite and
satisfies the following equation

(1− ε)AT0 P∞A0 + εAT1 P∞A1 +Q = P∞

Because Q > 0, P∞ is a valid solution to eq. 52.

Second we prove the sufficient part. If there exists P > 0 such that (1− ε)AT0 PA0 + εAT1 PA1 < P . We can
construct a Lyapunov function V (x) = xTPx for system 4. By eq. 52, we know system 4 is asymptotically
stable in mean square sense. Therefore A[2] is stable. ♦

Corollary 9.2 A[2] = (1− ε)A[2]
0 + εA

[2]
1 is stable if and only if

∃P > 0, such that (1− ε)A0PA
T
0 + εA1PA

T
1 < P

Proof: The same as the one of lemma 9.1 by replacing A0 and A1 respectively with AT0 and AT1 . ♦

Lemma 9.3 Consider systems 4 and 11. For any symmetric matrix P ,

(
(1− ε)A0PA

T
0 + εA1PA

T
1

)
−
(
AePA

T
e

)
=

1

ε(1− ε)BnCỹPC
T
ỹ B

T
n (55)

Proof: Based on the definitions of the matrices, we can easily get the results. ♦

9.1 Necessary Part of the Proof to Theorem 5.1

The condition is that A[2] = (1 − ε)A
[2]
0 + εA

[2]
1 is stable, so the original NCS 4 is asymptotically stable

in mean square sense. Furthermore theorem 4.1 guarantees that eq. 9 has a unique nonnegative solution
∆NCS = Rỹỹ[0].
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By corollary 9.2, there exist P > 0 such that

(1− ε)A0PA
T
0 + εA1PA

T
1 < P (56)

Because P > 0, BnCỹPC
T
ỹ B

T
n ≥ 0. Lemma 9.3 leads to

(1− ε)A0PA
T
0 + εA1PA

T
1 ≥ AePATe (57)

Combine eq. 56 and 57, we get

AePA
T
e < P

So we get the stability of Ae, i.e. the stability of system 11. Because the input signals of system 11, w and
n, are all WSS, all signals of system 11, such as y and ỹ, are WSS. We can compute the related PSDs and
expand eq. 10 by Rỹỹ[0] = 1

2π

∫ π
−π Sỹỹ(ejω)dω, which will be the same as eq. 9. In the beginning we prove

that ∆NCS is the unique nonnegative solution to eq. 9. So ∆NCS is also the unique nonnegative solution to
eq. 10. Then eq. 10 is well-posed. Eq. 10 can be rewritten as

∆ = ‖Gỹw‖22 + ‖Gỹn‖22
1

1− ε∆

Because the above equation has a unique nonnegative solution with respect to ∆ and ‖Gỹw‖22 ≥ 0, we know
constraint 12 is satisfied. For simplicity, we denote the common solution to eq. 9 and eq. 10 as ∆ = ∆NCS .
Following the traditional control theories, we can compute Syy(z) and Sỹỹ(z) for system 11, which will be
the same as eq. 5 and 6.

9.2 Sufficient Part of the Proof to Theorem 5.1

The condition is that Ae is stable and ‖Gỹn‖22 < 1− ε. Then eq. 10 is well-posed. From eq. 13, we know

AeWnA
T
e +BnB

T
n = Wn (58)

‖Gỹn‖22 = CỹWnC
T
ỹ + (1− ε)2 (59)

Because Ae is stable, there must exist a unique P0 > 0 such that

AeP0A
T
e + I = P0 (60)

where I is the identity matrix with the appropriate dimension. Then 0 ≤ CỹP0C
T
ỹ <∞.

‖Gỹn‖22 < 1− ε yields CỹWnC
T
ỹ < ε(1− ε). By choosing a small positive number γ (γ > 0), we can guarantee

Cỹ(Wn+γP0)CTỹ < ε(1− ε). Let P = Wn+γP0. Then P > 0 and CỹPC
T
ỹ < ε(1− ε). By lemma 9.3, we get

(
AePA

T
e +BnB

T
n

)
−
(
(1− ε)A0PA

T
0 + εA1PA

T
1

)

= − 1

ε(1− ε)BnCỹPC
T
ỹ B

T
n +BnB

T
n

≥ −BnBTn +BnB
T
n

= 0
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So

(1− ε)A0PA
T
0 + εA1PA

T
1 ≤ AePA

T
e +BnB

T
n

= AeWnA
T
e +BnB

T
n + γAeP0A

T
e

= Wn + γP0 − γI
< Wn + γP0

= P

Therefore there exists P > 0 such that

(1− ε)A0PA
T
0 + εA1PA

T
1 < P

By lemma 9.2, we know A[2] is stable. Then we can follow the similar procedure in the necessary part to
show the two systems generate the same Syy(z), Sỹỹ(z).

Then the proof is complete. ♦
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