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Abstract. We investigate the power of the most important lower bound
technique in randomized communication complexity, which is based on
an evaluation of the maximal size of approximately monochromatic rect-
angles, minimized over all distributions on the inputs. While it is known
that the 0-error version of this bound is polynomially tight for deter-
ministic communication, nothing in this direction is known for constant
error and randomized communication complexity. We first study a one-
sided version of this bound and obtain that its value lies between the
MA- and AM -complexities of the considered function. Hence the lower
bound actually works for a (communication complexity) class between
MA∩co−MA and AM∩co−AM . We also show that theMA-complexity
of the disjointness problem is Ω(

√
n). Following this we consider the

conjecture that the lower bound method is polynomially tight for ran-
domized communication complexity. First we disprove a distributional
version of this conjecture. Then we give a combinatorial characteriza-
tion of the value of the lower bound method, in which the optimization
over all distributions is absent. This characterization is done by what we
call a uniform threshold cover. We also study relaxations of this notion,
namely approximate majority covers and majority covers, and compare
these three notions in power, exhibiting exponential separations. Each
of these covers captures a lower bound method previously used for ran-
domized communication complexity.

1 Introduction

Communication complexity has grown into a central area in theoret-
ical computer science since the seminal article by Yao [Y79], finding
more and more applications that range from from VLSI resource-tradeoffs
(e.g. [T79]) to data-stream computations (e.g. [SS02]), see the excel-
lent monography [KN97] for pre-1997 applications. While communication
complexity has been helpful by inspiring upper bounds in other models,
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its main importance lies in the lower bounds it provides. Often also varia-
tions of the techniques first devised for communication complexity become
important in other areas, e.g. the field of branching programs (see [W00]).

Lower bounds for deterministic communication complexity are usu-
ally not very hard to prove, but they are often not strong enough in
applications. Considering randomized communication complexity is fre-
quently necessary. The lower bound on the monotone circuit depth of the
matching function given in [RW92] is an example where randomized com-
munication complexity is used to prove a lower bound for some resource
in a deterministic model. Furthermore, since randomized algorithms are
considered standard today and any problem for which we can describe an
efficient randomized algorithm is considered tractable, lower bounds on
the randomized communication complexity are necessary to show that a
communication problem is hard. Also, communication complexity is an
interesting scenario to study the power of randomization.

Basically all lower bounds on randomized communication complexity
with bounded error are derived by considering properties of rectangles in
the communication matrix. These proofs are usually done in two steps.
First, so-called distributional communication complexity is considered.
The distributional deterministic communication complexity with error ǫ
under a distribution µ on the inputs is the minimal complexity of a de-
terministic protocol computing a function while erring with probability
at most ǫ under µ. According to the Yao-principle the randomized com-
plexity of a problem equals the maximum over all distributions of the
distributional deterministic complexity. Hence this first step can always
be done without loss of generality (or degradation of the bounds).

After choosing an appropriate distribution on the inputs one is left to
analyze the deterministic distributional communication complexity. The
2c message sequences used by a communication c protocol partition the
communication matrix into 2c rectangles1 labeled with the output of the
protocol on that message sequence. Proving a lower bound on the number
of rectangles needed in such a partition is then done by showing that all
1−ǫ-correct rectangles are small. This approach or variants of it have been
used by Yao [Y83], Babai et al. [BFS86], Razborov [R92], and adapted to
partial functions also by Raz [R99], so that virtually all important lower
bound proofs (except [KS92]) for randomized communication complexity
follow the described pattern.

More precisely, the lower bound method (as described by Yao [Y83])
goes as follows: First one fixes a distribution that puts roughly as much

1 For a definition of communication matrices and rectangles see Definition 2.
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weight on the 1-inputs as on the 0-inputs of a function f . One decides
whether one proves a bound on the size of rectangles containing pre-
dominantly 1-inputs or 0-inputs. Then one shows that all rectangles of
the desired type with size larger than 1/2k must contain an ǫ-fraction of
wrongly classified inputs. As the consequence the randomized communi-
cation complexity of f is Ω(k).

The main question motivating this paper is whether this lower bound
method is tight, i.e., whether we may always prove lower bounds at most
polynomially smaller than the actual randomized communication com-
plexity using this method. This question is stated as Open Problem 3.23
in [KN97]. Since the method already yields lower bounds, answering the
question in the affirmative demands showing an upper bound on the ran-
domized communication complexity in terms of the maximal value ob-
tained by the lower bound method.

It is well known that this is possible in the case ǫ = 0, i.e., the
corresponding lower bound method for deterministic protocols based on
the size of monochromatic rectangles always yields results being at most
quadratically smaller that the deterministic communication complexity.
This result can be proved in two steps: first the 0-error rectangle bound is
characterized via nondeterministic communication complexity (see The-
orem 2.16 in [KN97]). Then the deterministic communication complex-
ity is upper bounded by the product of the nondeterministic and co-
nondeterministic communication complexities [AUY83], Theorem 2.11 in
[KN97]. In this paper we consider the analogous question in the situation
when the error probability is larger than 0.

Note that all proofs in this paper are provided in the appendix.

2 Power of the rectangle bound

First let us fix some notation and give a formal definition of the main
lower bound method investigated in this paper.

Definition 1. Let µ be a distribution on {0, 1}n × {0, 1}n and α ≤ 1/2.
Then µ is α-balanced for f : {0, 1}n × {0, 1}n → {0, 1}, if

α ≤ µ(f−1(1)), µ(f−1(0)) ≤ 1− α.

1/2-balanced distributions are called strictly balanced, 1/4-balanced
distributions are called balanced.
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Definition 2. The communication matrix of a function f : {0, 1}n ×
{0, 1}n → {0, 1} is a matrix Mf with rows and columns each correspond-
ing to {0, 1}n, and with Mf (x, y) = f(x, y).

A rectangle is a product set in {0, 1}n×{0, 1}n. Rectangles are labeled,
a v-rectangle being labeled with v ∈ {0, 1}. v(R) gives the label of R.

The size of a rectangle (or any other set) R with regard to some distri-
bution µ on {0, 1}n×{0, 1}n is µ(R) =

∑

x,y∈R µ(x, y). Let err(R,µ, v) =
µ(f−1(1− v)|R) denote the error of a v-rectangle R.

We consider both one-sided and two-sided versions of the rectangle
bound.

Definition 3.

size(µ, ǫ, f, v) = max{µ(R) : err(R,µ, v) ≤ ǫ},

where R runs over all rectangles in Mf .

bound(1)ǫ (f) = max
µ

log(1/size(µ, ǫ, f, 1)),

where µ runs over all balanced distribution on {0, 1}n × {0, 1}n.
Furthermore

boundǫ(f) = max{bound(1)ǫ (f), bound(1)ǫ (¬f)}.

We use the conventions bound(f) = bound1/4(f) and bound(1)(f) =

bound
(1)
1/4(f).

Let us first note a fundamental property of the rectangle bound,
namely error reducibility.

Lemma 1. Let ǫ ≤ 1/2−Ω(1).

Assume bound
(1)
ǫ (f) = k. Then bound

(1)
ǫl

(f) ≤ O(lk).
Assume boundǫ(f) = k. Then boundǫl(f) ≤ O(lk).

The lemma is proved in appendix C. Also note that the definition
is almost invariant with respect to the “balancedness” of the underlying
distribution, see again appendix C for a proof.

Lemma 2. Assume maxµ log(1/size(µ, ǫ, f, 1)) = k where µ runs over
all α-balanced distribution on {0, 1}n×{0, 1}n for some constant α. Then

k = Θ(bound(1)ǫ (f)),

given that ǫ ≤ α/4.
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For definitions of the different communication complexity modes con-
sidered in this paper see appendix B. Note that all randomized modes of
communication complexity are defined to have a public coin there.

It is well known that bound(f) yields a lower bound on the randomized
communication complexity of f , see [KN97]. So we have the following
lower bound method.

Method 1 (ǫ-error randomized communication complexity)

1. Pick a balanced distribution on {0, 1}n × {0, 1}n.
2. Pick v ∈ {0, 1}.
3. Show that all 1− ǫ-correct v-rectangles in Mf have size < 2−b.
4. Then Rǫ(f) ≥ Ω(b).

As an example we give the following fact due to Razborov [R92], which
will be used several times in this paper. Let DISJ(x, y) = ∧n

i=1(¬xi∨¬yi)
be the set disjointness problem.

Fact 1 For DISJ there is an balanced distribution µ on {0, 1}n×{0, 1}n,
so that every 0-rectangle R in {0, 1}n×{0, 1}n either satisfies µ(R) ≤ 2−βn

or err(R,µ, 0) ≥ ǫ for some constants β, ǫ > 0.
In other words (using Lemma 1), R(DISJ) ≥ bound(1)(DISJ) =

Ω(n).

We now try to determine exactly for which class of problems the lower
bound method works. We show that bound(1)(f) lies between the MA-
and AM -complexities of f .

Theorem 1. 1. For f : {0, 1}n×{0, 1}n → {0, 1} and ǫ ∈ [1/2MA(f), 1/2−
Ω(1)]:

MAǫ(f) ≥ Ω

(√

bound
(1)
ǫ (f)

)

.

2. For all f : {0, 1}n × {0, 1}n → {0, 1} and ǫ ≤ 1/2 −Ω(1):

AMǫ(f) ≤ O(bound(1)ǫ (f) + log(1/ǫ)).

With this theorem and Fact 1 we can conclude a new lower bound in
communication complexity.

Corollary 1.

MA(DISJ) = Ω(
√
n),

while
N(¬DISJ) = O(log n).
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It seems unlikely that, but remains unknown whether DISJ has effi-
cient AM -protocols. Actually no separation between larger classes than
MA 6= co −MA is known within the communication complexity version
of the polynomial hierarchy (see [BFS86], polynomial time is replaced by
polylogarithmic communication in this definition). Note that it is still
open whether the polynomial hierarchy in communication complexity is
strict. Actually we will give a lower bound in Theorem 7 showing that
some explicit function is not contained in some even larger subclass of the
polynomial hierarchy in communication complexity than MA∪ co−MA,
yet that function itself probably is not included in the hierarchy, as op-
posed to DISJ .

We can conclude the following relations between Arthur Merlin and
randomized communication and the lower bound method.

Corollary 2.

R(f) ≥ Ω(bound(f)),

R(f) ≥ Ω(max{MA(f),MA(¬f)}) ≥ Ω

(

√

bound(f)

)

,

bound(f) ≥ Ω(max{AM(f), AM(¬f)}).

If we could show that any function with both small AM - and co−AM -
complexity also has small randomized complexity we could show that
lower bound method 1 is always polynomially tight. If, on the other hand,
R(f) ≥ g(bound(f)) for some superpolynomial g and some f , then there is
a superpolynomial separation between max{AM(f), AM(¬f)} and R(f).

The first attempt to prove tightness of bound(f) coming to mind uses
the Yao-principle and switches to (non-) deterministic distributional com-
plexity with error in the hope to employ similar techniques as in previous
combinatorial results [AUY83], where D(f) ≤ O(N(f) ·N(¬f)) is shown
for all f : {0, 1}n × {0, 1}n → {0, 1}.

It is well known (see Theorem 3.20 in [KN97]) that

Fact 2

Rǫ(f) = max
µ

Dµ
ǫ (f).

We observe that by the same proof

Lemma 3.

AMǫ(f) = max
µ

Nµ
ǫ (f).
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Hence if we could relate the ǫ-error distributional nondeterministic
complexity Nµ

ǫ (f) + Nµ
ǫ (¬f) to the ǫ-error distributional deterministic

complexity Dµ
ǫ (f) for all distributions µ we would have shown that the

rectangle bound is always polynomially tight. But the approach does not
work as shown in the next result.

Theorem 2. There is a function WHICH : {0, 1}n × {0, 1}n → {0, 1},
a balanced distribution µ on {0, 1}n × {0, 1}n, and a constant ǫ > 0 so
that

Nµ
0 (WHICH), Nµ

0 (¬WHICH) = O(log n),

Dµ
ǫ (WHICH) = Ω(n).

So this first attempt to prove that the rectangle bound is tight, fails.
Proving R(f) ≤ poly(AM(f) +AM(¬f)) requires an argument not con-
sidering the distributional complexity for all distributions separately. Also
note that the distributions maximizing Nµ

ǫ (f), N
µ
ǫ (¬f),Dµ

ǫ (f) are in gen-
eral not the same.

The proof of Theorem 2 establishes a lower bound on the number of
rectangles needed to partition (with small error) the communication ma-
trix into rectangles, while errorfree covers (with overlapping rectangles),
and hence large errorfree 1- and 0-rectangles exist.

3 The rectangle bound and bounded error uniform

threshold covers

In this section we start another approach to prove that the lower bound
method is tight. Instead of considering Arthur Merlin complexity we char-
acterize the lower bound method itself combinatorially.

Definition 4. A uniform threshold cover with parameters s, t for a com-
munication problem f : {0, 1}n ×{0, 1}n → {0, 1} is a set of rectangles in
the communication matrix of f with labels from {0, 1}, so that for each
input x, y at least t of the adjacent rectangles bear the correct label f(x, y)
and at most s of the adjacent rectangles bear the wrong label 1− f(x, y).

A one-sided uniform threshold cover is as above, but only 1-labeled
rectangles are used, and inputs with f(x, y) = 1 lie in at least t rectangles,
while inputs with f(x, y) = 0 lie in at most s rectangles.

Let f : {0, 1}n × {0, 1}n → {0, 1} be a communication problem. Let
P denote the minimal size of a one-sided uniform threshold cover with

parameters s, t for f . Then UT
(1)
s,t (f) = ⌈log P ⌉ is called the one-sided

uniform threshold complexity of f .
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Let f : {0, 1}n × {0, 1}n → {0, 1} be a communication problem. Then

UTs,t(f) = max{UT
(1)
s,t (f), UT

(1)
s,t (¬f)} is called the uniform threshold

complexity of f , and equals (within ±1) the logarithm of the minimal
size of a uniform threshold cover for f .

We will say that a uniform threshold cover with parameters s, t has
bounded error, if t ≥ 2s.

The main features of bounded error uniform threshold covers are first,
that the acceptance threshold is the same for all inputs, and secondly, the
bounded error.

Remark 1. Given a bounded error uniform threshold cover for f of size
2k with the parameters s, 2s, we can form all possible l = log(1/ǫ) tuples
of 1-rectangles, and take the intersections of the rectangles in such tuples
into a new cover, labeled as 1-rectangles. Then we proceed analogously
with the 0-rectangles. Clearly each input is in (2s)l = (1/ǫ) · sl correctly
labeled rectangles, and in at most sl incorrectly labeled rectangles. Hence,
there is a value s′ = (1/ǫ)sl with UTǫs′,s′(f) ≤ O(k · log(1/ǫ)).

We now characterize the lower bound method in terms of bounded
error uniform threshold covers.

Theorem 3. 1. (a) bound(1)(f) ≤ O(UT
(1)
s,2s(f)).

(b) bound(f) ≤ O(UTs,2s(f)).

2. (a) UT
(1)
n,n2(f) ≤ O(bound(1)(f) · log n).

(b) UTn,n2(f) ≤ O(bound(f) · log n).

Note that UT
(1)
s,2s(f) ≤ O(bound(f)) is not always true, as we will

show after Theorem 4 in Remark 3.

So we have a quite natural version of covers that captures the tech-
nique used in most of the lower bounds for randomized communication
complexity. Showing that R(f) ≤ poly(UTn,n2(f)) for all f : {0, 1}n ×
{0, 1}n → {0, 1} would immediately show tightness of bound(f). We have
been unable to prove such a result so far. Nevertheless, Theorem 3 turns
the problem of showing tightness of the lower bound method into a com-
binatorial one, not involving a maximization over distributions. Alterna-
tively we may reformulate the problem as follows.

Corollary 3. Let UT [R] : R → {0, 1} for a rectangle R ⊆ {0, 1}N ×
{0, 1}N be the following communication problem (for some value t de-
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pending on R):

UT [R](x, y) =















1 if
∑N/2

i=1 xi ∧ yi ≥ t and
∑N

i=N/2+1 xi ∧ yi ≤
√
t

0 if
∑N/2

i=1 xi ∧ yi ≤
√
t and

∑N
i=N/2+1 xi ∧ yi ≥ t

undef else.

A protocol for computing UT [R] works under the promise that R contains
only defined inputs. A protocol computes UT , iff for each R (that contains
only defined inputs) the players (knowing R) compute UT [R] correctly.

Then R(UT ) ≤ poly(logN)

⇐⇒ ∀f : {0, 1}n × {0, 1}n → {0, 1} : R(f) ≤ poly(bound(f) log n).

Note that for the communication problem UT , the threshold t is usu-
ally much smaller than N .

So it is sufficient (and necessary) to give an efficient randomized pro-
tocol for the promise problem UT to show tightness of bound(f).

4 Comparing different notions of threshold covers

We now consider variations of the notion of threshold covers. The most
immediate is a majority cover.

Definition 5. A majority cover for a function f is a set of labeled rect-
angles so that for each input the majority of the adjacent rectangles bears
the correct label. Ties are broken in favor of f(x, y) = 1.

Let PP (f) denote the logarithm of the size of a smallest majority
cover for a function f .

The above notion of majority covers corresponds to majority nonde-
terministic protocols, which accept an input, whenever there are more
nondeterministic computations leading to acceptance than to rejection:
each computation in a nondeterministic protocol corresponds to a rect-
angle. Majority covers are also equivalent to randomized protocols with
error “moderately” bounded away from 1/2 as shown in [HR90].

Fact 3 There is a majority cover of size 2k for f : {0, 1}n × {0, 1}n →
{0, 1}, iff there are ǫ, c with c+ log(1/ǫ) = Θ(k), as well as a randomized
protocol with error 1/2 − ǫ > 0 and communication c computing f (in
the protocol the players are allowed to use a private source of randomness
only).
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Note that a randomized protocol can be viewed as a probability dis-
tribution on deterministic protocols, and that each deterministic protocol
induces a partition of the communication matrix into rectangles labeled
with the function value. Then the union of all these rectangles is a uniform
threshold cover for f , though not one with bounded error. The number of
rectangles used is this cover is upper bounded by the number of message
sequences used in the randomized protocol (here we use the fact that the
randomized protocol can access private random sources only).

Corollary 4. PP (f) ≤ O(k) ⇐⇒ ∃s : UTs,s+1(f) ≤ O(k).

Hence, if we drop the bounded error feature from uniform threshold
covers, we can as well drop the uniformity feature.

It is shown in [Kl01] that majority covers have a strong connection to a
lower bound method in communication complexity based on discrepancy.

Definition 6. Let µ be any distribution on {0, 1}n×{0, 1}n and f be any
function f : {0, 1}n × {0, 1}n → {0, 1}. Then let

discµ(f) = max
R

|µ(R ∩ f−1(0)) − µ(R ∩ f−1(1))|,

where R runs over all rectangles in Mf . Denote disc(f) = minµ discµ(f).

Fact 4 For all f : {0, 1}n × {0, 1}n → {0, 1}:

log(1/disc(f)) ≤ PP (f) ≤ O(log 1/disc(f) + log n).

Note that discrepancy 1/2k under some distribution essentially means
that all rectangles with size at least 1/2k/2 have error at least 1/2−1/2k/2.
We can prove lower bounds for the PP -complexity in the following way.

Method 2 (PP -complexity, discrepancy)

1. Pick a distribution µ on {0, 1}n × {0, 1}n.
2. Show that all rectangles R in Mf have |µ(R∩f−1(0))−µ(R∩f−1(1))| <

2−b.

3. Then PP (f) ≥ Ω(b).

Consider the function MAJ : {0, 1}n × {0, 1}n → {0, 1} with

MAJ(x, y) = 1 ⇐⇒
n
∑

i=1

(xi ∧ yi) ≥ n/2.
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Obviously MAJ has a majority cover of size O(n). It is easy to see that
DISJ and its complement can both be reduced to MAJ . Hence we can
easily separate majority covers from one-sided bounded error uniform
threshold covers using Fact 1: bound(1)(DISJ) = Ω(n) which implies

with Theorem 3 that UT
(1)
s,2s(DISJ) = Ω(n).

Corollary 5. PP (MAJ) = O(log n).

UT
(1)
s,2s(MAJ) = Ω(n) all s.

So a majority cover is in fact much stronger than even a one-sided
uniform threshold cover with bounded error. Let us now consider a relax-
ation of majority covers that has bounded error in some sense. Compared
to bounded error uniform threshold covers we now drop the uniformity
constraint on the threshold.

Definition 7. An approximate majority cover is a majority cover in
which for each input at least 3/4 of the adjacent rectangles bear the correct
label. Let APP (f) denote the logarithm of the size of a minimal approx-
imate majority cover for f .

Remark 2. Note that the parameters 1/4, 3/4 can be improved to arbi-
trary constant ǫ, 1− ǫ by forming k-tuples of rectangles and taking their
intersections as the new approximate majority cover with k = log(1/ǫ).

The definition of approximate majority covers is similar to threshold
computations on Turing machines in a class named BPPpath as considered
in [HHT97]. We prefer our naming to BPPpath, since the class has little
similarity to BPP and is not defined in terms of paths here. It is shown
in [HHT97] that BPPpath contains MA∪ co−MA and is hence probably
much more powerful than BPP . We immediately get a similar result for
communication complexity using Theorems 1 and 3.

Theorem 4. APP (f) ≤ O(UT
(1)
s,2s(f)) for all s.

APP (f) ≤ O(UT
(1)
s,2s(¬f)) for all s.

APP (f) ≤ min{O(MA(f)2), O(MA(¬f)2)}.

Remark 3. It is easy to see that PP (EQ) = Θ(log n) for the equality
function EQ(x, y) = 1 ⇐⇒ x = y, since PP (f) ≥ logD(f). Hence

UT
(1)
s,2s(EQ) = Ω(log n). On the other hand bound(EQ) = Θ(1), since

R(EQ) = Θ(1) (see Example 3.13 in [KN97] and note that random-
ized protocols are defined to have a public coin here). Hence the relation
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UT
(1)
s,2s(f) ≤ O(bound(f) log n) from Theorem 3 cannot be improved to

≤ O(bound(f)), but possibly to ≤ O(bound(f) + log n).

APP -complexity has an interesting connection to a lower boundmethod
as follows.

Theorem 5. If APP (f) = k then for all balanced distributions µ there
is a rectangle of size 1/2O(k) with error 1/4.

If for all balanced distributions µ there is a rectangle of size 1/2k and
error 1/4 then APP (f) ≤ O(k) + log n.

Thus given that APP (f) is small, there is a large rectangle with
small error for each distribution, sometimes a 1-rectangle, sometimes a
0-rectangle. We are lead to the following lower bound method.

Method 3 (APP -complexity)

1. Pick a balanced distribution on {0, 1}n × {0, 1}n.
2. Show that all 1− ǫ-correct rectangles in Mf have size < 2−b.
3. Then APP (f) ≥ Ω(b).

Actually it has been shown by Yao in [Y83] that for some explicit function
and some balanced distribution neither large 1 − ǫ-correct 0-rectangles
nor large 1 − ǫ-correct 1-rectangles exist, hence he demonstrated that
this function has linear APP complexity, which is a much stronger result
than his conclusion that the function has linear randomized bounded error
communication complexity.

We give a separation result between the two types of covers, stating
that approximate majority covers are actually much more powerful than
one-sided bounded error uniform threshold covers and hence also than
MA-protocols.

Theorem 6. There is a function BOTH : {0, 1}n × {0, 1}n → {0, 1} so
that

APP (BOTH) = O(log n),

bound(1)(BOTH) ≥ Ω(n); bound(1)(¬BOTH) ≥ Ω(n).

Hence also

UT
(1)
s,2s(BOTH) ≥ Ω(n); UT

(1)
s,2s(¬BOTH) ≥ Ω(n),

MA(BOTH) ≥ Ω(
√
n); MA(¬BOTH) ≥ Ω(

√
n).
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So approximate majority covers are exponentially more powerful than
one-sided bounded error uniform threshold covers for BOTH and its com-
plement. In terms of the lower bound methods this means that for BOTH
it is true that for every balanced distribution there is a rectangle of size
1/poly(n) with constant error, but there exists a balanced distribution,
where all 1-rectangles either have error 1/2 − o(1) or size 1/2Ω(n), and
there exists a balanced distribution, where all 0-rectangles either have
error 1/2 − o(1) or size 1/2Ω(n).

To complete the picture we compare the power of APP and PP covers.

Theorem 7.

PP (MAJ) = O(log n),

APP (MAJ) = Ω(n).

Note that the above result can be read as saying that for MAJ for all
balanced distributions there exists a rectangle with discrepancy 1/poly(n)
(having hence size 1/poly(n) and error 1/2− 1/poly(n)), while there is a
distribution µ where any rectangle with constant error has size 1/2Ω(n).

5 Conclusions

Virtually all2 known lower bounds on randomized communication com-
plexity in the literature can be seen as instances of methods 1, 2, or 3.
We have shown that these three methods have exponential differences in
power. It remains open whether method 1 is polynomially tight for ran-
domized communication complexity. A way to show this is proving that
the logarithm of the size of bounded error uniform threshold covers is
polynomially related to the randomized communication complexity. This
avoids arguing with the optimum (over all balanced distributions) of the
lower bound parameter. We have shown in Theorem 2 that arguing for
all distributions separately does not yield the desired result.

Methods 2 and 3 have been characterized as more powerful versions
of threshold covers. It is interesting that the rectangle based lower bound
proofs can be understood in terms of these combinatorial objects that
are only in the case of method 2 known to be directly related to standard
communication complexity modes.

2 A recent exception is a Ω(
√
n) lower bound on the information which must be ex-

changed in computing DISJ [SS02] (and hence on the communication complexity).
This quantity can also be lower bounded using the rectangle method, see [Kl02].
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We now note some further observations and open problems. The most
significant open problem related to this paper is whether UTs,2s(f) and
R(f) are polynomially related, resp. whether R(UT ) ≤ poly(logN).

It can be shown with techniques as in [HHT97] that every f with
APP (f) = poly(log n) is in the polylog-communication complexity poly-
nomial hierarchy, see [BFS86] for a definition of the latter. It is im-
probable, however, that the same holds for all functions with PP (f) =
poly(log n), since then the communication complexity version of the poly-
nomial hierarchy would collapse. Let us note that the separation of the
polynomial hierarchy for communication complexity is open. Hence method
3 allows to show that some explicit function is not contained in the class
of problems with APP (f) = poly(log n), the largest class of problems
inside the polynomial hierarchy for which such a lower bound is known.
Showing that this class is a proper subset of the hierarchy is open. It is
also open, which methods might be applied to separate this hierarchy.

Regarding the fine-structure of the relations between the discussed
complexity measures there are several open problems. Is it possible to
separate AM - from MA-complexity? This could be done by using the

rectangle method to separate AM(f) from UT
(1)
s,2s(f). But it is also possi-

ble that UT
(1)
s,2s(f) is always polynomially related to AM(f). Furthermore

any lower bounds for AM communication complexity are desirable, since
they would probably need new techniques and lead to progress on the
problem of showing lower bounds for higher classes in the polynomial hi-

erarchy. Also a separation of MA(f) from UT
(1)
s,2s(f) would be interesting.

As another issue the role of interaction in communication complex-
ity is interesting. For nondeterministic communication 1-round protocols
are optimal, not so for randomized, deterministic, and even communi-
cation with limited nondeterminism [KN97,Kl98]. Clearly 1-round AM -
protocols are also optimal, but this seems unlikely for MA-protocols. A
candidate problem to establish this conjecture would be the majority
of the outcomes of pointer jumping on

√
n paths of length k, with the

promise that 3/4·√n paths lead to the same output. A randomized proto-
col with k rounds and O(k log n) communication can solve this problem,
but MA-protocols of complexity o(

√
n) using k − 1 rounds possibly not.
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A Organization of the rest of the paper

In appendix B we formally define the different modes of communica-
tion complexity considered in this paper, appendix C provides proofs of
elementary properties of the rectangle bound. In appendix D we give
the proofs concerning the comparison of the rectangle bound with MA-
and AM -communication complexity, and the proof of Theorem 2. Ap-
pendix E shows the equivalence between bound(f) and bounded error
uniform threshold covers for f . Appendix F shows equivalence between
lower bound method 3 and approximate majority covers, and gives sepa-
rations between the three lower bounds methods resp. the three types of
threshold covers.

B Definitions

We employ the following definitions of communication complexity.

Definition 8. Let f : {0, 1}n × {0, 1}n → {0, 1} be a function. In a
communication protocol players Alice and Bob receive inputs x, y from
{0, 1}n each. Their goal is to compute f(x, y). To this end the players
exchange binary encoded messages. The communication complexity of a
protocol is the worst case number of bits exchanged.

The deterministic communication complexity D(f) of a function f is
the complexity of an optimal protocol computing f .

In a nondeterministic protocol for a Boolean function f the players are
allowed to guess some bits and communicate according to a different de-
terministic strategy for each guess string. An input is accepted iff at least
one computation accepts. The nondeterministic guesses are private and
accessible to the guessing player only. The nondeterministic communica-
tion complexity N(f) is the complexity of an optimal nondeterministic
protocol computing f .

In a randomized protocol for a Boolean function f the players can
access a public source of random bits. They can communicate according
to a different deterministic strategy for each value of the random bits. It is
required that for each input the correct output is produced with probability
1− ǫ for some ǫ < 1/2. The randomized communication complexity Rǫ(f)
is the complexity of an optimal randomized protocol computing f with
error probability ǫ.

Arthur Merlin computations have been introduced in [B85,BM88]. In
an Arthur Merlin (AM) protocol the players may first access a public

16



source of random bits and read an arbitrarily long random string. Af-
ter this phase they start a nondeterministic protocol. A function f :
{0, 1}n × {0, 1}n → {0, 1} is computed if for all x, y with f(x, y) = 1
with probability 1 − ǫ over the random bits the nondeterministic protocol
accepts (i.e., there is a guess string makes players accept), while for all
x, y with f(x, y) = 0 with probability 1− ǫ over the random bits the non-
deterministic protocol does not accept (i.e., there is no guess that makes
the players accept). The communication complexity of an Arthur Merlin
protocol is the maximum (over the random bits) of the complexities of
the nondeterministic protocols. Let AMǫ(f) denote the complexity of an
optimal Arthur Merlin protocol for f with error ǫ.

In a Merlin Arthur protocol for a function f : {0, 1}n × {0, 1}n →
{0, 1} the players first make a nondeterministic guess of some length k
known to both players. Then the players perform a randomized protocol.
It is required that for all x, y with f(x, y) = 1 there is a value of the
guess, so that the protocol accepts with probability 1 − ǫ, while for all
x, y with f(x, y) = 0 there is no value of the guess, so that the protocol
accepts with probability larger than ǫ. The complexity of a Merlin Arthur
protocol is given by the maximum complexity of the communication (over
the guesses and the coin tosses) plus k. Let MAǫ(f) denote the complexity
of an optimal Merlin Arthur protocol for f with error ǫ.

In case the subscript fixing the error is dropped we set the error to
1/4.

Note that an Arthur Merlin protocol is an interactive proof system
with verification performed by a communication protocol. Arthur chal-
lenges Merlin to provide a proof that f(x, y) = 1, this proof is verified by
Alice and Bob.

A Merlin Arthur protocol uses a randomized protocol to check a fixed
proof, whose length is included in the communication cost. The Mer-
lin Arthur model would be ill-defined, if we would simply require the
nondeterministic guess to be private and coming without cost. In this
case Alice could simply guess Bob’s input nondeterministically, and then
use a randomized protocol for the equality function with O(1) commu-
nication to test if her guess was right (see Example 3.13 in [KN97],
note that public coin in the randomized protocol). If so, she can com-
pute any function on x, y and announce the result. Hence any function
f : {0, 1}n × {0, 1}n → {0, 1} would have Merlin Arthur communication
complexity O(1) under such a definition.

In lower bound proofs for randomized complexity one often applies
the Yao-principle that states a relation between the complexity in the
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randomized setting (with small error probability for every input) and
the complexity in the deterministic setting where correctness is only de-
manded with high probability over some distribution on the inputs.

Definition 9. A deterministic protocol has error ǫ under some distribu-
tion µ on the inputs, if the probability that the protocol errs is ǫ.

The distributional deterministic complexity of f : {0, 1}n × {0, 1}n →
{0, 1} is Dµ

ǫ (f), the minimal complexity of any deterministic protocol with
error ǫ under µ.

A nondeterministic protocol has error at most ǫ under some distribu-
tion µ on the inputs, if the probability (under µ) of the set of accepted
0-inputs and nonaccepted 1-inputs is at most ǫ.

The distributional nondeterministic complexity of f : {0, 1}n×{0, 1}n →
{0, 1} is Nµ

ǫ (f), the minimal complexity of any nondeterministic protocol
with error ǫ under µ.

Nondeterministic communication complexity is related to a specific
type of covers [KN97].

Fact 5 Let Cov(1)(f) denote the minimum number of monochromatic (0-
error) 1-rectangles in a set {R1, . . . , Rc}, so that f−1(1) = ∪c

i=1Ri 6= ∅.
Then N(f) = ⌈logCov(1)(f)⌉.

C Properties of the rectangle bound

Proof of Lemma 1. Assume bound
(1)
ǫ (f) = k. Hence for all balanced

distributions there is a 1− ǫ-correct 1-rectangle of size 1/2k at least. Fix
any balanced distribution µ. We construct a rectangle of error ǫl and size
2−O(kl) for µ inductively.

Let µ0 = µ. First we take a rectangle R1 with error ≤ ǫ and size
s1 ≥ 1/2k guaranteed by our assumption for µ0. In case Ri has no error at
all we are done. Otherwise we construct a new distribution µ1 as follows:
For all x, y 6∈ R1 we set µ1(x, y) = 0. µ1 is then normalized to a strictly
balanced distribution by multiplying µ0(x, y) by some factor p0 when
f(x, y) = 0 and multiplying µ0(x, y) by a factor p1 when f(x, y) = 1.

Note that since µ(f−1(0)|R) ≤ ǫ we have p0 ≥ 1/(2ǫ) and 1/(2(1 −
ǫ)) ≥ p1 ≥ 1/2. Then we can pick a rectangle R2 with error ǫ and size
s2 ≥ 1/2k according to µ1.

Now we compute the size of R2 according to µ and also its error on
µ. By concentrating µ1 on R1 we have increased the weights of x, y ∈ R1
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uniformly by a factor of (1/s1) ≤ 2k. Then we have balanced the distri-
bution by multiplying 1-inputs’ weights with p1 and 0-inputs’ weights by
p0.

So the weight of 0-inputs in R2 according to µ is at most

s1 · (1/p0) · ǫ · s2 ≤ s1 · 2ǫ2 · s2.
The weight of the 1-inputs is at least

s1 · (1/p1) · (1− ǫ) · s2 ≥ s1 · 2(1 − ǫ)2 · s2.
The size of R2 is at least s1 · s2 ≥ 1/22k.

Assume that ǫ ≥ 1/4, then ǫ = 1/2− δ for some δ ≤ 1/4. In this case

err(R2, µ, 1) ≤
ǫ2

(1− ǫ)2 + ǫ2
≤ 1

2
− δ

1/2 + 2δ2
< 1/2 − (3/2)δ.

Repeating this O(1/δ) = O(1) times reduces the error to less than 1/4.
If ǫ ≤ 1/4, then R2 has error at most 2ǫ2. Iterating the construction

O(l) times yields the first part of the lemma. Arguing analogously for
0-rectangles yields the second part. ⊓⊔

Proof of Lemma 2. Let the bound be k when µ runs over all α-
balanced distributions on the inputs.

First assume that α < 1/4. Clearly k is an upper bound on k′ =
bound(1)(f) in this case. We have to show that also k = O(k′).

Let µ be an α-balanced distribution on the inputs. We can balance
the weights of 1-inputs and 0-inputs by multiplying the weights of the
0-inputs by some p0 and the weights of the 1-inputs by some p1 so that
a strictly balanced distribution µ′ is obtained. We take a rectangle R of
error ǫ and size 1/2k

′

according to µ′. Assume that α ≤ µ(f−1(1)) ≤ 1/2.
Then p1 > 1. Consequently the size of R is slightly smaller according to
µ than to µ′, and the error is possibly slightly smaller, too. In the other
case α ≤ µ(f−1(0)) ≤ 1/2 the opposite occurs, namely the rectangle is
possibly slightly larger, and the error is larger. But in any case the size
and the error are changed by constant factors Θ(α) resp. Θ(1/α) only. If
the error of R is too large we can use the previous lemma to reduce the
error probability while decreasing the size.

The case 1/4 ≤ α ≤ 1/2 is handled similarly. ⊓⊔

D The rectangle bound versus Arthur Merlin

communication complexity

We now prove the relations between Arthur Merlin communication and
the lower bound method based on rectangle size.
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Proof of Theorem 1, part 1. We are given a Merlin Arthur proto-
col with complexity c and error ǫ ≤ 1/4 for the function f . We show that
under this condition we can find a large 1− ǫ-correct 1-rectangle. Recall
that the complexity of the Merlin Arthur protocol includes the “commu-
nication” done by Merlin (who is guessing nondeterministically) plus the
communication by the players Alice and Bob. Let cM be the length of the
longest guess given by Merlin over all inputs. We will call such a guess
string a proof. Let cP denote the length of the longest communication
between Alice and Bob occuring during any run of the protocol. Clearly
cM , cP ≤ c.

It is possible to reduce the error probability of the protocol to 1/22c

by repeating the probabilistic part of the protocol O(c) times indepen-
dently and taking the majority output, for any fixed proof of Merlin. Let
P (x, y, z) denote the (random) output of the protocol for inputs x, y and
Merlin’s proof z. The acceptance properties of the protocol are then:

If f(x, y) = 1 then there is a proof z so that P (x, y, z) accepts with
probability 1− 1/22c.

If f(x, y) = 0 then for all proofs z, P (x, y, z) accepts with probability
at most 1/22c.

Note that the communication among the players in the new protocol
is bounded by k = O(c · cP ) = O(c2).

There are at most 2cM different proofs. If we fix such a proof z there
is a set sz of 1-inputs that is accepted on this proof, i.e., for which the
protocol accepts with high probability on this proof. In this way the set
of 1-inputs is covered by 2cM subsets s1, . . . , s2cM .

Let µ be any balanced distribution over the inputs. For each such
distribution we can find at least one proof z so that µ(sz) ≥ 1/2cM . We
fix such a proof. This turns the Merlin Arthur protocol into a random-
ized protocol so that a subset sz of 1-inputs of weight 1/2cM is accepted
with probability 1 − 1/22c each and no 0-input is accepted with proba-
bility larger than 1/22c. The other 1-inputs are accepted with uncertain
probability.

We restrict µ to the inputs in sz ∪ f−1(0), by setting the weight of all
other inputs to 0 and normalizing to a distribution µ′. Clearly the error
of the protocol under µ′ is at most 1/22c. Furthermore note that either

µ′(x, y) = 0 or µ′(x, y) = Θ(µ(x, y)), (1)

since µ is balanced.
Given such a randomized protocol we may also fix its random choices

and get a deterministic protocol (like in the easy direction of the Yao-
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principle). This yields a deterministic protocol which on expectation has
error 1/22c (under µ′). Consequently there exists a deterministic protocol
with error 1/22c under µ′ and communication k = O(c2).

A deterministic protocol with communication k easily leads to a set R
of P = 2O(k) pairwise disjoint rectangles labeled with the protocol output
that partition the communication matrix. We show that there exists a
large 1-rectangle with small error.

Assume that all rectangles which are larger than 1/(2c+1 · 2P ) have
error larger than 1/2c. Then the success probability of the protocol on
µ′ is upper bounded as follows. The small rectangles contribute at most
P ·1/(2c+1 ·2P ) ·1 ≤ 1/2c+2, the large rectangles all have success at most
1−1/2c and so the overall success probability is at most 1−1/2c+1/2c+2,
too small in comparison to the maximum error 1/22c. Hence there is a
1-rectangle of size 1/(2c+1 · 2P ) ≥ 2−Ω(c2) with error at most 1/2c ≤ ǫ
according to µ′. If we switch from µ′ to µ, then the size of a rectangle
cannot decrease (compared to µ) by more than a constant factor due to
(1). It is also easy to see that the error of the rectangle cannot increase

when switching from µ′ to µ. Consequently bound
(1)
ǫ (f) ≤ O(c2). ⊓⊔

Now we relate bound(1)(f) to AM(f).

Proof of Theorem 1, part 2. Assume that bound
(1)
ǫ (f) = c. Then

bound
(1)
ǫ4/8 ≤ O(c). For all balanced distributions µ there is a rectangle

Rµ with error at most ǫ4/8 and size at least s ≥ 1/2O(c). Also recall
that AMǫ(f) = maxµN

µ
ǫ (f), where µ runs over all distribution on the

inputs, due to Lemma 3. We use a greedy algorithm to construct a cover
of the 1-inputs to f with error ǫ containing at most 2O(c) · (1/ǫ2) · log(1/ǫ)
rectangles for any µ.

So let µ be some distribution on {0, 1}n × {0, 1}n. We distinguish
three cases. First consider the case that µ(f−1(1)) ≤ ǫ2. In this case
clearly Nµ

ǫ2(f) = 0 by a protocol that never accepts.

Next consider the case that µ(f−1(0)) ≤ ǫ2. In this case Nµ
ǫ2(f) = 0

by a protocol that always accepts.

Now consider the case that µ(f−1(1)) ≥ ǫ2 and µ(f−1(0)) ≥ ǫ2. Then
we can still find a good cover as follows. We first show that for each such
distribution a relatively large rectangle with small error exists. Then we
use a greedy approach to find a cover.

First we show how to find good rectangles. We (strictly) balance the
distribution by multiplying the weights of 1-inputs by some value p1 and
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multiplying the weights of 0-inputs by some value p0. Clearly

2(1 − ǫ2) ≥ 1

p1
,
1

p0
≥ 2ǫ2.

For the resulting strictly balanced distribution µ′ there is a 1-rectangle
Rµ′ of size s having error ǫ4/8 at most. Then the µ-weight of 1-inputs in
Rµ′ is at least

s · (1− ǫ4/8) · (1/p1) ≥ s · (1− ǫ4/8) · 2ǫ2 ≥ sǫ2.

Furthermore the µ-weight of 0-inputs in Rµ′ is at most

s · (ǫ4/8) · (1/p0) ≤ s · ǫ4 · (1− ǫ2)/4 ≤ sǫ4/4.

We next construct for µ a cover using a greedy approach.

1. Let µ0 = µ.
2. For µi find a rectangle Ri = Rµi

that contains 1-inputs of weight at
least sǫ2 and 0-inputs of weight at most sǫ4/4.

3. Put Ri into the cover.
4. Remove the weight from all 1-inputs in Ri and uniformly increase the

weights of the remaining 1-inputs by some appropriate factor q(i).
[Note that this does not affect the balance of the distribution.] Let
µi+1 denote the resulting distribution.

5. Stop, when the set of remaining 1-inputs not covered so far has weight
≤ ǫ/2 according to µ.

6. Otherwise continue with 2. and set i := i+ 1.

Clearly the algorithm finds a set of rectangles so that all but a set
of weight ǫ/2 of the 1-inputs is covered. In the worst case the weight
of any 1-input is increased by a factor of q(1) · · · q(i) ≤ (3/4)/(ǫ/2) =
(3/2)/ǫ during the course of the algorithm. Hence the weight of 1-inputs
in Ri according to µ is at least sǫ2 · ǫ · (2/3), while the weight of 0-
inputs is at most sǫ4/4. The error of Ri is thus at most (3/8)ǫ. Since this
holds for all rectangles, the weight of 0-inputs in the cover is at most a
fraction of (3/8)ǫ of the weight of all 1-inputs covered, which is at most
(3/4) · (3/8)ǫ < ǫ/2. The weight of 1-inputs not covered is ǫ/2. So the
obtained cover has error ǫ.

Now we have to analyze the size of the obtained cover. Each step covers
at least a sǫ2 fraction of the remaining 1-inputs. Hence the proportion of
not yet covered 1-inputs according to µ after k steps is

wk ≤ (1− sǫ2)k.
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The algorithm stops if this is smaller than O(ǫ), hence k ≤ O(1/(sǫ2) ·
log(1/ǫ)), and Nµ

ǫ (f) ≤ O(c+ log(1/ǫ)).

So indeed for all µ we have Nµ
ǫ (f) ≤ O(bound

(1)
ǫ (f) + log(1/ǫ)), and

hence AMǫ ≤ O(bound
(1)
ǫ (f) + log(1/ǫ)). ⊓⊔

Proof of Theorem 2.We first define the function that has both small
nondeterministic and co-nondeterministic complexity with 0 error under
some distribution, but large deterministic complexity for some constant
error under the same distribution.

Let WHICH((x1, x2), (y1, y2)) =











1 if ¬DISJ(x1, y1) = 1 and ¬DISJ(x2, y2) = 0
0 if ¬DISJ(x1, y1) = 0 and ¬DISJ(x2, y2) = 1
0 otherwise.

We employ the following more specific and optimized version of Fact 1,
which follows from some fine-tuning of the result in [R92].

Fact 6 Let νa be the distribution on {0, 1}n×{0, 1}n which is uniform on
{(x, y) : |x| = |y| = n/4, |x ∩ y| = 0} (and 0 elsewhere), and let νr be the
distribution on {0, 1}n × {0, 1}n which is uniform on {(x, y) : |x| = |y| =
n/4, |x∩ y| = 1} (and 0 elsewhere). Let ν be the distribution on {0, 1}n ×
{0, 1}n, which is defined by ν(x, y) = (3/4) · νa(x, y) + (1/4) · νr(x, y).

Then for any constant δ > 0 there is a constant β(δ) > 0, so that any
rectangle R either has size 2−β(δ)n, or ν(x, y : x ∩ y 6= ∅ |R) ≥ 1/4 − δ,
i.e.,

ν({(x, y) : x ∩ y 6= ∅} ∩R) ≥ (1/4 − δ) · ν(R)− 2−β(δ)n.

Now to the definition of the distribution on the inputs. In the distri-
bution ν × ν two instances (x1, y1) and (x2, y2) are chosen independently
from ν.

For the hard distribution µ on inputs we pick inputs as in ν × ν,
but inputs with DISJ(x1, y1) = DISJ(x2, y2) are removed, so that the
function value on the two instances differs with probability 1 (µ is nor-
malized to a distribution after this removal). On µ the task of a protocol
is to determine on which of the two set pairs ¬DISJ is true. Note that
either µ(x1, x2, y1, y2) = Θ(ν × ν(x1, x2, y1, y2)) = Θ(ν(x1, y1) · ν(x2, y2))
or µ(x1, x2, y1, y2) = 0, for all inputs (x1, x2, y1, y2) from {0, 1}4n, since
Probν(DISJ(x1, y1) = 1) = 3/4. Also note that µ is strictly balanced.

There is a simple nondeterministic protocol for WHICH making no
error under the distribution µ. One can simply use a protocol for ¬DISJ
on the first instance. This covers all 1-inputs of WHICH, but accepts
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no 0-input with weight larger than 0. Analogously we can find a protocol
for ¬WHICH under µ. So Nµ

0 (WHICH), Nµ
0 (WHICH) ≤ log n+ 1.

Now we turn to the complexity of a deterministic protocol with error.
Such a protocol with communication c immediately yields a set of P =
2O(c) pairwise disjoint rectangles labeled with values 0,1, so that a 1 − ǫ
fraction of all inputs according to µ are in correctly labeled rectangles.
Call the 1-rectangles R1, . . . , RP , the 0-rectangles S1, . . . , SP .

We show that such a partition can only exist if c = Ω(n). So for
the sake of contradiction assume that c ≤ γn for some arbitrarily small
constant γ we can choose later.

Note that the difficulty for a deterministic protocol is that the cor-
responding cover consists of disjoint rectangles, even on the inputs with
µ(x1, x2, y1, y2) = 0. In case the reader would prefer to loosen this re-
striction and require a protocol to be deterministic only on those inputs
with µ(x1, x2, y1, y2) > 0 we can still give those inputs some small prob-
ability, so that the above nondeterministic protocols would have small
error, while the following lower bound on deterministic protocols would
be unchanged.

We use the following notation. An input (x1, x2, y1, y2) is in quad-
rant A, if ¬DISJ(x1, y1) = 0 and ¬DISJ(x2, y2) = 0, in quadrant
B, if ¬DISJ(x1, y1) = 1 and ¬DISJ(x2, y2) = 0, in quadrant C, if
¬DISJ(x1, y1) = 0 and ¬DISJ(x2, y2) = 1, and in quadrant D, if
¬DISJ(x1, y1) = 1 and ¬DISJ(x2, y2) = 1. Note that inputs in quad-
rants A and D have probability 0 under µ. Under ν × ν quadrants B and
C have weight 3/16, quadrant A has weight 9/16 and quadrant D has
weight 1/16.

Let Ri be a 1-rectangle and (x1, x2, y1, y2) ∈ Ri with ¬DISJ(x1, y1) =
1. Then the set Ri(x1, y1) = {x2, y2 : x1, x2, y1, y2 ∈ Ri} is a rectangle in
{0, 1}n × {0, 1}n. Let

µ(Ri(x1, y1) |x1, y1) =
µ({(x1, y1)} ×Ri(x1, y1))

µ({(x1, y1)} × {0, 1}n × {0, 1}n)

denote the weight of Ri(x1, y1) relative to the inputs with fixed x1, y1.
Note that

µ({(x1, y1)} × {0, 1}n × {0, 1}n) = Θ(ν(x1, y1)).

Also

µ({(x1, y1)} ×Ri(x1, y1)) ≤ O(ν(x1, y1) · ν(Ri(x1, y1))),

24



since all inputs x1, x2, y1, y2 with ¬DISJ(x2, y2) = 1 have weight 0 in µ
and all x1, x2, y1, y2 with ¬DISJ(x2, y2) = 0 have weight µ(x1, x2, y1, y2) =
Θ(ν(x1, y1) · ν(x2, y2)). Then

ν(Ri(x1, y1)) = Ω(µ(Ri(x1, y1) |x1, y1)). (2)

We will show that each large Ri(x1, y1) must contain many inputs
x2, y2 with ¬DISJ(x2, y2) = 1. While this does not create any error in
the rectangle Ri, this shows that Ri occupies a significant portion of quad-
rant D. If this is true for many rectangles Ri then a situation is reached
in which the majority of quadrant D is occupied. Since a symmetric ar-
gument applies to the 0-rectangles we are lead into a contradiction, since
the rectangles are not allowed to intersect nontrivially.

We set ǫ = δ/2 = 1/17 fixing the protocol’s error and the con-
stant from Fact 6, and choose γ < β(δ)/2. Let x1, y1 be an input with
¬DISJ(x1, y1) = 1. If µ(Ri(x1, y1)|x1, y1) ≥ Ω(2−γn), then with (2)
ν(Ri(x1, y1)) ≥ 2−β(δ)n, and hence the fraction of x2, y2 ∈ Ri(x1, y1) with
¬DISJ(x2, y2) = 1 is at least 1/4 − δ according to ν. In other words,
the proportion of 0-inputs to 1-inputs of ¬DISJ(x2, y2) in Ri(x1, y1) is
3/4 + δ to 1/4− δ.

Hence {(x1, y1)}×Ri(x1, y1) occupies at least a (1/4− δ)/(3/4+ δ) ≥
1/3−2δ fraction of the weight it covers in quadrant B (according to ν×ν)
also on the inputs in quadrant D (according to ν×ν). Recall that on ν×ν
quadrant D has weight 1/16 and quadrant B has weight 3/16.

We next show that a fraction of 1 − 2ǫ of all 1-inputs of WHICH
(resp. of quadrant B) is covered by Ri(x1, y1) with µ(Ri(x1, y1)|x1, y1) ≥
Ω(ǫ · 2−γn) and hence ν(Ri(x1, y1)) ≥ 2−β(δ)n (using (2)). Then in quad-
rant D weight at least (1−2ǫ)·(1/3−2δ)·3/16 > 1/16−δ/2 > (1/2)·(1/16)
is occupied by the rectangles Ri (according to ν × ν). Since the same
holds for the rectangles Si we get at least one input in quadrant D that
is covered twice, a contradiction to the requirements on those rectangles.
Therefore γ ≥ β(δ)/2 = Θ(1) and hence c = Ω(n).

The weight of 1-inputs (according to µ) that are in rectangles Ri(x1, y1)
with µ(Ri(xi, yi) |x1, y1) ≥ ǫ/const · 2−γn (and ¬DISJ(x1, y1) = 1)
is at least 1 − 2ǫ, since at most an ǫ fraction of 1-inputs is not cov-
ered and the fraction of 1-inputs covered by smaller rectangles can be
bounded as follows. Each small rectangle Ri(x1, y1) can cover 1-inputs
of weight at most ǫ/const · 2−γn · µ({(x1, y1)} × {0, 1}n × {0, 1}n), and
there are at most 2γn · S different Ri(x1, y1) with ¬DISJ(x1, y1) =
1, where S = |{(x, y) : |x| = |y| = n/4, |x ∩ y| = 1}|. Note that
µ({(x1, y1)} × {0, 1}n × {0, 1}n) = Θ(1/S). So the 1-inputs covered by
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small rectangles have weight at most

ǫ/const · 2−γn · µ({(x1, y1)} × {0, 1}n × {0, 1}n) · 2γn · S ≤ ǫ.✷

E Uniform threshold covers and the rectangle bound

Proof of Theorem 3, part 1. Assume that UT
(1)
s,2s(f) ≤ k for some

s. Then following Remark 1, UT
(1)
ǫs′,s′(f) ≤ O(k) for an arbitrarily small

constant ǫ and some s′.

Given a one-sided bounded error uniform threshold cover with P ≤
2O(k) 1-rectangles S = {R1, . . . , RP } let h(x, y) denote the number of
rectangles Ri the input x, y is included in.

We know that for each x, y with f(x, y) = 1 there are at least s′ 1-
rectangles it is included in, so h(x, y) ≥ s′. Each x, y with f(x, y) = 0 is
in at most ǫs′ 1-rectangles, hence h(x, y) ≤ ǫs′.

Let µ be any balanced distribution on the inputs. We define a prob-
ability distribution ν on the 1-rectangles in S as follows. Each rectan-
gle R ∈ S receives the weight

∑

x,y∈R µ(x, y). We then normalize these
weights to a distribution on 1-rectangles in S. The probability of some
rectangle S is then

∑

x,y∈R

µ(x, y)
∑

R′

∑

x′,y′∈R′ µ(x′, y′)
=

∑

x,y∈R

µ(x, y)
∑

x′,y′∈{0,1}n×{0,1}n µ(x
′, y′) · h(x′, y′) .

If we first pick a rectangle according to ν and then on that rectangle
an input (according to µ restricted to R), we get some input x, y with
probability

µ(x, y) · h(x, y)
∑

x′,y′∈{0,1}n×{0,1}n µ(x
′, y′) · h(x′, y′) .

So the weight of x, y in this experiment is proportional to µ(x, y) ·
h(x, y). Hence the probability of picking a 0-input in this way is at most

µ(f−1(0)) · ǫs′
µ(f−1(1)) · s′ ≤ 3/4 · ǫs′

1/4 · s′ ≤ 3ǫ. (3)

Assume that all rectangles that are larger than ǫ2/P according to µ
have error larger than 4ǫ. Then, if we first pick a rectangle R and then
an input x, y ∈ R the probability that f(x, y) = 1 can be bounded as
follows. The small rectangles contribute at most P · (ǫ2/P ) ·1 ≤ ǫ2 to this
probability. All larger rectangles have error 4ǫ at least, and hence when
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picking one of them the probability of getting a 1-input is at most 1− 4ǫ,
so the overall probability of getting a 1-input is at most 1 − 4ǫ + ǫ2, a
contradiction to (3).

Hence there exists a 1-rectangle of size at least ǫ2/P = Ω(1/P ) having
error at most O(ǫ) according to µ.

When given a bounded error uniform threshold cover we can do the
same construction for the 0-inputs, and hence UTs,2s(f) = k allows us to
find both a 1-rectangle and a 0-rectangle with the desired properties for
any balanced µ. ⊓⊔

Proof of Theorem 3, part 2.

Assume bound
(1)
1/4(f) = k for some f : {0, 1}n × {0, 1}n → {0, 1}.

Then bound
(1)
1/n5(f) ≤ O(k log n) using Lemma 1. In other words, for each

balanced distribution µ on {0, 1}n×{0, 1}n there exists a 1−1/n5-correct
1-rectangle of size at least s = 2−O(k logn).

We show how to construct a one-sided uniform threshold cover with
parameters n, n2. The cover is produced by an algorithm. Let µ1 be the
distribution which is uniform on the 1-inputs of f with probability 1/2
and uniform on the 0-inputs of f with probability 1/2.

1. Set l = 1, Cov0 = ∅.
2. Find a 1− 1/n5-correct rectangle Rl of size at least s according to µl

and let Covl = Covl−1 ∪ {Rl}.
3. Let I0(l) denote the set of 0-inputs in Rl, let I1(l) denote the set of

1-inputs in Rl.
4. Construct µl+1 be as follows:

– the weight of all inputs in I1(l) is reduced by a factor of 1− 1/n4.
The obtained “free” weight is used to increase the weights of all
inputs in I0(l) by a fixed factor.

– Any input in I1(l) that is covered more than n2 times receives
weight 0. Its weight is used to increase the weight of all 1-inputs
by a fixed factor.

5. STOP if all 1-inputs are covered at least n2 times.

Note that each 0-input that is covered in some iteration l at least
doubles its weight at that point. Namely, since a rectangle Rl has error
1/n5, weight µl(Rl) · (1 − 1/n5) · 1/n4 is distributed to inputs in I0(l) of
weight µl(Rl) · 1/n5, more than doubling the weight of each such input.
Since no 0-input has weight more than 1 or less than 1/22n this implies
that no 0-input is ever covered more than 2n times.

We have to show that the distributions µl are all balanced for step
2. to work. The second part of step 4. does not change the balancedness
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of the distribution. In the first part of step 4. some weight is shifted from
1-inputs to 0-inputs. The inputs in I1(l) are reduced in weight by a factor
of (1− 1/n4). But as soon as an input is covered n2 times this reductions
stops.

Let us assume for the moment the following lemma justifying step 2.,
whose proof will be provided at the end of this section.

Lemma 4. 1/2 ≥ µl(f
−1(1)) ≥ 1/2−O(1/n) for all l.

The lemma clearly implies that the distributions µl are all balanced,
hence step 2. is applied correctly. We use Lemma 4 only to ensure that the
obtained cover is good on the 0-inputs, but not to ensure that it is good
on the 1-inputs. To analyze the number of iterations of the algorithm we
consider the following modification of step 2.

2.’ First strictly balance µl by uniformly increasing the weights of 1-
inputs and decreasing the weights of 0-inputs by fixed factors. Then
pick a size s rectangle Rl with error 1/n5 according to that distribu-
tion.

The size of Rl on µl is at least s · dl, when dl = µl(f
−1(1))/(1/2)

denotes the distortion of the balance of µl compared to µ1. Note that
µl(f

−1(1)) ≤ 1/2, so dl ≤ 1.
We will show that the modified algorithm terminates and produces a

size O(n3/s) cover. This immediately implies that each 1-input is covered
at least n2 times. Then this is also true for the original algorithm: The
original algorithm uses larger rectangles in step 2. and hence terminates
faster. Furthermore we will show that Lemma 4 holds for both the mod-
ified and the original algorithm. Note that, however, only the original
algorithm guarantees that the cover is good on the 0-inputs.

Let Sl denote the set of 1-inputs not covered n2 times before iteration
l, and let Nl = |Sl|. Since the weight of each input in Sl is reduced in the
first part of step 4. by a factor of (1− 1/n4) each time it is covered, this
decreases the weight of such an input by (1− 1/n4)n

2−1 ≤ (1−O(1/n2)).
In the second part of step 4. the weights of all 1-inputs are increased by
some fixed factor. Furthermore µ1(x, y) = 1/(2N1) for all 1-inputs x, y.
Hence for all x, y ∈ Sl and x′, y′ ∈ Sl:

(1−O(1/n2)) · µl(x
′, y′) ≤ µl(x, y) ≤ (1 +O(1/n2)) · µl(x

′, y′).

The average weight of an input in Sl is (1/(2Nl)) · dl. Hence the for all
x, y ∈ Sl

(1/(2Nl))dl(1−O(1/n2)) ≤ µl(x, y) ≤ (1/(2Nl))dl(1 +O(1/n2)). (4)
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Let hl(x, y) denote the number of times input x, y is covered by
Covl−1. There are N1 1-inputs to f . Then let

h(l) =
∑

(x,y)∈f−1(1)

1/N1 · pos(n2 − hl(x, y)),

where pos(x) = x if x ≥ 0 and pos(x) = 0 otherwise. h(l) denotes the
average number of times 1-inputs still have to be covered. Clearly n2 ≥
h(l) ≥ 0, and if h(l) > 0, then h(l) ≥ 1/N1.

In each step 1-inputs of weight s(1− 1/n5)dl according to µl are cov-
ered. Let Cl denote the set of 1-inputs x, y ∈ Rl with hl(x, y) < n2. Due
to (4): µ1(Cl) ≥ sdl(1−1/n5) · (1−O(1/n2)) · (1/dl)Nl/N1 ≥ s/2 ·Nl/N1.
Including Rl in the cover reduces h(l) by at least sNl/N1 hence. Then

h(l + 1) ≤ h(l)− sNl/N1

=
∑

(x,y)∈f−1(1)

1/N1 · pos(n2 − hl(x, y)) − (Nl/N1) · s

=
∑

(x,y)∈Sl

1/N1 · (n2 − hl(x, y)− s)

≤
∑

(x,y)∈Sl

1/N1 · (n2 − hl(x, y)) · (1− s/n2)

≤ h(l) · (1− s/n2).

For some l = O(n3/s) iterations h(l) = 0. Hence the constructed cover
contains no more than O(n3/s) rectangles. Since the algorithm with the

original step 2. terminates at least as fast we have UT
(1)
n,n2(f) ≤ O(k log n).

Given that UTs,t(f) = max{UT
(1)
s,t (f), UT

(1)
s,t (¬f)} we can simply do

the same construction for the 0-inputs and get the desired result for
bound(f). ⊓⊔

Proof of Lemma 4. First let us look at the algorithm with the
modified step 2’. Let sldl denote the weight of Rl in µl. As argued before,
the algorithm stops as soon as

∏

(1 − sl/n
2) < 1/(n2 ·N1). So there is a

sequence s1, . . . , sk so that
∏k

l=1(1−sl/n
2) < 1/(n2·N1) and all sl ≥ s, and

k is minimal with this property. The weight transferred to the 0-inputs is
then at most

∑k−1
l=1 sldl/n

4 ≤ ∑k−1
l=1 sl/n

4, since no weight is transferred
from Rk. We may hence adjust sk so that

∏k
l=1(1− sl/n

2) = 1/(n2 ·N1).
For each k it is true that

∑k
l=1 sl is maximized for s1 = · · · = sk =: s̄

because: let s′l = (1 − sl/n
2). Then

∏

s′l = 1/(n2N1) and we want to
maximize

∑

(1− s′ln
2) = k − n2 ∑ sl or equivalently minimize

∑

sl. This
is achieved when s1 = · · · = sk.
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Then k = O(n3/s̄) and the transferred weight is at most k · s̄/n4 =
O(1/n). Consequently the same holds if k is arbitrary. Note that this
implies dl ≥ 1−O(1/n).

In case the original step 2. of the algorithm is applied µl(Rl) = sl ≥ s,
and potentially a larger weight is transferred to the 0-inputs. But this
also makes the algorithm terminate quicker.

The algorithm stops at least when
∏

(1− sl/(dln
2)) < 1/(n2 ·N1). We

may substitute s′′l = sl/dl and are left with the problem of finding the
maximum of

∑

s′′l dl under the constraint that
∏

(1−s′′l /n
2) = 1/(n2 ·N1)

and s′′l = sl/dl ≥ s/dl ≥ s. This is the problem we have just analyzed. ⊓⊔

F Comparing the power of different threshold covers

First let us show that one-sided bounded error uniform threshold covers
for some function f can easily be converted into approximate majority
covers. The same also holds for the complement of f .

Proof of Theorem 4. Assume that UT
(1)
t,9t(f) = k. Then there ex-

ist 2k rectangles so that each 1-input is in at least 9t rectangles and
each 0-input is in at most t rectangles. Now label all the rectangles as
1-rectangles and add 3t times the 0-labeled rectangle covering all in-
puts. This is clearly an approximate majority cover, hence APP (f) ≤
UT

(1)
t,9t(f) ≤ O(UT

(1)
t,2t(f)). ⊓⊔

Now we relate APP (f) to a version of the rectangle size bound.

Proof of Theorem 5. Assume that APP (f) = k, then we can find
2k labeled rectangles making up an approximate majority cover for f .
We first have to show that in this case for each balanced distribution µ
there exists a 3/4-correct rectangle of size 1/2O(k) at least. The proof is
analogous to the proof of Theorem 3.1.a, but this time we are guaranteed
to find a large rectangle with small error, not a large 1-rectangle with
small error. To adapt the proof one has to replace the uniform threshold
values s′, ǫs′ by the expected correct height (1−ǫ)·E[h(x, y)] and incorrect
height ǫ · E[h(x, y)].

Now we show the opposite direction, namely, given that for each bal-
anced distribution µ we can find a 3/4-correct rectangle of size 1/2k, then
we can construct an approximate majority cover.

First notice that in fact we can find a rectangle of size 1/2k and
error at most 1/4 for all distributions on the inputs, since on unbalanced
distributions we may simply take {0, 1}n × {0, 1}n as a rectangle with
error 1/4 when choosing the appropriate label for that rectangle.
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To construct the approximate majority cover we first consider the fact
that minµmaxv size(µ, ǫ, f, v) ≥ 1/2k in a somewhat different light. Let

para(µ,R) = ǫ/(3µ(R)) + err(R,µ, v(R)) · 2k.

This parameter controls the quality of a rectangle. Yao’s application of
the minimax-principle to randomized algorithms (see [KN97]) provides us
with the following statement.

Lemma 5. The following two statements are equivalent for all f .

1. For all distributions µ there is a rectangle Rµ with parameter α.
2. There is a probability distribution D on rectangles so that for all dis-

tributions µ on inputs the expected parameter of a rectangle is α.

The latter could be named a “randomized rectangle” because it re-
sembles a randomized algorithm. We know that for all distributions µ on
{0, 1}n ×{0, 1}n there is a rectangle Rµ with size 1/2k and error ǫ = 1/4,
hence para(µ,Rµ) ≤ (1/4)/(3/2k) + (1/4) · 2k = (1/3) · 2k. The ran-
domized rectangle then offers a distribution on rectangles with expected
parameter (1/3) · 2k at most. Hence the expected rectangle size satisfies
(1/4)/(3E[µ(R)]) ≤ (1/3) · 2k ⇒ E[µ(R)] ≥ 1/2k+2. The expected error
satisfies E[err(R,µ, v(R))] · 2k ≤ (1/3)2k ⇒ E[err(R,µ, v(R))] ≤ 1/3.

A randomized rectangle immediately gives us an approximate major-
ity cover for f , though not of the desired size. To see this note that if we
consider a distribution µx,y concentrated on some fixed input x, y, then
ProbD(v(R) 6= f(x, y)|x, y ∈ R) = E[err(R,µx,y, v(R))] ≤ 1/3.

From the direct application of the Yao-principle we do not get a bound
on the number of rectangles with nonvanishing probabilities used in D.
We use the following discretization.

Lemma 6. Assume there is a randomized rectangle for f with expected
size s = 1/2O(k) and expected (constant) error ǫ ≤ 1/3. Then there is an
approximate majority cover for f having size 2O(k) · n.

The lemma clearly implies APP (f) ≤ O(k)+log n. So let us prove the
lemma. We independently pick t = c · (1/s) ·n rectangles R1, . . . , Rt from
the distribution D for some large enough constant c. Our claim is that
this yields the desired approximate majority cover. Let w(x, y) denote
the random variable counting the number of Ri with label v(R) 6= f(x, y)
and x, y ∈ Ri. Let h(x, y) denote the number of all Ri with x, y ∈ Ri.

Consider the distribution µx,y concentrated on x, y. We know that the
expected size of a rectangle picked from D is at least s. Since µx,y(R) ∈
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{0, 1}, with probability at least s a chosen rectangle contains x, y. So
E[h(x, y)] ≥ s · c · (1/s) · n = cn.

We know E[w(x, y)] ≤ ǫE[h(x, y)], and want to bound Prob(w(x, y) ≥
1.1 · ǫE[h(x, y)]), which is maximized if E[w(x, y)] is as large as possible,
hence we assume E[w(x, y)] = ǫE[h(x, y]. Using the Chernov bound

Prob(w(x, y) ≥ 1.1 · ǫE[h(x, y)])

= Prob(w(x, y) ≥ 1.1 · E[w(x, y)])

≤ e−E[w(x,y)]/300 = e−ǫE[h(x,y)]/300 ≤ e−ǫcn/300.

Let c = O(1/ǫ) be large enough, so that the above probability is at most
2−2n−1. Then the probability that there exists one of the 22n inputs x, y
with w(x, y) ≥ 1.1 · ǫh(x, y) is smaller than 1. Consequently there exists
a choice of t rectangles so that for all x, y: w(x, y) ≤ 1.1 · ǫh(x, y).

By Remark 2 we get an approximate majority cover. ⊓⊔
We now show an exponential gap between (even one-sided) bounded

error uniform threshold covers and approximate majority covers.
Proof of Theorem 6. Consider the function BOTH : ({0, 1}2n ×

{0, 1}) × ({0, 1}2n) → {0, 1} defined as follows:

BOTH((x1, x2, a), (y1, y2)) = (DISJ(x1, y1)∧a)∨ (¬DISJ(x2, y2)∧¬a).

Hence depending on a the function either computes DISJ on the first
pair of inputs or ¬DISJ on the second pair.

First we show that APP (BOTH) = O(log n). Note APP (¬DISJ) =
O(log n), since N(¬DISJ) = O(log n) and APP (f) ≤ N(f). Hence also
APP (DISJ) = O(log n), since APP (f) = APP (¬f) for all f . To find an
approximate majority cover for BOTH we take the approximate majority
cover for DISJ and intersect all its rectangles with the rectangle defined
by a = 1. We also take the approximate majority cover for ¬DISJ and
intersect all its rectangles with the rectangle defined by a = 0. The union
of these sets of rectangles is an approximate majority cover for BOTH.
So APP (BOTH) = O(log n).

Now we consider UT
(1)
s,2s(BOTH). We consider a distribution on in-

puts in which a = 1 with probability 1. In this case with probability
1, BOTH((x1, x2, a), (y1, y2)) = DISJ(x1, y1). Since there is a balanced
distribution on inputs so that each 1-rectangle either has size 1/2Ω(n) or
error at least ǫ for some constant ǫ > 0 (see Fact 1), we can choose this
distribution on the input positions x1, x2, and fix x2, y2 arbitrarily. In this
way we get a balanced distribution with the same properties for BOTH

and hence UT
(1)
s,2s(BOTH) = Ω(n) (using Theorem 3).
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Now we consider UT
(1)
s,2s(¬BOTH). We may proceed as above, by

fixing a = 0 and considering the quality of 1-rectangles for ¬(¬DISJ).

So we get UT
(1)
s,2s(¬BOTH) = Ω(n). ⊓⊔

Proof of Theorem 7. It is easy to construct a majority cover for
MAJ . The cover contains n 1-rectangles defined by xi ∧ yi plus ⌈n/2⌉
0-rectangles covering {0, 1}n × {0, 1}n. If we have MAJ(x, y) = 1, then
at least ⌈n/2⌉ 1-rectangles xi ∧ yi contain x, y, else at most ⌈n/2⌉ − 1
1-rectangles contain x, y.

For the lower bound we have to argue that there is a balanced dis-
tribution for which all 1− ǫ-correct rectangles have size at most 1/2Ω(n).
Let n′ = 6k + 2 be the input length for some k satisfying k ≡ 1 mod 2
and k ≡ 1 mod 3.

First we fix 2k variables xi, yi = 1. There are n = 4k + 2 remaining
variables. MAJ(x, y) = 1 ⇐⇒ ∑n

i=1 xi ∧ yi ≥ k + 1 under this fixing.
We pretend in the following that there are n variables.

Let us define the distribution. Let µr be the uniform distribution
on {(x, y) : |x| = |y| = n/2, |x ∩ y| = k}, and let µa be the uniform
distribution on {(x, y) : |x| = |y| = n/2, |x ∩ y| = k + 1}. Then let µ be
defined by µ(x, y) = (3/4) · µr(x, y) + (1/4) · µa(x, y). The distribution is
obviously balanced.

We have to show that there are no large rectangles with small error,
neither 1-rectangles nor 0-rectangles. This is handled in the following way.

Claim. If there is a 1-rectangle of size Ω(s) and error O(δ) according
to µ and MAJ , then there is a 0-rectangle of size Ω(s) and error O(δ)
according to µ and MAJ , and vice versa.

Proof of the claim. Assume there is a size s 1-rectangle R = A×B
with a fraction of (1−δ)s 1-inputs and δs 0-inputs on µ. Let ¬A = {x : x ∈
A}. We claim that ¬A×B is anO(δ)-error sizeΩ(s) 0-rectangle. Note that
f(x, y) = 0 ⇐⇒ |x∩y| = k and f(x, y) = 1 ⇐⇒ |x∩y| = k+1 under µ,
and that |x|, |y| = 2k+1. Hence |x∩y| = |y|−|x∩y| = 2k+1−k−f(x, y),
and so f(x, y) 6= f(x, y) with probability 1. So the rectangle ¬A×B has
entries with reversed function value compared to A×B. The claim follows
with µ(x, y) = Θ(µ(x, y)). ⊓⊔

We are going to show that each 0-rectangle has size at most 2−Ω(n)

or has error ǫ for some constant ǫ. Then APP (MAJ) = Ω(n).
We consider the following way to choose inputs according to µ: First

we choose a frame, namely a partition of {1, . . . , n} into sets zk of size k,
zx, zy of size (4k + 2 − k − 1)/2 = ⌈3k/2⌉, and {i} of size 1, uniformly
under all such partitions. Then x is chosen to contain all of zk and with
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probability 1/2 also {i}. x is filled up to a size 2k + 1 set by choosing
uniformly elements of zx. y is chosen similarly, only with the filling up
done from the set zy. Note that this produces the distribution µ.

Now we fix zk arbitrarily. Let µzk denote the corresponding distribu-
tion on inputs. Ignoring the variables in zk the players choose sets with
an intersection size in {0, 1}, i.e., they solve the (complement of the)
disjointness problem on a specific distribution.

We employ Fact 6 at this point. A technical problem for the applica-
tion of this fact is that for µzk subsets of size k+1 are chosen from a size
n − k = 3k + 2 universe. To overcome this we may fix arbitrary disjoint
subsets sx, sy ⊆ {1, . . . , n} − zk of size l = k/3 + 2/3 each. The variables
in sx are set to 1 in x and the variables in sy are set to 1 in y. After
fixing zk, sx, sy an input is chosen as follows. First zx and zy are chosen,
under the condition that they include sx resp. sy, hence the remaining
size of these is ⌈3k/2⌉ − ⌈k/3⌉ each. Then {i} is chosen and the frame
is complete. Afterwards an input is chosen as before. Call the resulting
distribution µzk,sx,sy .

The number of remaining nonfixed variables when choosing according
to µzk,sx,sy is n′′ = 3k+2− l. Disregarding the fixed l elements the size of
x and of y is k + 1 − l = (2/3)k + 1/3 = n′′/4. So disregarding the fixed
inputs we have reached the distribution ν of Fact 6.

Under µ the weight of any input x, y can be expressed as the expec-
tation over all possibilities to fix zk and to fix sx, sy of the weight of the
input under this fixing. Namely,

µ(x, y) = Ezk,sx,sy [µzk,sx,sy(x, y)].

We know from Fact 6 that for all zk, sx, sy:

µzk,sx,sy(MAJ−1(1) ∩R) ≥ 1/5 · µzk,sx,sy(R)− 2−Ω(n).

Hence also µ(R ∩MAJ−1(1))

= Ezk,sx,sy [µzk,sx,sy(MAJ−1(1) ∩R)]

≥ (1/5) ·Ezk,sx,sy [µzk,sx,sy(R)]− 2−Ω(n)

= (1/5) · µ(R)− 2−Ω(n).

Hence any 0-rectangle for MAJ under µ either has size 2−Ω(n), or error
1/5. Due to our previous claim within constant factors the same holds for
1-rectangles. So the lower bound APP (MAJ) = Ω(n) follows. ⊓⊔
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